Clean choice-concurrency Petri nets.

Alexandre B. Smirnov

3rd December 2001

1 Introduction

Following the [Bes87] consider PN properties as to belong to two grobps:
havioral - marking-dependent properties defined using the PN execution rules, its
reachability graph (RG) or any implications of the net dynamic behaviorsand-

tural - marking-independent (with the only exception for sometimes considered
initial marking) properties depending on the interconnection of the PN nodes.

Behavioral properties are those we are usually interested in, but due to the
dynamic nature and usually exponential size of the PN RG (relative to the PN size)
these properties are hard to analyze.

Structural properties’ analysis is computationally easier for it only uses the usu-
ally compact PN structure - interconnection of the net vertices. Various PN classes
have been proposed over the time from trivial to complicated with different corre-
lation between the net structure and its behavior. For instance for state machines
(SM) - PNs with no concurrency, the RG structure coincides with that of a PN.

Many conjectures relating the PN structural and behavioral properties hold for
yet non-trivial extensively studied class of Petri nets called free-choice (FC) PNs.

In this work we attempt to mark out a PNs class that always mimics (while does
not coincide with) the structure of its RG making the PN behavior clear from the
net structure on one hand and still not trivial on the other. To facilitate the dynamic
behavior analysis we rely not only on the net structure but also on the precomputed
PN concurrency and choice relations.

2 CCC Petri nets.

Formally Petri net (PN)is a quadruple\V' = (P, T, F, mg), where theP, T (P U
T = V) are disjoint sets of vertices,| calledplaces(p;) andtransitions(t;), F -
setofarcsf;) (FFC P x TUT x P)andmy is aninitial marking (mq C P).
PN is calledfree-choice (FC)f Vt;,t; € T,t; # t;, e(ot;)Ne(ot;)#) —>
|e(et;)] = 1 = |(t;@)e|, Whereet; (t;8) denotes an arc input (output) for the
transitiont; while e(et;) ((¢;0)e) denotes its input (output) place.
Recall the PNbehavioral concurrency relations BCeefinition - two places
pi,pj areconcurrentif Im; € [mo) | p;,p; € my i.e. there exists a reachable

1

marking, such that both places are marked simultaneously. In turiréwsitions
are concurrenif they can occur concurrently from some reachable marking.

We represent thstructural concurrency relations (SCRYy CcS(e;) - a set of
PN elements; € PUTUF concurrent to an element

Definition 2.1 PN SCRs.
Following [KE96] thestructural concurrency relations (SCRRj PN nodes are:

(i) Vpi,p; € P : pillpj iff pi,p; € mg i.e. the places marked in the initial
marking are concurrent;

(i) Ypi,p; € o(oty) : pi|llpj = V1, pm € (ti®)e : piflpm i.€. if all input
places of a transition are mutually concurrent - so are its output places;

(i) Yv; € PUT,t; € T : o(ot;) C CcS(v;) = (tje)® C CcS(v;) i.e. a node
concurrent to all input places of a transition is concurrent to all its output places;

In [KE96] these structural concurrency relations are shown to be generally a
superset of the BCR and coincide with the latter for live safe FC nets. Polynomial
complexity algorithms are proposed for computing the PN SCR defined above:
in [Kov92] - of complexity O(n®) for an arbitrary PN, in [KE96] -O(n*) - for
live PNs and if the PN is also FC and bounded - of complegity:®), where
n = |P| 4+ |T'|. We extend the SCR defined in 2.1 with the CR for PN arcs :

Definition 2.2 PN SCRs for arcs.
Lett(f;) be a transition being a head or a tail of the afg Then for PN arcs:

(D) Vfi, fj € F: fi|f;iff (of; =of; V fie = f;8) € TV t(f;)||t(f;)i.e. arcs
are concurrent if their tail or head are concurrent or is the same transition;

(i) Yv; € PUT, f; € F : v| f; iff o fj]|u; A fje|v; i.e. an arc is concurrent to
a node if its head and tail are concurrent to that node;

Based on the definitions 2.1, 2.2 we define CCC PN as:

Definition 2.3 CCC Petri net.

A safe, live Petri netV' = (P, T, F) is aCCC netif Vf;, f; € opj, : CcS(fi) =
CcS(f5) AV fi, fj € pre : CcS(fi) = CcS(f;) i.e. the concurrency relations are
identical for all input and for all output arcs of any PN place.

To check if a PN is CCC we rely on the algorithms from [Kov92], [KE96] and

2.2 to decide safeness and obtain the concurrency relations for the net.

3 CCC PN properties.

To show that every live, safe, connected PN can be transformed to the form of CCC
PN using the notion of simulation defined in [Bes87] we prove the following:

Theorem 3.1 (Equivalence of CCC and FC Petri nets w.r.t. simulation.)
Every live, safe, connected PN can be simulated by CCC PN.

2

ForaPetrineN' = (P, T, F) letdualnetbeN® = (P4, 74, Fd) = (T, P, F~!)
ie. Vo, € N : vl € N4 | o € Pl € T : v<0? and vice versa:
v; € T,vd € P?: v«%s0? and the corresponding arcs are reversed.

To define the behavioral choice relations suppose we color in all feasible traces
(sequences of event firings agreeing with the PN execution rules) thfe spans
where a place, € P is marked. Then transitiorts, ¢, are said to be irchoice
relation ¢;=<t,,) if in neither feasible trace, t,,, are encountered in the same un-
colored span. If such a plagg exists it is called thehoice branching point

Theorem 3.2 (CCC Petri net properties.)
LetN = (P, T, F) be alive, safe, CCC Petri net. Then:

(i) for the dual PNA/? there exists an initial markingn), such that\V® also
live, safe and CCC;

(ii) Vei,ej € N : eifle; < ef=e? ie. any two concurrent net elements of a
CCC net\ are in choice relation in the ne¥/® are and vice versa;

(iii) Ves, 65 € N : €ille; = €i%€j A ei<e; = ¢€fl¢; i.e. concurrency rela-
tions never intersect with choice relations;

Some other properties proven for FC PNs also hold for CCC PNs.

Among those that distinguish the CCC nets is the possibility of locally decid-
ing using the precomputed structural concurrency and choice relations if certain
transformation (such as node/arc insertion/removal) would preserve the PN CCC
(and therefore liveness and safeness of the net). Moreover the concurrency and
choice relations can be ’locally’ recomputed for every PN modification that pre-
serves CCC. These properties have been partially used in [SSKGO01] and [Tax] for
interactive refinement.

4 CCC PN applications.

We used CCC PN for structural logic synthesis fr&@gnal Transition Graph
(STG)specification [KSS98] as well as STG analysis and refinement [SSKGO01].
(CCC has been applied for STGs and called respectively Unique Partial State
(UPS) and Unique State Factorization (USF) in these works.)

Indeed any STG with underlying CCC PN features the following property im-
portant for structural STG analysis, interactive refinement and logic synthesis.

Let STGbeG = (NV,Y,A) whereN isa PN,Y = X U Z is a set of signals
(environment and circuit respectively) aid: 77 — (Y') x {+, —} is a mapping
of the PN transitions on signal transitions.

Let subcutC be a set of mutually concurrent places araisC™2* - a maximal
subcut. We call a (sub)cui; activefor a reachable markingh; € [mo) when
G € mji.e. allits places are marked (contain a marker). Then as soon as a marking
uniquely represents the state of the PN and therefore of the system modeled by PN

if a cut is active the state of all STG signals is defined and known. In turn a subcut
being active represents a set of PN markings.

Lemma4.1 LetG = (N,Y,A) be an STG and its underlying net be a CCC PN.
Then for anym; such thatC is active the state of signals< Y is uniquely defined
(or always undefined).

Our experience of using the CCC PNs in [Tax] makes us believe that besides
the STG analysis, interactive refinement and structural logic synthesis the PN class
presented here can be advantageous for other applications requiring a representa-
tion of causal behavior with concurrency and choice featuring:

e simplicity for human perception,
e reduced complexity of the behavioral properties’ analysis,

e possibility of 'on-line’ concurrency and choice recomputation for certain
transformations allowing for iterative manipulation of the behavior speci-
fication.

References

[Bes87] E. Best. Structure theory of petri nets: the free choice hiatus. In Brauer, W.,
Reisig, W., and Rozenberg, G., editokgcture Notes in Computer Science:
Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986,
Part I, Proceedings of an Advanced Course, Bad Honnef, September 1986
volume 254, pages 168-205. Springer-Verlag, 1987. Newsletterinfo: 27.

[KE96] A. Kovalyov and J. Esparza. A polynomial algorithm to compute the concur-
rency relation of free-choice signal transition graphs.Pmceedings of the
International Workshop on Discrete Event Syst ems, WODEP&ges 1-6,
August 1996.

[Kov92] A. Kovalyov. Concurrency relations and the safety problem for petri nets.
In Proceedings of the International Conference on Application and Theory of
Petri Nets, WODES’96August 1992.

[KSS98] llya V. Krotchkov, Alexander B. Smirnov, and Nikolai A. Starodoubtsev. Ver-
ification driven synthesis of asynchronous circuits from STG specification. In
Anne-Marie Trullemans-Anckaert and Jens Sparsg, edRorser and Timing
Modeling, Optimization and Simulation (PATMQ$ages 377-386, October
1998.

[SSKGO01] Alexandre B Smirnov, Nikolai Starodoubtseyv, llya V Klotchkov, and Michael
Goncharov. A technique to automate stg analysis and refinement for csc and
normalcy. InProc. Power and Timing Modeling, Optimization and Simulation
(PATMOS) September 2001.

[Tax] TaxoSynthesis CAD toohttp://www.Isi.upc.es/ ~alexs/synth/

