Synthesis of control circuits from STG specifications
Practical Exercise Manual

J. Cortadella M. Kishinevsky A. Kondratyev L. Lavagno
A. Yakovlev

ASYNC 2003, Vancouver

1 Task 1: Handshake communication

1.1 What is Half-handshake?

Figure 1 shows a data processing structure consisting of two computation blocks, A and
B, and a control circuit. Signals Ri and Ai are inputs, and Ao and Ro are outputs of the
control. Output Ro can be seen as a latch enable signal for the data path. Output Ao is
an acknowledgement signal sent to the previous control stage. The goal is to design the
speed-independent control circuit. A number of different control disciplines are possible. Let
us choose a discipline based on handshaking between adjacent stages, for instance the one
described by the Timing Diagram shown in Figure 2. Let us call it half-handshake. This
discipline assumes the following:

1. The datapath includes latches which are transparent to input data when the control
signal is low and which are opagque, i.e. insensitive to its data input, when the control
is high. E.g., the latch in B is transparent when Ro = 0 and opaque when Ro = 1.

2. The fact that Ri becomes 1 indicates that the data in the previous stage, stage A, is
captured and stable (after the previous stage has become opaque).

Additional assumptions could be made if needed, depending on our knowledge of the imple-
mentation of the latches and delays in the datapath. For example, we may need to assume
that there is sufficient delay between the appearance of data on the data bus between stages
and the rising edge on Ri, and hence on Ro, in order to guarantee the appropriate setup
conditions for the latch in stage B.

The STG specifying the half-handshake control circuit is given in Figure 3. Signals Ri
and Ai are inputs, and Ao and Ro are outputs. Output Ro can be seen as a latch enable
signal for the data path. Output Ao is an acknowledgement signal sent to the previous
control stage.

Data_in Data_out Data_in Data_out

g LT

Control

Figure 1: A data processing structure.

ot XL IXX [IXX]
Ri

Ao

Figure 2: Half-handshake discipline: timing diagram.

A|+

(a) (b) (c)

Figure 3: An STG for the half-handshake: (a) independent handshakes at the left and rigl
ports (b) unbounded version with Ri+ — Ro+, (c) version with CSC-violation, (d) fin:
version with CSC and a redundant arc removed

1.2

1.

Exercise

Construct an STG specification (in astg format) for half-handshake control following
steps presented in Figure 3. Save this specification in file half-hand.g. (Alternatively,
find a sample solution half-hand.g in directory solutions and examine it carefully.
Note the lines which will need to be commented out to illustrate various effects, such
as unboundedness and CSC-violations.)

. Display your STG using the draw_astg tool. For that, use the following commands

and compare their effects:

draw_astg half-hand.g | ghostview -

draw_astg -nofold half-hand.g | ghostview -
draw_astg -noinfo -bw half-hand.g | ghostview -
draw_astg half-hand.g -o half-hand.g.ps
ghostview half-hand.g.ps

The -nofold option draws vertically as much as possible, while the -noinfo option
removes the signal legend.

. Generate and display the state graph for your STG using the write_sg tool. For that,

run the following commands and compare their effects:

write_sg half-hand.g | draw_astg -sg | ghostview -

write_sg half-hand.g -o half-hand.sg

draw_astg -nofold half-hand.sg | ghostview -

write_sg -bin half-hand.g -o half-hand.bin.sg

draw_astg -sg half-hand.bin.sg | ghostview -

draw_astg -bin half-hand.bin.sg | ghostview -

draw_astg -sg -noinfo -nonames -bw half-hand.bin.sg | ghostview -

The -bin option of write_sg generates a binary encoding for all states and checks
for CSC violations, if any (i.e., pairs of states with the same code and different en-
abled output signals). The -bin option of draw_astg understands this notation and
highlights violations.

. Check that the version corresponding to Figure 3 (b) (comment out appropriate lines

in the half-hand.g file) is unbounded:

write_sg half-hand.g -o half-hand.sg

. Check that the version in Figure 3 (¢) (un-comment out appropriate lines in the

half-hand.g file) has CSC-violations:

write_sg -bin half-hand.g | draw_astg -bin | ghostview -

6. Check that the final version in Figure 3 (d) is directly implementable with a speec
independent circuit:

write_sg -bin half-hand.g | draw_astg -bin | ghostview -

7. Derive netlists of logic equations for output signals of the final version (Figure 3 (d
and the third version (Figure 3 (c)) using the —cg option of petrify (that generate
one complex gate per output signal). Examine the equations (half-hand.cg.eqn) an
the output STG (half-hand.out) files. Note where petrify introduces an addition:
signal cscO to resolve CSC-conflicts in the third version (Figure 3 (c)).

petrify half-hand.g -cg -eqn half-hand.cg.eqn -o half-hand.out
more half-hand.cg.eqn
draw_astg half-hand.out | ghostview -

Note also how petrify removed the redundant arc Ri* — Ao™ in the half-hand.ou
output STG.

The implementation that petrify obtained for the STG with increased concurrenc
and the CSC problem in this case has exactly the same complexity (but a slight]
different form) as the one obtained for the case without the CSC problem. This doe
not happen in general, and concurrency reduction is often a good way to trade off log
complexity and performance.

8. Derive implementations for generalised C-elements' using the -gc of petrify (you ca
also prevent petrify from generating the output STG file by using option -no instea
of -0) and examine the petrify.log report file about alternative implementations.

petrify half-hand.g -gc -eqn half-hand.gc.eqn -no
more half-hand.cg.eqn
more petrify.log

The petrify.log file also reports technology-independent performance informatio:
such as:

e Average and maximum number of output events between any ordered pair
input events. If input events are considered “slow” then this determines in a ver
abstract manner (by considering all GC elements to have the same delay) tl
performance of the system, and is determined only by the input specification.
In the part of the file labeled Input -> Input Delays the numbers in parenthes
denote the number of output events between the corresponding pair of inpt
events. You should look at the output STG to understand the numbers, an
consider that the path Ri+ -> Ro+ -> Ao+ -> Ro- -> Ai+ is not a worst-cas
path under the hypothesis of slow input events, because Ai+ will always determir
the firing time of Ro+.

!Le., logic blocks of the form y = ab+ ay + cy where a,b and ¢ can be arbitrary product terms. The

generalised C-elements have a very efficient transistor-level implementation (cf. lecture notes).

4

9.

10.

11.

e Estimated delays for individual synthesized gates (when several alternatives exist
and have been explored by petrify in its search they are all listed), based on the
length of transistor stacks. More details about the delay model used in Petrify
can be found on the petrify manual page (type man petrify; scroll till option
-gcmodel).

Derive implementation for the library of three-input gates using -1it3 option and then
for the library of two-input gates using -1it2 option. Compare the implementation
for signal Ao (or ¢sc0). Try to explain why it is different. For this exercise you will
need the library description file petrify.1lib (also included in the solutions directory)
in your current directory.

petrify half-hand.g -1it3 -tm -eqn half-hand.lit3.eqn -no
petrify half-hand.g -1it2 -tm -eqn half-hand.lit2.eqn -no
more half-hand.lit3.eqn
more half-hand.lit2.eqn

Note that if we only use -tm (technology mapping), petrify generally decomposes
logic until some gate is found that matches each signal (modulo inverters). If -1it3
-tm is used, then we force decomposition into 3-literal functions, and then technology
mapping is applied. In general, it is not clear what the best option out of -1itN
is. Sometimes, doing a more aggressive decomposition allows a better sharing of gates.
Another reason for improvement is that finer decomposition allows a better exploration
for matching gates by trying to collapse with different neighbours. A reason for worse
results is that more decomposition may require extra acknowledgement wires.

Find implementation using only C-elements as asynchronous latches. Use -latch C
option.

petrify half-hand.g -latch C -tm -eqn half-hand.cel.eqn -no
more half-hand.cel.eqn

Find implementation without C-elements using ~latch SRD option (selecting Set- and
Reset-dominant S/R latches as well as D latches).

petrify half-hand.g -latch SRD -tm -eqn half-hand.srd.eqn -no
more half-hand.srd.eqn

Note that in the actual implementation we can use the inverted version of [1] (hence
have a three-input NOR instead of OR) and apply it directly to the input of the Set-
dominant latch for [Ro]. Note also that the output of the inverter gate [0] is not
acknowledged (when switching from 0 to 1), and hence its delay must be smaller than
that of the rest of the logic (labelled as PRAGMA in file half-hand.srd.eqn). In
particular, if it is slow in going from 0 to 1, signal [1] (in its inverted implementation)
might have a 0 — 1 — 0 hazard as a result of Ao-after Ai- when it is still [0]=0. This
hazard may propagate to the primary output [Ro].

2

12. Find implementation without latches at all, using combinational gates with possib

feedbacks using -nolatch option. Observe the result of signal insertion (map0) int
the STG using draw_astg utility.

petrify half-hand.g -nolatch —tm -eqn half-hand.nolatch.eqn -o half-hand.
more half-hand.nolatch.eqn
draw_astg half-hand.out | ghostview -

To summarise our use of latches, here is the comment from the petrify manual pag
The -latch str option specifies a restricted set of latches to be used for synthesis; st
can contain any string of characters from the set CDRS, which respectively correspon
to the following latches: Muller C element, D latch, reset-dominant SR latch and se
dominant SR latch. These latches are only used if found in the library. In case th
option is not specified, any asynchronous latch in the library is used.

13. Find a timed circuit implementation using the relative timing option -topt. Spe

ify timing constraints for half-hand.g based on the assumption that input events a
slower (i.e. occur later) than the output events that have common predecessors (an
exactly the same predecessors) with those inputs, e.g. .time Ao+<|Ai+, which corr
sponds to introducing a partial fundamental mode. Examine the contents of repo
file petrify.log. In this case there is only one timing constraint, so petrify eithe
uses it or does not. In general, only some constraints mught be needed to justify th
correctness of a given solution.

petrify half-hand.g -topt -cg -eqn half-hand.topt.cg.eqn -no
more half-hand.topt.cg.eqn
more petrify.log

Explain why adding other timing assumptions between inputs and outputs, such
.time Ao-<|Ai- and .time Ro-<|Ri-, may be wrong if we have no more informatic
about relative timing between the left and right hand side parts of the environment.

Task 2: 2-to-4 and 4-to-2 phase converters

2.1 What are 2-to-4 phase and 4-to-2 phase converters?

Figure 4 depicts the interface of 2-to-4 and 4-to-2 phase converters.

A 2-to-4 phase converter can be described by the following regular expression:
(req2; reqd+; ack4+; reqd—; ackd—; ack2)*

Here events req2 and ack2 stand for either rising or falling transitions on the 2-phas

handshake.

A 4-to-2 phase converter can be described similarly by the following regular expressio

(as well as by other, more concurrent, specifications described in the 4-to-2 exercise):

(reqd+; req2; ack2; ack4d+; reqd—; ackd—)*

2.2

req2 ——= ——= regd regd ——=

2t04 req2

4t02

converter converter
ack2 =— <=— ack4 ack4 <— =— ack2

Figure 4: 2-to-4 and 4-to-2 phase converters

Exercise

2.2.1 Part 1: 2-to-4 phase converter

1.

Specify the behavior of a 2-to-4 phase converter in astg format. Save this specifi-
cation in file conv24.g. (Alternatively, find a sample solution conv24.g in directory
solutions and examine it carefully.)

. Check if your STG has CSC-violations:

write_sg -bin conv24.g | draw_astg -bin | ghostview -

. Obtain STG specifications with only rising (+) and falling (—) transitions, using the

-untog option):

petrify -untog conv24.g -o conv24.untog.g
draw_astg conv24.untog.g | ghostview -

. Resolve CSC-conflicts manually and compare the solution with the one given by petrify.

For the latter, use the following script:

petrify conv24.g -cg -eqn conv24.cg.eqn -0 conv24.out
more conv24.cg.eqn
draw_astg conv24.out | ghostview -

. Obtain an implementation with SRD latches:

petrify conv24.g -latch SRD -tm -eqn conv24.srd.eqn -no
more conv24.srd.eqn

Note that in this example, petrify is overly conservative about zero-delay inverters
(cf. PRAGMA in front of [2]). The output of [2] is actually acknowledged: we have
to re-draw the circuit in conv24.srd.eqn in such a way that [2] is connected to both
the OAT12 gate for [req4] but also to the NAND2 gate for [1] (instead of req2 being
lised there. Indeed, [1] = [2]’ + csc0’ would have been a much ‘cleaner’ NAND2.
With a bit more thought, one can recognise that the combination of NAND2 [1] and
OAIl12 [req4] implements an XOR2 function.

6. Derive monotonic covers for the output signals (petrify -mc):

petrify conv24.g -mc -eqn conv24.mc.eqn -no
more conv24.mc.eqn

Compare this solution with the previous one.

2.2.2 Part 2: 4-to-2 phase converter

Figure 5 shows three different specifications for a 4-to-2 phase converter, with differer
degrees of concurrency between inputs and outputs. The third version has the highes
potential performance, because it has only one output transition between any two inpt
transitions, and it performs the 4-phase reset (ack4+ and req4-) completely in parallel wit
the 2-phase handshake. Of course, its logic cost is also greater.

reg2

| ack2| | ack4+ | | regd+ |

o] @

ack4-

| req2| | ack4+ |

Figure 5: Specifications of 4-to-2 phase converters.

1. Obtain an STG specification for each one of them (the example shows that for Fi
ure 5.(a)) with only rising (+) and falling (—) transitions (use the -untog option i
petrify):

petrify -untog conv42_seq.g -o conv42_seq.untog.g
draw_astg conv42_seq.untog.g | ghostview -

2. Derive a netlist for each one of the specifications (the example shows that for Fij
ure 5.(c)) using:

petrify conv42_par.untog.g -cg -eqn conv42_par.egn -o conv42_par.out
more conv42_par.eqn
draw_astg conv42_par.out | ghostview -

Note how the number of CSC conflicts, and hence the number of state signals an
the logic complexity, grows with the increase in concurrency. As usual, performanc
increase roughly implies area increase.

3. Derive a netlist for the same specification (the example shows that for Figure 5.(c))
using timing assumptions, such as simultaneity conditions:

.time req2-=ack4+/1@ack2-,req4-/1
.time req2+=ack4+@ack2+,req4d-

The first constraint means that for both ack2- and req4-/1 the firing times of req2-
and that of ack4+ are undistinguishable. Hence ack2- could be enabled by req4-/1
just as well (instead of req2- as in the original specification) without changing the
observable firing sequences.

For that, use:

petrify conv42_par.untog.g -topt -cg -egn convé42_par.t.eqn -o conv42_par.t.o
more conv42_par.t.eqn
draw_astg conv42_par.t.o | ghostview -

Compare the solutions with the untimed implementation.

Examine the contents of the petrify.log report file.

3 Task 3 (advanced): VME bus controller

Figure 6 depicts the interface of a slave device to a VME bus. What is shown here is the
result of an abstraction of the main synchronization core between the bus and the device
links, separately from all remaining logic. The latter performs address and opcode decoding,
error detection and some other functions that are outside this controller.

The behavior of the controller is as follows: a request to read from or write into the device
is received by one of the signals DSr or DSw respectively. In a read cycle, a request to read
is sent to the device through signal LDS. When the device has the data ready (LDTACK),
the controller must open the transceiver to transfer data to the bus (signal D, which is
a Data Enable signal; it controls the transceiver together with a direction signal provided
in the bus, namely it closes one latch and opens the tri-state in one direction, and opens
the other latch in the other). Tn the write cycle, data is first transferred to the device by
opening the transceiver (D). Next, a request to write is sent to the device (LDS). Once the
device acknowledges the reception of the data (LDTACK) the transceiver must be closed
to isolate the device from the bus. Each transaction must be completed by a return-to-zero
of all interface signals, seeking for a maximum parallelism between the bus and the device
operations.

1. Construct an STG specifying the behavior of the VME bus controller.
2. Solve CSC using petrify.

3. Obtain a complex gate implementation of the circuit (option -cg).

Bus Data
Transceiver

Device

DS — LDS

VME Bus

DSw —=|
Controller |LpTack

DTACK=—""

Figure 6: VME bus controller

4. Derive a netlist of gates by first decomposing the circuit into 3-input gates and the

mapping onto a gate library (-1it3 -tm).

. Optimize the implementation (option -topt) by adding relative timing constraints t

your STG model, such as the assumption that the bus and device handshakes are slo
compared to output and internal signal transitions.

. Modify the specification of the VME bus controller in such a way that, instead of tw

‘dual-rail’ input strobes DSw and DSr (an “already decoded” version), the interfac
to the bus consists of a single strobe DS and an opcode signal (WR). The value ¢
W R determines what operation the controller is suppose to start when strobe DS goe
high. Let it be write if WR = 1 and read if WR = 0. We can assume about tl
environment that when the DS is low the value of W R can arbitrarily change bt
as soon as the DS goes high the state of the WR is stable. (Hint. Use a pair
complementary places to represent the state of W R. The token between these place
can toggle by transitions W R+ and W R— only when the value of DS is zero. Tt
the firing of transition DS+ must disable transitions W R+ and W R—. This disablix
does not lead to output-nonpersistence because both WR and DS are inputs.)

. Obtain a complex gate implementation for the modified STG. Compare it with tk

previous solution.

10

