SR S R A R T

Bt R L

Designing Self-Timed Systems

Alexandre Yakovlev, Leningrad Electrical Engineering Institute. Leningrad, USSR*

s devices are scaled down and become faster while
Achips grow larger, a number of technological prob-

lems involving yield, power dissipation, wire delays
versus gate delays, and 50 on, are being solved. A related set
of VLSI design problems involves design complexity, test-
ing, and timing. Of concern here are self-timed systems, that
is, systems whose structure is an interconnection of self-timed
modules communicating through asynchronous protocols
without the use of a common clock. The self-timed design
approach is capable of tackling the problems of design com-
plexity, testing, and timing.

This article aims at reviewing the following: several ap-
proaches to self-timed VLSI design, examples of self-timed
blocks and systems aired so far, and proposals for furthur
steps in this area. Apart from this, one of the most important
objectives of the article is to draw the designer’s and manu-
facturer’s attention to a design strategy that is very promising,
although it has probably not yielded even a handful of
demonstrated chip design examples to date.

Conceptual Background

Design complexity can be tackled by means of hierarchical
and modular design techniques and by regularity of imple-
mentations. In order to cope with multidimensionality and
granularity, one should consider time metrics and geometry
(space metrics) at different levels.

In this environment, testability becomes one of the most
important features of design. With device scaling, the number
of primary I/0 pins per scaled unit area decreases. Since each
pin in effect takes more responsibility for **inland’’ affairs, it
becomes increasingly important to avoid having to generate
exhaustive tests. Ideally, self-testable, self-checking, and
self-repairing chips would be built according to organization-
al principles based on observability issues.

The problem of timing in this context refers to the changing
roles of wire delays and gate delays. When all the dimensions
on a chip are scaled down by a factor of e, the wire diffusion
delay scales up by o and the switching time of devices scales
down by « (see, for example, Mead and Conway, 1980; or
Seitz, 1979). The increased wire delay relative to device
delay slows down a synchronous system that distributes a
central clock throughout the system, because the clock rate
must be reduced to compensate for the signal skew. One of
the ways to solve (better to say “‘palliate’’) this problem is to
geographically divide the system into several subsystems,
each having its own clock and operating within the limits of a

“On leave during 1984/1985 at the Computing Laboralory, University of Newcastle upon
Tyne, NE1 7RU, England.

70 VLS| SYSTEMS DESIGN September 1985

so-called equichronic region. However, we then face the no
less significant problem of eliminating the arbitration anoma-
lies and synchronization failures that arise wherever we
attempt to interconnect such an ensemble of independently
clocked zones.

A class of systems called self-timed systems has been
proposed (better to say “‘evolved’’) to deal with the timing
problem (Bryant, 1980; Seitz, 1979, 1980). However, if we
consider these recent self-timed design methodologies, it
becomes apparent that the other design problems (complexity
and testability) can also be solved within the self-timed
approach, in a much more structured and natural manner than
using the classically accepted synchronous design approach.

A self-timed system is an interconnection of self-timed
modules that communicate through asynchronous protocols.
It does not require a global clock. Instead, system-level
events and protocol states are ordered in time by the causal
relationships among the modules. (Inside each of the modules
may or may not be a local clock that is supposed to be started
asynchronously by system protocol signals.) —

Also, a self-timed system is able to provide a high degree
of modularity, which enables a straightforward top-down
VLSI design to be performed. The natural observability due
to spatial (code) redundancy, the presence of cumpletmn
signals, and the sequential mode of coordination between
modules tend to make self-timed systems self-checking and

- fault-tolerant. It is worth noting that having a self-timed

implementation may simplify the testing task, because a
malfunction in a self-timed system exhibits itself in compo-
nents getting hung up on missing acknowledge signals (Rem,
1981).

Definition of a Self-Timed System

Seitz (1980) gives a general definition of a self-timed
system as either a self-timed element or a legal interconnec-
tion of self-timed systems. Such a highly abstract view has the
advantage of being structured and recursive. The definition
can be used as a generation (synthesis) rule, or as a recogni-
tion (verification) rule. The designer specifies in his own
notation a self-timed element’s behavior and a general rule for
legal interconnections (or a set of all possible legal
interconnections).

The main distinctive feature of self-timing lies in the
absence of any explicit notion of time metrics at the level of
system specification. Bear in mind, however, that this defini-
tion does not put any restrictions on the internal structure of a
self-timed element, which can be defined at a lower level
using an element’s local clock. Such lower-level definitions

The t
safen
the Ic
"protos
livene
cial §
Sei

of sel
introd
weak
straint
or don
use of
condit
Al
meant
variab
one un
ered s
logic
betwet
are not
may b

T T T et

e un L
x<yandy=ximplies x =y
x=yandy=zimplies x<z

TABLE
A combinational element signaling scheme
(Seitz, 1980).

are also up to the designer.

Recently; a compromised concept of self-timing with a
degree of asynchronism has been accepted. This version does
not demand that system elements be totally asynchronous.
Instead, it requires that the system be asynchronous down to
the level of self-timed elements. In order to retain a recursive
definition, a self-timed element may not, then, be an inter-
connection of self-timed systems at the same abstraction
level.

We can use one of two possible ways of establishing the
legality of interconnections:

1. Provide legality (or correctness) by construction. Al-
though functionally such a system is not very flexible, it
is well-structured and, provided with a certain initial
state, is globally well-behaved.

2. Build with only some local view of establishing well-
behaved elements, and then verify global correctness.
This approach can be reasonable for a system of limited
complexity.

The traditional concept of correctness is that of providing
safety and liveness. The safety condition can be guaranteed by
the local asynchrony of the request-acknowledge signaling
protocol used between modules. This being so, checking the
liveness condition (freedom from deadlocks) becomes a cru-
cial step in self-timed system analysis.

Seitz (1980) demonstrates an example of the specification
of self-timed combinational logic (CL) using the definition
introduced. Such a specification is expressed by the so-called
weak conditions (Table 1) that establish the ordering con-
straints on signal changes on inputs (due to the environment,
or domain) and outputs (due to the module, or function). The
use of temporal logic for the formal specification of weak
conditions is presented by Malachi and Owicki (1981).

Although Seitz makes no rigorous definition of what is
meant by inputs and outputs, they are likely to be ternary
variables having two defined states, zero (0) and one (1), and
one undefined state, spacer (-). Such variables can be consid-
ered self-timed Boolean variables, i.e., as compostitions of
logic and time metrics: Transitions between 0 and (-) and
between 1 and (-) are allowed, but transitions between 0 and 1
are not. In order to encode each input (output), a two-rail code
may be used, in which 00 represents the undefined state, and

Data

Data In QOut
: . Self-Timed iy

Module 1
req ack

(a)

FIGURE 1. Combinational logic (CL) self-timed
module (a); 4-cycle protocol (b); and 2-cycle
protocol (c).

10 and Ol represent the presence of a zero and one,

respectively.

An alternative representation of composite input (output)
signaling is done with the use of explicit request-acknowledge
wires supporting a single-rail data code. We illustrate such
signaling with two signal graphs. [The signal graph (Rosen-
blum and Yakovlev, 1985) is a formal model obtained from a
marked graph (Commoner et al., 1971) by labeling its ver-
tices with the changes of binary or multivalued signals or the
vectors of signals.] Figure 1(b) represents the 4-cycle, or
return-to-zero (RZ) protocol, while Figure 1(c) represents the
2-cycle, or nonreturn-to-zero (NRZ) protocol. The notations
x* and x~ denote the change of signal x from 0 to 1 and from 1
to 0, respectively. The changes of composite variables DI*
and DO* denote some permutative changes of data input and
data output (vector) signals, respectively.

A slightly more generalized method of specification is the
self-timed pipeline module [Figure 2(a)], for which a CL
module is only a particular case (where signals ack and ack,
are not used). We can also represent the pipeline module as a
CL module with a self-timed rendezvous element (the C-
element of David E. Muller) and inverter, as shown in Figure
2(b). (Recall that a C-element’s output goes to 0 only after all
of its inputs go to 0, and its output goes to 1 only after all of its
inputs go to 1.) The signal graph of the corresponding
protocol is shown in Figure 2(c). It is clearly seen from the

VLSI SYSTEMS DESIGN September 1985 71

Data
Data In — Out
Z s':— ['ﬁ ," Z 7 :)
reqy Z Moduez > ™%
ack, -—— Z le———— ack,

(a)

Self-Timed
Module 1

FIGURE 2. Pipeline self-timed module (a); its
representation with CL module and C-element
(b); and conresponding signal graph of 2-cycle
protocel (c).

protocol that new input data can be accepted by the self-timed
module only if its previous output data was acknowledged by
the next module.

The general case of the pipeline self-timed module as an
asynchronous process with a finite set of input and output data
ports is a model where each port operates according to the 4-
cycle protocol—that is, each port has its own data bus and
acknowledge wire [Figure 3(a)]. The signal graph of the
generalized pipeline CL module specification is given in
Figure 3(b). Such a module may have as complicated an
internal process behavior as the designer may wish. The
behavior of the module can be specified, for example, in
terms of CSP (Hoare, 1978) or asynchronous control structure
(Jump and Thiagarajan, 1975). However, for this general
case, the recursive specification is hardly possible, since the
weak conditions are no longer fulfilled for each module,

much less for the whole system. The conditions are satisfied

74 VLS| SYSTEMS DESIGN September 1985

o, B 1 oo,
P, < a, 2 = >ou=1
>3 - Generalized o
: ~ seltTimed 2
ol, Module e
. 5
—z

For each IP, or OP;:

(a)

t = synchronizing variable

b)

FIGURE 3. Generalized pipeline self-timed
module (a) and signal graph of the 4-cycle
protocol for the generalized CL module
specification (b).

for each particular port, and therefore they provide the safety
condition between modules, Thus, in general, we may need
to undertake the verification of liveness (Friedman and
Menon, 1971).

Nevertheless, in this general case we can find some com-
promisingly restrictive module specification that will simplify
the verification procedure. The interconnection of such mod-
ules to obtain a pipeline CL system is made using the
following rules:

1. Each input port of a module is either driven from an
output port of another module, or is an input port to the
interconnection;]

2. Each output port of a module either drives an input of
another module or is an output port of the
interconnection;

3. There are no closed port paths.

A pipeline sequential logic interconnection can be defined

e
o Logic

5 Function [Inertial z
. Delay

Iyl ety

ifz, = fz) then z, = "siable”
aise z; = “excited”

FIGURE 4. Gate as a composition of a logic
function block and an inertial delay.

by a similar set of rules. Rules 1 and 2 are unchanged,
whereas Rule 3 is restated such that each closed port path
must have three or more modules in the loop. This condition
is required, because if we have only two modules in a loop,
they will always be in a blocking state: Either one of the
corresponding ports has data, or both of them are empty.

Having taken into account these definitions and having
provided the allowed initial state, we obtain a self-timed
system that operates correctly.

The next section is a look back to the history of the self-
timed approach. Special attention is paid to the speed-inde-
pendent circuits having the *‘strongest™ (down to the logic
gate delay level) degree of self-timing.

Speed-Independent Circuits

Speed-independent circuits were proposed in the pioneer-
ing works of David E. Muller (see, for example, Muller and
Bartkey, 1956; Muller, 1963; and Miller, 1965), who is
obviously a magician of asynchrony with his magic wand, the
C-clement.

The main feature of speed-independent circuits is that their
behavior does not depend on the real delay values of their
gates. That is why gate delays can be unbounded (but finite).
Even if they are infinite, the system, having been started, will
eventually stop operating but will never operate incorrectly.
The correct operation of speed-independent circuits was
proved to be free of functional races and delay hazards. It
seems important that the assumptions—that gate delays are
unbounded and wire delays inside a module are negligible—
make the speed-independent circuit model quite adequate for
systems of small- and medium-scale integration.

Considering speed-independent circuits from the viewpoint
of the contemporary self-timed approach, we notice that
Muller’s theory of semimodular circuits (the main subclass of
speed-independent circuits that is formally convenient for
analysis) gave design rules that in some sense were an
example of Seitz’s general definition.

The three main issues of speed-independent circuits that are
relevant to the matter discussed here are the model of the
circuit, semimodularity, and legal interconnections.

1. Model of the circuit. A circuit is formally defined as a set

78 VLS| SYSTEMS DESIGN September 1985

Environment
switches:
=2

FIGURE 5. lllustration of safety and persistence
conditions.

of Boolean equations:
Z; = F(Ze5 ZaroosZ)

where z, is a logic variable corresponding to the output of a
gate. A gate, or logic element, as a unit of the lower
abstraction level of a circuit is defined as a sequential compo-
sition of a delay-free logic function block and an inertial
delay, as shown in Figure 4. The gate is called stable if its
state is equal to the value of its function; otherwise, it is
excited, and its state is labeled with an asterisk (*).

2. Semimodularity. The circuit is called semimodular with
respect to some initial state if for each gate the following
operating sequence is carried out:

0—=>0—=>1—1¥—0

In other words, once an element has become excited, it may
then become stable only by changing the value of its output
signal to the complementary value.

On the one hand, this requirement is a safety condition,
meaning that the previous excitation must be assimilated
before the next change is put to the gate inputs. At the same
time, it is also a persistence condition, meaning that the
excitation must not be removed from a previously excited
gate. Figure 5 illustrates this requirement graphically.

This definition of semimodularity is not an example of a
*‘correct by construction’’ design rule. It is more accurately a
verification criterion, and it has nothing to say about how to
build a semimodular circuit from logic gates of a given set.
However, Muller gave a theory and formal methods of the
implementation of semimodular circuits from the initial speci-
fication of a circuit’s behavior in terms of state diagrams and
transition charts.

3. Legal interconnections. The third issue is a driving rule
to the structured approach that has recently been used in self-
timed methodologies. A legal interconnection of semimodu-
lar circuits is obtained by using a 4-cycle (RZ) request-
acknowledge protocol. There are two such legal
interconnections producing a composition that is also semi-
modular: sequential and parallel.

o o

= bl

il

T
1

FIGURE 6. Sequential interconnection of
semimodular circuits.

Let us consider two semimodular circuits, A and B (Figure
6). We can interconnect them sequentially if we break an
output wire of one of the gates (say, f) at circuit A and an
output wire of one of the gates (say, g,) of circuit B. We have
to make these breaks at points that are before any branching
(fan-out) to inputs of subsequent gates. A and B are then
interconnected through an inverter, as shown in Figure 6.
Provided that the initial state of the gate f, is stable and equal
to 0, and that of the gate g, is excited and equal to 1, this
composition will be semimodular.

Using the same rule of breaking the output wires, we can
obtain a parallel connection using the C-element, as shown in
Figure 7. We must provide also that the initial states of the
gates are both either 0 or 1.

In one of the concluding works by Muller, the general
problem of the synthesis of speed-independent circuits was
solved (Muller, 1967). However, it is notable that although
he introduced a basic 4-cycle signaling scheme, his synthesis
methods were concerned with ‘‘autonomous’’ control cir-
cuits, i.e., the circuits whose behavior was determined by
their structure and the initial states of their gates. In the
consideration of data inputs that can be changed from the
environment, one may conclude that the circuit will operate
correctly for one input discipline, i.e., it is semimodular, but
for another discipline it will operate incorrectly.

Post-Muller Studies

Speed-independent circuits were later investigated in
works by Armstrong et al. (1969), Dennis and Patil (1971),
Keller (1974), Misunas (1973), and Varshavsky etal. (1976).

Armstrong et al. and Varshavsky et al. studied a general
problem of the synthesis of asynchronous combinational and
sequential circuits in order to solve the problem of open
speed-independent circuits. The use of completion detection,
which was necessitated by the assumption of unbounded gate
delays, was said also to cause the circuits to stop for approxi-
mately half of all possible single faults, thus achieving a
degree of self-checking.

The proper operation of such circuits required coding of the
inputs and outputs. General m/n codes were sufficient for the
purpose, although the use of such codes might lead to difficult
problems concerning fan-in, fan-out, and complexity in the
logic. It was rather expected that the use of the double-rail
code would lead to much simpler realizations than did m/n
codes. It was also shown that large systems could be realized

80 VLS| SYSTEMS DESIGN Seprember 1985

FIGURE 7. Parallel interconnection of
semimodular circuits.

by interconnecting (combinational or sequential) modules,
each of which generates its own completion signals. Although
the primary reason for designing speed-independent circuits
was to obtain increased speed, it was established that the
(necessary) introduction of completion detectors added
roughly as much delay as was already present in the circuits
they acted upon. This additional delay partially offset the
anticipated speed gain, and it was not clear that a gain would
have been achieved in all cases. Even if the speed gain was
not significant, the circuits discussed might be useful because
of their partial self-checking feature. A special subclass of
asynchronous devices, aperiodic circuits, were later proved to
be totally self-checking for stuck-at-0(1) faults (Varshavsky
et al., 1982).

An indication of the complexity of combinational logic
designs was obtained for the case of the double-rail code
technique in the implementation of ripple-carry adders (Arm-
strong et al., 1969; Seitz, 1980). In terms of the number of
gate inputs in the circuits (including sum- and carry-comple-
tion detectors) the complexity was slightly more than twice
that of the uncoded adder. An evaluation in terms of PLA area
could show more advantageous results, due to the separation
of AND- and OR-plane areas from the input and output
drivers, which would be present in any case.

A large contribution was made to the solution of the
problem of modular synthesis of speed-independent control
circuits based on the systematic *‘flowchart”” design methods,
in which a system can be d d and impl d almost
directly from a flowchart with little regard for considerations
such as semimodularity violations, races, hazards, fan-out,
and so on. Such methods were said to be effective in reducing
the complexity of the design automation procedure, which
otherwise inevitably faces the NP-complete decomposition
task. Some of these approaches and their practical applica
tions (for example, ILLIAC I and 11, and the PDP-16) were
reviewed at length by Banning (1973),

Varshavsky (1985) solved the problem of analysis and
synthesis of particular subclasses of speed-independent cir-
cuits. For example, he proposed several constructive tech:
niques for implementing semimodular and distributive transi-
tion diagrams in circuits assembled from NAND and NOR
gates having limited fan-in and fan-out. From the theoretical
viewpoint, these results are very important, because they
prove some basic homomorphisms between lattice-theoretical
temporal specification and commercially available logica

packages.

Keller (1974) proposed a minimal set of speed-independent
hardware modules without restricting his method to particular
hardware implementations of the elementary gates. This set
of primitives can implement sequential and parallel struc-
tures. Dennis and Patil (1971), Misunas (1973), and Var-
shavsky et al. (1976) gave the sets of speed-independent
hardware building blocks for the implementation of sub-
classes of Petri nets and data-flow schemata.

The growth of large-scale integration gave rise to a number
of works on asynchronous logic arrays for microprogram-

Several projects on data-flow
machines that are currently in
progress exploit a great deal of
self-timing and are likely to become
VLSI designs.

mable control. The most outstanding was that of Patil (1975),
who proposed parallel asynchronous arrays of microcontrol
specified by Petri nets. Each place and transition of a given
Petri net was mapped onto a corresponding cell of the array
structure.

Kinniment (1981) proposed a PLA realization of Petri net
control, including arbitration circuits, and made an important
conclusion concerning the complexity of asynchronous de-
sign: asynchronous control is reasonable for applications
where the time and area overheads are small as a proportion of
the system’s total, evaluated at the ‘‘processor-memory-
switch'’ level or above. As if following this recommendation,
there are several works on asynchronous packet networks
with speed-independent routers (Leung, 1979; Chu, 1983)
designed for data-flow processors where all the blocks com-
municate in speed-independent fashion (Dennis and Misunas,
1975).

Some research has been carried out on speed-independent
bus interfaces operating in ‘‘one-to-one’’ and ‘‘one-to-
many’’ (broadcast) modes. Several data encoding and bus
arbitration techniques were investigated (Banning, 1973;
Sutherland et al., 1979; and Varshavsky, 1985).

Compromised Techniques

Many researchers in the area of self-timed systems have
come to the conclusion that the speed-independent implemen-
tation of self-timed modules may lead to very high overheads.
As aresult, compromised techniques are acceptable, especial-
ly where the economy of area is more important than the
advantages of pure speed-independence. So-called pseudo-
asynchronous models, such as the delay-model combinational
element and the internally clocked pipeline processor module,
were proposed by Seitz (1980).

Ha and Reddy (1984) gave self-timed implementations for
combinational and sequential modules with double-rail cod-
ing that are highly reliable in the speed-independent sense.
They also used an advantageous principle of partitioning a
combinational self-timed model into a functional part and a
control part. They showed the appropriateness of a single-rail

‘82 VLS| SYSTEMS DESIGN September 1985

code approach for the implementation in PLAs, as the func-
tions were expressed easily in sum-of-products form.

The use of ‘‘double-rail gates’ may be suitable for a
standard-cell approach. Modules realized by the proposed
methods are efficient in area and in speed compared with
other existing methods. The attractiveness of a testable design
of combinational self-timed modules using PLAs was shown
by Ha and Reddy, in that the design does not require extra
circuitry to be testable. The test inputs are derived by a very
efficient procedure and detect all single cross-points, stuck-at
faults, and adjacent bridging faults. (It is obvious that since
such a system is no longer speed-independent in Muller’s
sense and hence is not self-checking at the gate level, then itis
required that test input sequences must be generated for error
detection).

One of the most acute of today’s problems is the problem of
hierarchical self-timed design methodology. A solution was
attempted by Lister and Alhelwani (1985), who developed a
high-level language for the specification of self-timed sys-
tems and a formal method of transformation to a well-
structured data-driven Petri net, which then could be mapped
onto a set of hardware primitives, allowing the using of
clocked circuits by specially embedding them into a self-
timed control environment.

According to Seitz, ‘‘the greatest development in the
theory of self-timed systems of the past several years’’ is the
results obtained by Van de Snepscheut (1983). He proposed
the very attractive method of deriving a circuit from a
program. The resulting circuit consists of a number of smaller
circuits interconnected by wires of unrestricted length. These
smaller circuits consist of modules situated within isochronal
regions. Although the formalism for this approach is based on
rather sophisticated trace theory, in practice it gives very
applicable results, especially with regard to complexity man-
agement and modularity issues.

Some other interesting examples of using formal tech-
niques for self-timed system specification, validation, and
design are by Malachi and Owicki (1981), Shostak (1983),
and Barton (1981).

Practical Designs

Several projects on data-flow machines that are currently in
progress exploit a great deal of self-timing and are likely (o
become VLSI designs. For example, at the Massachusetts
Institute of Technology, a static data-flow machine built on
the principle of a ring structure uses a speed-independent
interconnection of separate blocks (Dennis and Misunas
1975). It is believed that the self-timed design methods using
basic asynchronous modules (Patil and Dennis, 1972) ¢
lead to fewer design errors and greater confidence in col
translation of specifications into masks for chip manufactur
ing. This should also lead to a significant reduction in
number of design iterations required to perfect a device, and
lower investment for the manufacture of custom circuits.
seems likely that the layout of masks should be done
copying and interconnecting standard cells that are univ
building blocks for asynchronous logic.

Another example is the data-driven machine (DDMI
DDM2) built at the University of Utah (Davis, 1978).
machine was based on several principles of recursive
tecture proposed originally by Glushkov et al. (1974).

© 1985 Cericor, inc.

w

Int
today"
technic
ity den
—a to

We
mind of
his thou

The
enginee,
with the

- tools wi

now bec:

on-line d

additional principle was augmented by Davis, and it demand-
ed that modules of recursively structured machines should
function in a fully distributed asynchronous fashion. DDM1,
as a version of a processor-store-element structure, was
implemented and later was transformed into DDM2, which is
a completely self-timed data-driven machine built with LSI
nMOS using the PPL design system (Hayes, 1983).

An example of a totally self-timed static RAM design was
presented by Frank and Sproull (1983). Although the memory
array uses a conventional six-transistor static cell, special
completion signaling circuitry is provided for each column

In the area of communications, seli-
timing can be successtully applied to
conventional multiprocessors with a
common switching network or with
backplane buses...

and each row to make the memory self-timed. The time losses
on various completion detections are partly compensated for
by a special sense amplifier. [The idea for the amplifier came
from another interesting example of asynchronous design,
Mostek's 38000, a 256-K ROM (Scherpenberg and Shep-
pard, 1982)]. This sensing scheme reportedly tolerates pro-
cess variations, thereby increasing reliability and demonstrat-
ing a main advantage of the self-timing discipline. Quite
encouraging results of area overhead for detection circuitry of
only 5.2 percent of the total chip area were obtained for the
RAM. Self-timed read and write cycles are 440 ns and 395 ns,
respectively. This design has proved the concept of building
systems with self-timed memory as integral on-chip compo-
nents. The single-chip data-driven processor that is being
constructed at Carnegie-Mellon University (Frank, 1982)
includes such a memory and is also reportedly self-timed.

In the area of communications, self-timing can be -

References

Armstrong, D.B., et al. December 1969. *‘Design of Asynchronous
Circuits Assuming Unbounded Gate Delays,"’ IEEE Transac-
tions on Computers.

Banning, J.P. January 1973. *‘Asynchronous Modular Systems,”
TR-116, Princeton University, Princeton, NJ.

Barton, E.E. 1981, **‘Non-metric Design Methodology for VLSL,"
VLSI-81, ed. by J.P. Gray, Academic Press, London.

Bryant, R.E. 1980. ““Report on the Workshop on Self-timed Sys-
tems,”’ TM-166, Laboratory for Computer Science, Massachu-
setts Institute of Technology, Cambridge, MA.

Chu, T.A. February 1983. ‘‘The Design Implementation and Test-
ing of Self-Timed Two by Two Packet Router,”” Memo 225,
Computation Structures Group, M.L.T.

Commoner, F., et al. October 1971. *“Marked Directed Graphs,"
Journal of Computer and System Sciences.

Davis, A.L. April 1978, *‘The Archi and System Method of
DDM1: A Recursively Structured Data-Driven Machine,'’ 5th
Annual Symposium on Comp Archi e, New York, NY.

Dennis, J.B., and S.8. Patil. 1971. *‘Speed-Independent Asynchro-
nous Circuit,”’ 4th Hawaii International Conference on System
Sciences.

Dennis, J.B., and D.P. Misunas. January 1975. ‘A Preliminary
Architecture for a Basic Data Flow Processor,'’ 2nd Sympo-
sium on Computer Architecture, New York, NY.

Frank, E. H. October 1982. “‘The Fast-1: A Data-Driven Multi-

or for Logic Si ion,"* Thesis Proposal, VLSI Memo
122, Computer Science Department, Camnegie-Mellon Univer-
sity, Pittsburgh, PA.

Frank, E.H., and R.F. Sproull. March 1983. *‘A Self-Timed Static
RAM,” 3rd Caltech Conference on VLSI, Pasadena, CA.

Friedman, A.D., and P.R. Mennon. January 1971. ‘‘Systems of
Asynchronously Operating Modules,’’ IEEE Transactions on
Computers. :

Futurebus. November 1983. *‘Specifications for Advanced Micro-
computer Backplane Buses,”’ IEEE 896, Draft 6.2.

Glushkov, V.M., et al. 1974. ‘‘Recursive Machines and Computing
Technology,"” IFIPS Proceedings, North Holland, New York,
NY.

Ha, D.S., and S.M. Reddy. October 1984, “‘On Testable Self-
Timed Logic Circuits,”’ IEEE International Conference on

fully applied in conventional multiprocessors with a common
switching network or with backplane buses where communi-
cation between processes running concurrently in different
processors occurs through shared variables and common
access to one large address space (Futurebus, 1983). Self-
timing can also be applied in message-passing multiproces-
sors where a network of point-to-point communications chan-
nels is used (Seitz, 1985).

Further Work

It is still necessary to deal with several research problems in
hierarchical self-timed design, viz., high-level self-timed
hardware description languages, verification tools, reason-
able trade-offs between embedded self-checking and efficient
augmented testing, and efficient testing methods at the system
level. Still of concern are the problems in self-timed back-
plane bus structures, especially a design methodology for
chip-level and board-level interfaces for a fault-tolerant asyn-
chronous bus.

We hope that designers and manufacturers of the new
generation of data-flow and conventional VLSI machines will
pursue the benefits of self-timed design principles. O

86 VLS| SYSTEMS DESIGN Seprember 1985

Comp Design, Port Chester, NY.
Hayes, A.B. March 1983. **Self-Timed IC Design with PPLs,"" 3rd
Caltech Conference on VLSI, Pasadena, CA.
Hoare, C.A.R. August 1978. ‘‘Communicating Sequential P
cesses,’’ Communications of the ACM.
Jump, J., and P.S. Thiagarajan. 1975. “‘On Interconnection of
Asynchronous Control Structures,’’ Journal of the ACM.
Keller, R.M, January 1974, ‘‘Toward a Theory of Universal Speed-
Independent Modules,” IEEE Transactions on Computers,
Kinniment, D.J. 1981. ‘‘Regular Programmable Control Strue-
tures,”’ VLSI-81, ed. by J.P. Gray, Academic Press, Lond
Leung, C.K.C. 1979. *‘On a Design Methodology for Pa
ication Archi Based on Hard Design
guage,’’ Computer Structures Group, Laboratory for Compute
Science, M.I.T.
Lister, P.F., and A.M. Alhelwani. January 1985. **Design Method*
ology for Self-Timed VLSI Sy \"" IEEE Pr dings.
Malachi, Y., and S.S. Owicki. 1981. ‘‘Temporal Specifications o
Self-Timed Systems,"” VLSI Systems and Computations, H.T
Kung et al., eds., Computer Science Press, Rockville, ML
Mead, C., and L. Conway. 1980. Introduction to VLSI Systems
Addison-Wesley, Reading, MA.
Miller, R.E. 1965. Switching Theory, Vol. 2, Wiley, New Yo
Misunas, D.P. August 1973. ““Petri Nets and Speed-Independsi
Design,” Communications of the ACM.

Cc

CAD DATABASE
CONVERSIONS

For problem-free conversions between:

e ANVIL o CIF

e APPLICON e COMPUTERVISION

o AUTOCAD e DAISY

e CADAM e GOULD

e CALMA ® INTERGRAPH
We offer converters you can run on your own
system. Or, use our service bureau. It's easy and
fast, with 48-hour turnaround avallable.

octal

INCORPORATED
"THE CONVERTER COMPANY™"
Sales and Service Bureau:

1951 colonv street Mountain View, CA 34043 USA
15)962-8080 Telex 172933

CIRCLE NUMBER 65

Muller, D.E., and W.C. Bartkey. 1956. *‘A Theory of Asynchro-
nous Circuits,”’ Report No. 75, the University of Lllinois.

Muller, D.E. March 1963. “Asyncl\mnons Logic and Apphcauons
to Infe posium on the Appli of
Switching Theory in Space Technolny, Stanford University
Press.

Muller, D.E. 1967, **The General Synthesis Problem for Asynchro-
nous Digital Networks,”” 8th Symposium on Switching and
Automata Theory, New York, NY.

Patil, S.S., and J.B, Dennis. September 1972. *‘The Description
and Realization of Digital Systems,’" 6th Annual IEEE Com-
puter Society Conference, San Francisco, CA.

Patil, S.S. 1975. “‘Micro-control for Parallel Asynchronous Com-
puters,” Euromicro, The Netherlands.

Rem, M. 1981. *““The VLSI Challenge: Complexity Bridling,””
VLSI-81, ed. by 1.P. Gray, Academic Press, London.

Rosenblum, L. Ya., and A.V. Yakovlev. July 1985. *‘Signal
Graphs: From Self-Timed to Timed Ones," International
Workshop on Timed Petri Nets, Torino, Italy, in print.

Scherpenberg, F.A., and D. Sheppard. June 2, 1982. *‘Asynchro-
nous Circuits Accelerate Access to 256K Read-only Memory, ™’
Electronics.

Shostak, R.E. March 1983. *‘Verification of VLSI Designs,’* 3rd
Caltech Conference on VLSI, Pasadena, CA.

Seitz, C.L. January 1979. *‘Self-Timed VLSI Systems," Ist Cal-
tech Conference on VLSI, Pasadena, CA.

Seitz, C.L. 1980. ‘‘System Timing,” in Imtroduction to VLSI
Systems, Addison-Wesley, Reading, MA.

Seitz, C.L. January 1985. **The Cosmic Cube,'* Communications of
the ACM. '

Sutherland, LE., et al. Janvary 1979. *“The TRIMOSBUS," Ist
Caltech Conference on VLSI, Pasadena, CA.

ARTICLES
DESIRED

TESTABILITY

VLSI SYSTEMS DESIGN wants your contribu-
tions for featured coverage of fault simulation
and testability analysis.

The editors are evaluating feature articles covering
new developments in computer-aided test develop-
ment and the use of testability measures in the de-
sign process. Topics for consideration include:

@ Fault modeling and fault simulation.

« Statistical methods in fault grading.

® Testability measures in the design process.

» Reliability and the economics of fault simulation.
Amcle pmposala suggemnns outlines, or drafts may

d to Rod B Edi Chief, VLSI

SYSTEMS DESIGN Magazine, CMP Publications
Inc., 600 Community Dr., Manhasset, NY, 11030.
Note editorial deadlines:

December 1985 issue: Editorial Due October 1.

The Magazine for Systems Design
SYSTEMS DESIEN pgng VLS] Technology

Van de Snepsct J.L.A. October 1983. ‘‘Trace Theory and VLSI
Design,” Ph.D. Thesis, Technological University of Eindho-
ven, The Netherlands.

Varshavsky, V.1, et al. 1976. *‘Aperiodic Automata,”’ Moscow:
Nauka (in Russian).

Varshavsky, V.I., and L.Y. Rosenblum. 1976. ‘“‘Dead-beat Auto-
mata and Asynct Paralle]l P Control,”" 15t IFAC-
IFIP Symposium, SOCOCO-76, Tallinn, USSR.

Varshavsky, V.1, et al. 1982, “‘Totally Self-checking Asynchro-
nous Combinational Circuits and Indicatdbility,"” Automation
and Remote Control, Vol. 43.

Varshavsky, V.1. 1985. “‘Hardware Support of Parallel Asyncl
nous Processes,’” Lecture Notes, Helsinki University of Techs

nology (in print).

About the Author

Al dre Yakovlev is an assi pro-
fessor of computer science at the Leningrad
Ulyanov Electrical Engineering Institute
(LUEEI), where he is researching asynchro-
nous control structures and fault-tolerant in-
terface protocols. This year he was on leave
to the Computing Laboratory at the Universi-
ty of Newcastle, England, where he worked
with the university"s VLSI design tools; self-
timed systems; fault-tolerant wafer-scale ar-
chitectures; and IEEE 896 (Futurebus) backplane-bus interf
spec1ﬁcauon and design. He received his M. Sc. and Ph.D. degn
from LUEEL

90 VLS| SYSTEMS DESIGN September 1985

P

MAIN:
by har
Other)
Quirey
code ar
MAINS#
h'ke me)
and chg
are built
Cenm[f |
tions, rat
writing 5

If you deve
learn moge

