
1

Stopping the Clock: Gating vs Pausing
Andrew Royal and Peter Cheung,

Dept. of Electrical and Electronic Engineering, Imperial College, London

Abstract— The aim of this work is to investigate the ad-
vantages and disadvantages of two techniques for stopping
the clock of a synchronous design: clock gating and clock
pausing. In particular, the stability of the derived clock
is discussed. The merits of clock pausing when used in a
globally asynchronous locally synchronous system are also
studied at length.

I. Introduction

In a synchronous system, power is often wasted by redun-
dant switching. There are many registers in such a system
and even if the inputs to the registers do not change or the
registers are disabled, some internal switching may still oc-
cur. Obviously it would be beneficial to reduce or eliminate
this if possible.

A common approach is to stop the clock. If a register
does not see a clock edge, it will not trigger and there will
not be any internal switching. However, interfering with
the clock is often a very contentious issue as synchronous
designers like to have a stable and reliable clock signal for
their designs. Nevertheless, there are two common method
for stopping the clock.

The first of these methods is clock gating. A global clock
is distributed across the system and a logic gate will block
it at some level to prevent it from progressing to lower
levels of the clock tree. Hence the clock is prevented from
reaching the registers.

A second method is known as clock pausing. Rather
than use a crystal oscillator for the clock, a more control-
lable ring oscillator is used. Here, a gate is inserted into
the oscillator ring itself to directly stop the clock from pro-
ducing the next (rising) edge. This method is commonly
used in globally asynchronous locally synchronous systems.

II. Clock Gating

A rather crude manner of stopping the clock to a module
is to use clock gating. Here, a logic gate is used to block
the clock before it gets to its target registers, hence power
is not wasted in redundant clocking. The basic scheme is
illustrated in figure 1.

Gating
Group

Gating
Group

Gating
Group

Gating
Control

clk

Fig. 1. Clock gating

There are some inherent problems with adding gates into
the clock tree. Additional delay is introduced into the clock
lines which can worsen clock skew. It can also produce
glitches in the clock tree which could have potentially dis-
astrous implications for the stability of the circuit.

A circuit designer is usually only concerned with the gate
level operation of the circuit and will not consider clock dis-
tribution which is added at the layout stage. If the designer
adds clock gating at the netlist stage, this may not be taken
into account by the clock tree added at a later stage in the
design process. If clock gating is used, the gating strategy
should be developed as part of the clock distribution tree.
Hence the delay introduced by the gates can be taken into
consideration so that the delay in the clock tree remains
constant in all branches of the tree and so clock skew can
be kept at a minimum.

Control of the gates must also be considered. Gating
control is generally synchronous. This is essential, so that
the clock is not enabled or disabled in a critical phase
of the clock. If the gated clock is re-enabled before the
global clock goes into the low phase of the cycle, the gated
clock may immediately go high, causing registers to trig-
ger and causing a shorter than normal clock period which
may cause stability issues. The clock enable signal must
usually be glitch free, or again the gated clock may go high
unexpectedly and trigger registers prematurely. Glitches
may be allowable if care is taken to ensure that they only
occur when the glitches will not propagate through to the
clock. For example, if a clock is gated with an AND gate,
glitches on the control input may be allowable while the
input clock is low. Clock gating is likely to be at a some
intermediate level in the clock tree, hence the gates must
be sized to be able to drive all the branches further down in
the tree. Because of this, the drive capability of the gating
control signal must be considered. This may have further
implications, since any buffering in the control path will
add further delay.

It has been observed that the addition of clock gating
consumes additional power. [3] Additional gates will not
only consume more power but also take up chip area and
require extra wiring, both of which are likely to increase
the complexity of routing. This extra power spent may, in
extreme cases, outweigh the power conserved by prevent-
ing the registers on the gated branches of the clock tree
for switching. Because of this, it is important to ensure
that there are not too many gating signals which will re-
quire excessive routing and that the gating signals do not
switch too frequently. Thus it is particularly important to
choose clock gating groups carefully, for example using the
methods described in [10] or [3].

It may also be possible to use clock gating at a very low



2

ME

req_in req_out

clk

delay

Fig. 2. Simple clock stretching circuit

level, exploiting the fact that when a flip-flop is not switch-
ing it’s input is irrelevant, as described in [12]. This allows
the logic function for the input to be simplified and so long
as the gated clock signal is also simple it can dramatically
reduce power consumption. However, additional skew may
be added to the clock signals for individual registers and
since this is at such a low level great care must be taken to
consider the skew relative to adjacent components. Hence
the composability of components designed in this manner
is questionable.

III. Pausable Clocks

Crystal oscillators are widely used because their oscilla-
tions are very stable and at a constant frequency. However,
this stability is not always an advantage: crystal oscillators
cannot be easily paused and the frequency cannot be easily
changed. It may still be possible to gate the clock or derive
a clock of a different frequency using a clock multiplier. A
phase-locked loop could conceivably be used, though such
an analogue device does not integrate well into an inher-
ently noisy digital system.

A simple alternative is an inverter ring oscillator. This
exploits the delay in digital inverters by cascading them
into a loop. So long as there is an odd number of inverters,
the nodes between inverters will oscillate between the ’0’
and ’1’ states. One of these nodes can then be tapped as a
clock. A simple pausable ring oscillator is shown in Figure
2. Although the delay varies as the technology is scaled, it
will not necessarily vary at the same rate as other parts of
the design as wire delay becomes more significant, which
will effect different parts of the design by differing degrees.
Also, as we expect process variations in any CMOS design,
the frequency of oscillation cannot be accurately set with
a simple inverter ring. There are methods for tuning the
delay of such a ring so the frequency of oscillation can be
varied, for example [6] or [8], though in both of these cases
it may take some time to calibrate the clock before it can
be used. The clock can also be stopped completely by
adding a gate into the ring. This can be used for clock
stretching/pausing.

It is possible that when the clock is paused, there will be
problems starting it again. Ring oscillators are generally

considered to be digital devices, generating a perfect square
wave. However, they really should be treated as analogue
oscillators, since the output of a gate starts changing the
instant its input starts to change, not when at a distinct
threshold. In an analogue oscillator, the loop gain must be
exactly -1 to ensure stable oscillation. This operating point
may take some time to obtain. Before stable oscillation is
obtained, the amplitude and frequency of oscillation may
change. However, the self calibrating clock in [6] is capable
of starting again immediately. In [13], a trace of the clock
is shown and it appears restart after pausing. However, in
this example the pause is only for a short period of time
(less than a cycle) and the oscillation does appear a little
erratic after the pause, even though only one more cycle is
shown before the trace ends.

IV. Globally Asynchronous Locally
Synchronous (GALS) Systems

Rather than force everything in a digital circuit to be
synchronised to the same clock, it may be preferable to
divide the design into blocks which are internally syn-
chronous but oblivious to the clocking of other blocks. An
asynchronous handshake protocol is then used to transfer
bundled data (i.e. all data always arrives before the associ-
ated request) between modules. Hence the module can be
said to be locally synchronous while the system as a whole
is globally asynchronous. Early examples include [9] and
[2]. It can immediately be seen how this alleviates the
problem of clock skew, since only the skew occurring inside
each block need be considered. However, some additional
circuitry will generally be required to synchronise data en-
tering each module, which in itself will consume power and
increase circuit area.

Because a GALS system contains asynchronous data
channels which enter synchronous modules, metastability
may occur in the input ports of the modules. Metastabil-
ity is phenomenon commonly found in bistable components
such as latches and arbiters when data in asynchronous.
While internal switching is occurring, changes to the in-
put data can cause the internal nodes to deviate from their
path towards a resolved state. If the change occurs at a
specific point along this path, the nodes can go towards a
third stable state, known as the metastable state, which is
between resolved states. Though the probability of actu-
ally hitting this point is zero, the closer the input change
is to this point, the longer the device will take to return to
a resolved state. This will tend to cause problems at later
stages in the circuit, which will not see a resolved value at
their input and hence may be unable to produce a resolved
output. The general theory of metastability is described in
[5].

Two different approaches have been used to combat
metastability in a GALS system. The first is to use some
kind of detector to sense when the input to a register is un-
resolved. If so, the clock is paused or stretched to delay the
next rising edge until the metastability has been resolved.
This scheme is used in [11].

Alternatively, metastability can be avoided by using mu-



3

Synchronous
Module

Stretchable
Clock

req_in

ack_in

req_out

ack_out

req_in

clk

req_out_init

data_in data_out
I/P
port

O/P
port

req_outreq_in_ok

Fig. 3. GALS module with clock stretching

req

ack

data

Fig. 4. Late data valid protocol. The initiator sends a request and
waits for an acknowledge from the receiver before asserting the
data and then removing the request. Data must be held until
after the receiver removes the acknowledge.

tual exclusion to arbitrate between asynchronous requests
to the module and the clock. Locally generated clocks
made from inverter ring oscillators are used since it is easy
to control and pause this type of clock. When the request
locks out the arbiter, the clock is paused. This scheme ap-
pears to be more widely used, for example in [13] or [7]. A
module using the scheme is shown in Figure 3. A 4-phase
late data valid handshaking scheme is asserted, as shown
in Figure 4. Under this scheme a request is send out be-
fore any data is transmitted. Once an acknowledge signal
has been received, data is transmitted and the request is
removed. However, the data must be held until after the
acknowledge has also been removed. Such a scheme can
be implemented with asynchronous state machines in the
input and output ports. This protocol ensures that the
receiver has time to create a lock-out on the clock signal
before data is transmitted, thus theoretically eliminating
the possibility of metastability occurring. However, a mu-
tual exclusion element is itself prone to metastability, albeit
with a greatly reduced probability. Hence it may not be
possible to completely eliminate all possibility of metasta-
bility. Note that with this scheme, modules will only nec-
essarily be paused when data is being transmitted from
another module.

Note that there are no metastability problems when
data leaves the synchronous module and enters the asyn-
chronous environment. However, the output port may need
to pause the clock if the receiving module is taking a long
time to complete the handshake.

A slightly different scheme is that used in [1]. Here, a
mutual exclusion element is not used. Instead, a module
has two port select signals which go to its input and out-
put ports. These indicate that the module needs data or
has data to send respectively. Transitions occur soon after
a clock edge and the corresponding port(s) will immedi-

Synchronous
Module

Stretchable
Clock

req_in

ack_in

req_out

ack_out

stretch_in stretch_out

data_in data_out
I/P
port

O/P
port

Port Select
sel_input sel_output

Fig. 5. GALS module with port select

ately send a clock stretch signal. An active port will then
send out a request, while a passive port will wait for a
request to indicate that new data is available or that the
receiver needs data. This scheme is shown in figure 5. The
advantage of this scheme is that the clock stretch signal
is effectively synchronous, as it occurs as a direct result
of the synchronous port select signal, hence the possibil-
ity of metastability is eliminated from the clock stretching
circuit. However, unless the asynchronous state machine
in the port is carefully designed, it may be possible for
metastability to arise there. The clock will remain paused
from the cycle a port is selected to the cycle the correspond-
ing handshake is complete. Throughput will be limited
to the slowest module, since surrounding modules will be
waiting to send data to or receive data from that module.
Compare this to the schemes using mutual exclusion, which
allow clocking even when no data is supplied/consumed.
One could argue that there is usually no point in the mod-
ule clocking when there is no data being supplied or there
is nowhere for new data to go. An additional data valid
signal may be required in this case.

The scheme described above assumes an active output
port and a passive input port. However, the operation of
the port select implies that the module actively tells its im-
port port to receive data. Hence it may make more sense
to have both an active output and an active input. A
passivator will allow two active ports to communicate by
waiting for a request from each before sending acknowl-
edge signals back to both. Again, since the request signals
will be sent out by the synchronous module, metastability
problems should be eliminated.

An additional benefit of using GALS with clock paus-
ing is that the locally generated clock can be paused not
just when an asynchronous request is initiated, but also
when the module is not doing any useful calculations. This
can greatly reduce redundant switching and precharging
and hence power consumption. Also, existing synchronous
modules may become GALS modules by simply adding an
asynchronous wrapper [1]. Existing synchronous design
methods may be used in designing the module, with the
asynchronous protocol only added at the top level.

One drawback of a GALS system is that additional cir-
cuitry is required for every module in the design. At the
very least, the module needs input and output ports to im-
plement the asynchronous protocol between modules. In
most cases, a clock multiplier or locally generated clock is



4

used. Both of these will consume additional power, though
hopefully this will be insignificant compared to the poten-
tial power saving. Because of the asynchronous protocol,
the designer must be wary of deadlock, i.e. a request may
never be acknowledged because it is waiting for acknowl-
edgement from another module which itself is depending
on the first handshake completing. Multiple clock domains
may not be practical for some applications. For example,
if data is produced by one module and consumed by the
next on every clock cycle, we can intuitively see that they
should run at the same speed. Hence multiple clock do-
mains are not useful for such an application. However, a
GALS scheme is much more useful for circuits where data is
rarely or sporadically transferred between modules. Also,
it may be possible to have a single unit constantly pro-
ducing data, but have multiple modules consuming that
data, each at slower rates which sum to the rate of data
production [4].

V. Conclusion

Both clock gating and clock pausing as part of a globally
asynchronous locally synchronous system are viable meth-
ods of stopping the clock to save power. Both have their
drawbacks and both have their distinct advantages.

One must consider the problems with stability of the
clock. Clock gating is prone to causing glitches on the
clock, though through careful design this effect can be min-
imised. Similarly, there may be a possibility of metastabil-
ity on a clock which is paused with a mutual exclusion ele-
ment, though again this can be avoided with careful design
of the input ports.

Another import design aspect is that of clock routing. In
a GALS system where purely local clock generation is used,
there is obviously a cut on clock routing. However, if the
local clock requires a clock reference, a global clock must
still be distributed. There will still be a clock distribution
advantage though, as the global clock does not need huge
buffers to drive local clock trees. Local clock trees will still
exist, but the global clock need only be used to drive the
calibration circuit. Also note that generally the local clock
is calibrated by counting the number of pulses it generates
in one pulse of the global clock, so the global clock will be at
a low frequency in this case. Compare this to a global clock
in a clock gating scheme, which needs to run at the same
rate as the individual modules and needs enough buffering
to drive all modules, since we cannot discount that they
will all be enabled at the same time. Clock skew may occur
globally, while with GALS we only need worry about the
local clock skew.

A globally asynchronous locally synchronous scheme also
has the advantage of allowing multiple clock domains and
the integration of asynchronous circuits. Allowing a differ-
ent clock rate for each module allows modules to be inde-
pendently optimised, but if a module produces data every
cycle which is passed to another module consuming data
every cycle, there is little point in them running at different
rates. Some modules may be better designed using asyn-
chronous techniques, with this scheme we can choose the

best paradigm for each module.
However, despite the advantages of GALS, clock gat-

ing may still be useful. It is very simple because it only
requires logical gates. Some implementations of GALS re-
quire components such as arbiters or C-elements, which are
not included in some design libraries. A GALS system re-
quires additional circuitry for each asynchronous wrapper,
although this may be quite small. Clock gating may re-
quire additional gates, but this will usually be in lieu of
clock buffers. Hence the final decision between the two
approaches is close run. If only a single clock domain
is required, particularly if modules consume and produce
data every cycle or a constant throughput is necessary, and
methods to eliminate clock glitches are implemented, or if
even a low probability of internal metastability is unac-
ceptable, clock gating is the better approach. If through-
put need not be optimal and multiple clock domains are
imposed, the designer wishes to exploit multiple clock do-
mains or the design is large and fast enough that clock skew
may become significant, GALS should be used.

Acknowledgment

The author was sponsored by LSI Logic.

References

[1] D. S. Bormann and P. Y. K. Cheung, Asynchronous wrapper for
heterogeneous systems, Proceedings of the International Confer-
ence on Computer Design (ICCD) (1997), 307–314.

[2] Daniel M. Chapiro, Globally synchronous locally synchronous
systems, Ph.D. thesis, Stanford University, October 1984.

[3] D. Garrett, M. Stan, and A. Dean, Challenges in clockgating for
a low power asic methodology, Proceedings of the International
Symposium on Low Power ASIC Methodology (1999), 176–181.

[4] P. Liljeberg, J. Plosila, and J. Isoaho, Asynchronous interface for
locally clocked modules in ulsi systems, The IEEE International
Symposium on Circuits and Systems (ISCAS) 4 (2001), 170–173.

[5] L. R. Marino, General theory of metastable operation, IEEE
Transactions on Computers C-30 (1981), 107–115.

[6] S. W. Moore, G. S. Taylor, P. A. Cunningham, R. D. Mullins,
and P. Robinson, Self-calibrating clocks for globally asyn-
chronous locally synchronous systems, Proceedings of the Inter-
national Conference on Computer Design (ICCD) (2000), 37–78.

[7] J. Muttersbach, T. Villiger, H. Kaeslin, N. Felber, and
W. Fichter, Globally-asynchronous locally-synchronous architec-
tures to simplify the design of on-chip systems, Proceedings of
the 12th Annual IEEE ASIC/SOC Conference (1999), 317–321.

[8] T. Olsson, P. Nilsson, T. Meincke, A. Hemam, and M. Tokel-
son, A digitally controlled low-power clock multiplier for globally
asynchronous locally synchronous designs, The IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS) 3 (2000),
13–16.

[9] Miroslav Pěchouček, Anomalous response times of input sychro-
nisers, IEEE Transactions on Computers C-25 (1976), 133–139.

[10] G. E. Téllez, A. Farrahi, and M. Sarrafzadeh, Activity-driven
clock design for low power circuits, IEEE/ACM International
Conference on Computer-Aided Design (2000), 62–65.

[11] W. S. VanScheik and R. F. Tinder, High speed externally
asynchronous/internally clocked systems, IEEE Transactions on
Computers 46 (1997), no. 7, 824–829.

[12] Qing Wu, Massoud Pedram, and Xunwei Wu, Clock-gating and
its application to low power design of sequential circuits, IEEE
Transactions on Circuits and Systems I: Fundamental Theory
and Applications.

[13] Kenneth Y. Yun and Ryan P. Donohue, Pausible clocking: A
first step toward heterogeneous systems, Proceedings of the In-
ternational Conference on VLSI in Computers and Processors
(1996), 118–123.


