Designing an Asynchronous Pipeline Token Ring Interface *

A. Yakovlev

Dept. of Computing Science

V. Varshavsky

Hardware Dept.
University of Aizu

Japan 965-80

Univ. of Newcastle upon Tyne

NE1 7TRU, England

Abstract

We describe the design of a speed-independent in-
terface based on a pipeline token-ring architecture.
The original goal was to build a reliable communica-
tion medium, able to tolerate up to two faults in any
segment of the ring, to be used in an on-board multi-
computer. We believe that the pipeline ring approach
can help reduce some negative “analogue” effects in-
herent in asynchronous buses (including on-chip ones)
by means of using only “point-to-point” interconnec-
tions. We briefly outline the major ideas of the chan-
nel’s organisation, protocol and our syntaz-driven im-
plementation of the channel protocol controller. The
protocol has been recently verified for deadlock-freedom
and fairness.

1 Introduction

Asynchronous circuits are known to be inherently
robust to parametric faults and self-diagnostic for
stuck-at faults. A circuit would normally indicate
a stuck-at fault by halting at some specified state,
and this can be registered through a simple hardware-
controlled time-out mechanism. Such circuits are in-
herently modular and signal transparent — the in-
teracting modules produce explicit acknowledgement
(“ack”) or non-acknowledgement (“nack”) signals.
They can be good candidates for reliable implemen-
tation of communication protocols, which are often
asynchronous by their nature.

Asynchronous circuits, whose action is not trig-
gered by the common clock as in their synchronous
counterparts, are reactive to input signal transitions.
This makes them more vulnerable to intermittent ef-
fects, such as noise and glitches occurring on the in-
put lines. Any unspecified input change may start
a sequence of internal transitions leading to an erro-
neous state. Asynchronous interface designs based on
a multiplexed bus are prone to such situations. One
example has been reported by the designers of the Post
Office chip [1, 2]. Its “spine bus”, interfacing several
ports and the local processing element, multiplexes
the request and acknowledgement handshake links. It
is emphasised in [2] that “when asynchronous hand-
shake signals are not local ... care must be taken to

*For A.Yakovlev this work was partly supported by EPSRC
grant No. GR/J52327. A.Semenov’s work is supported by
the grants of Newcastle University’s Research Committee and

CVCP.

V. Marakhovsky

University of Aizu

A. Semenov

Software Dept. Dept. of Computing Science

Univ. of Newcastle upon Tyne

Japan 965-80 NE1 7TRU, England

assure that failures do not occur due to violations of
the assumption that signals are “digital””.

Such “analogue” problems happen on a wired-
OR asynchronous bus because each simultaneous in-
put can contribute incrementally to the signal level.
Glitches may be caused by multiple reflections of sig-
nals produced by bus drivers (usually implemented
by open-collector devices) [3]. One example was re-
ported for a broadcast handshake (with one sender
and several receivers, using a wired-OR. interconnec-
tion) in Futurebus [4] where special integrator-based
bus drivers were considered as a possible way to deal
with the problem. These drivers however add signifi-
cant delays thus casting doubts on their applicability
for high-speed data broadcasting. Additional prob-
lems of wired-OR logic concerned with its effect on
self-checking properties of the interface were discussed
in [5].

A few years ago three of us were involved in the de-
velopment of a fault-tolerant asynchronous interface
for an airborne computing system [6] (a safety-critical
application). We designed a communication medium
that was able to tolerate up to two faults in any seg-
ment of the ring. The techniques employed in this de-
sign for fault-detection, localisation and recovery were
recently presented in [7]. Our choice of a ring archi-
tecture was caused by the combination of functional
requirements, e.g., flexibility of addressing — “selec-
tive broadcasting”, distributed arbitration, minimal
channel wiring, as well as reliability concerns of the
above-mentioned character.

This paper looks, though a bit retrospectively, at
our design and attempts to draw the attention of prac-
tical designers to the advantages of pipeline ring ar-
chitectures in asynchronous interfaces. We hope that
today, with the recent progress made in asynchronous
design methods and tools, the ideas of [6] can be
viewed in a different, more pragmatic, light.

In the following sections we briefly describe the
overall organisation of the channel (Section 2), its pro-
tocol (Section 3) and the design of a channel adapter
(Section 4).

2 Pipeline Ring Organisation
2.1 Overall requirements

According to ISO classification of multi-layered Lo-
cal Area Network architectures our pipeline ring is a
medium access control (MAC) layer interface. The
latter is a sublayer in a link layer, which is normally

User User
Subsystem Subsystem

] [--ummw] [“User Link
Ring | jl Ring |:> L
Adaptor Adaptor

"User Link"

Figure 1: Ring channel structure

set between the network layer and the physical layer.
A better-known example of a MAC layer ring-based
interface is the IEEE802.5 Token Ring [8]. Token
Ring was however not aimed at asynchronous designs
and would not be fully compatible (in its protocols
and implementation assumptions) to our goal — to
design a speed-independent interface. Furthermore,
some of the aspects of the IEEE802.5 Token Ring are
not deemed to be relevant to our application, such
as “dynamic insertion” of new users. The on-board
system using this channel is assumed to be a virtu-
ally imbedded system where subsystems can only be
turned-off in the on-line mode but not inserted.

The overall structure of the system with a ring
channel is shown in Figure 1. Each user subsystem
is connected to the ring through the local standard

bus link (@-bus in our design).

According to the design requirements, the MAC
layer channel is made transparent to its users. That
is, the network layer protocol entities should be able
to communicate knowing virtually nothing about its
actual implementation. Even most of the ring’s fault-
tolerance service is meant to be “hidden” in the MAC
layer. It includes fault-detection, localisation and self-
repair procedures that are invoked with respect to the
faults in the ring wires and in the channel adaptor
circuitry.

The network layer protocol is assumed to be imple-
mented in software in the user modules, which would
exchange messages via their adaptors. Each message
consists of a header, message body and a tail. The
header contains information on the message priority
and type, the recipient addresses, the sender address,
and the message length. The tail contains a checksum
of the message. The required transfer modes are one-
to-one and one-to-many. Message transmission has to
ensure that the reception (transmission) by the adap-
tor at the user link and the transmission (reception)
in the ring channel are “decoupled” in time. Messages
must therefore be buffered in the adaptor. This is also
to enable user subsystems with local clocking to access
the channel.

The basic structure of the ring adaptor is shown
in Figure 2(a). Tt consists of two controllers, the user
link controller (ULC) and the ring access controller
(RAC), and a pair of FIFO buffers. The FIFOs can
be designed in a self-timed way (see, e.g., [9]). The
design of a link controller is essentially application de-
pendent and is also not discussed in this paper. The
RAC is further subdivided into a protocol machine
(PM) and a recovery controller (RC), as shown in Fig-

FIFO1 ULC FIFO2
e

17 Linkwith Pl NI
‘ ‘ User Subsystem gH N9
User Link 5 I l
Control L Controller (ULC) MacL?;OeOE)PM)
Signals -} 104 ;
Received
o || 2R, LTS
a-In ata-Ou
ol 9 Ack-In = Recovery L7 ack-Out
6 Reserve {— Controller (RC)[—y Reserve
Data-in S I Data-Out
Ack-In =] RingAccess |7 aAck_out
Reserve { —] Controller (RAC)_ 3 Resarve (b)

Figure 2: Ring adaptor structure (a) and ring access
controller substructure (b)

ure 2(b). The PM circuit, being of our main concern
in this paper, implements the MAC protocol, while
the RC acts as a “wrapper” protecting the PM from
the real, potentially faulty environment. The RC re-
alises the main fault-diagnosis, fault-localisation and
recovery procedures described in [7]. It is convenient
to separate the latter concerns from the MAC proto-
col issues in the remainder of this section. Therefore,
when talking about a ring adaptor or a RAC we will
effectively mean its PM unless stated otherwise.

To ensure correct transmission of data between ad-
jacent adaptors, regardless of the relative delays in
parallel wires, a self-timed “optimally balanced” code
C2 [10], of a family of Sperner codes [11], has been
employed. With this code, using 6 lines, it is possi-
ble to have 20 valid code words, which allow to en-
code one half-byte of information. The valid code
words alternate with the all-zero spacer, thus creat-
ing a four-phase, or return-to-zero (RZ), handshake
signalling protocol between adjacent adaptors. In this
action, the detection of three ones on the code lines
(Data-In, if we look at the left-hand side link of the
RAC) indicates setting of the valid code word (Request
signal). The code word reception is acknowledged by
an explicit Acknowledgement signal (Ack-In).

Interaction between RAC and ULC. The RAC
is reset to the initial state by its user via one of the
control signals. Another control signal is responsible
for setting the RAC to the mode called “System Man-
ager” (SM) , which enables exactly one of the adaptors
in the ring to generate the initial token. The aim of
this action is to start the first channel-acquisition pro-
cedure in the ring. If an error arises in delivering the
SM status to one of the RACs, the system is reini-
tialised by a special self-recovery procedure, and the
role of the SM is passed to another module (initially
configured as “System Deputy”). Both FIFOs can be
reset by the ULC to eliminate the remainder of an
untransmitted message for subsequent re-transmission
should this be effected upon by the network layer pro-
tocol. The group of control signals also includes a pair
of signals from the RAC to its ULC, to inform the
latter about a fault in FIFOl or FIFO2 when data
is “pumped” in or out, respectively. In response to
these signals, the ULC must reset the corresponding
FIFO(s), and either arrange retransmission of the pre-
vious message in the channel (for the FIFOI case), or

transmit an overhead message to the source of the un-
delivered message (from FIFO2), asking the source to
retransmit the latter. These issues must however be
resolved at the network level. Finally, one more con-
trol signal is used by the RAC to inform its user about
a fault in the channel.

Interaction between RAC and FIFOs. The
pair of internal (for the adaptor) nine-bit data buses,
supported with two handshake pairs (we use bundled
data here for simplicity, which seems to cause no prob-
lems if the wire delays are properly controlled at fab-
rication), connects the RAC to the FIFOs. Thus data
is sent between the FIFOs and the RAC in bytes; the
use of the nineth bit is explained later.

Note that despite the one-way transmission (say,
“clockwise”) in the ring, the actual interconnections
between adaptors are bidirectional. In the fault-
localisation and recovery procedures these lines should
handle signals sent in both directions. According to
the fault-tolerance requirements, the channel has to
recover from up to two faults in one ring segment, thus
two spare (Reserve) lines can be used either for infor-
mation or acknowledgement signals. The technique we
use for spare line substitution is the so-called sliding
redundancy [12], in which when the i-th line fails, all
the signals whose line numbers were from ¢ onwards
are connected to one line ahead. That is signal i is
connected to line ¢ + 1, and so on. In this case the
physical line used as a logical acknowledgement line
may become a logical information line. It should be
noted that, in addition to the wire itself, a line in-
cludes also the amplifiers and receivers operating on
the line.

3 MAC Layer Protocol
3.1 Basics

As stated above, the protocol layer under considera-
tion is a medium access control (MAC) layer (possibly
a sublayer of the link layer) of a LAN with a ring base-
band channel. The primary service of this layer to the
network layer is providing a reliable transfer of a se-
quence of message bytes originating in a sending user
subsystem, via the ULC and buffered in FIFO1, to one
(or more) receiving user(s), via its (their) ULC(s) and
buffering in FIFO2. This structuring of the link layer
assumes that the ring channel will effectively consist
of a chain of RACs that are capable of getting message
bytes from FIFO1 (in bytes) and from their input ring
channel port (in half-bytes), and of putting them to

their output ring channel port ! (in half-bytes) and to
FIFO2 (in bytes).

To start transmitting data, an RAC must first bid
for the channel using a token access method with pri-
orities. If arbitration is won, the RAC becomes the
ring’s “master” and can transmit its half-bytes into
its output channel. The transmission of data is essen-
tially an asynchronous pipeline process, such that each
half-byte advances to the next RAC in the ring as soon
as a free space is available for it. This is ensured by

1Further, we use terms “input channel” and “output chan-
nel” for brevity.

<messagel> ::= <header1> [<data part>] <terminator1>
<header1> ::= <byte of priority and recipient address length K>;<bit9=0>
{<recipient address byte>;<bito=0>}

<data part> ::= { <data byte>; <bit9=0>} N
<terminatorl> ::= <end-word byte>; <bit9=1>

@

<message2> ::= <header2> [<data part>] <terminator2>
<header2> ::= <state byte>;<hit9=0>

<data part> ::= { <data byte>; <bhit9=0>} N
<terminator2> ::= { <end-word byte>; <hit9=1>} K

(b)
Figure 3: Message formats: FIFO1 (a) and FIFO2 (b)

handshake synchronisation between the transmitting
and receiving RACs in each ring segment.

Each RAC must be able to extract information
related to the MAC layer out of the messages com-
ing from its FIFOL or from the input channel. This
includes the message priority and the recipients’ ad-
dresses. On the other hand, each RAC must be able
to supply information about the ring’s status in the
message put to its FIFO2. A structure is therefore
put on the message format. Messages coming from
FIFO1 and sent to FIFO2 have the formats shown (in
a customary bnf) in Figure 3(a) and (b).

Note that recipient addresses are represented in a
unitary code; this is to simplify the task of implement-
ing a “selective broadcast” mode. Furthermore, this
allows to implement the address decoding in a purely
speed-independent way. We assume that in “embed-
ded” applications, the number of modules using the
ring would not be large 2.

It should be obvious that certain parts of the net-
work layer message structure, set in the previous sec-
tion, may be ignored at the MAC layer. They are
transferred as ordinary data bytes (<data part>).
For instance, since the end of each message is tagged
by a byte in which the tag bit (<bit9>) is set to
1, the end of a message coming from FIFO1 can be
determined by the RAC without counting its length.
Therefore the MAC layer’s “envelope” needs neither
the message length nor its type. We also decided that
the checksum is not produced on this layer since the
transmission is done by means of a self-timed code,
which is robust to one-way bit value distortions (zero
instead of one). The checksum diagnosis is assumed
to be done at the network layer.

3.2 Channel acquisition protocol

The bidding process uses a dynamic priority in-
crease mechanism (for “fairness”). Its verbal descrip-
tion follows below. The part referring to each RAC is
formally described by an interpreted Petri net shown
in Figure 4.

At the start, after a “major reset” in the system,
the System Manager (SM) issues token M1.

2In fact, in our original circuit implementation we limited it
to eight, thus allowing for one address byte.

MIARg
M1

M1 v M2,Nin
M2N ~ M2,Nmax

M1ARg M2NinARq
M2N ¥ M2Nmax

M2NinA Rq’
M2,Nin

12)

M2N A (Nin=N) M2.Nin
M3

M2,Nin

Notation: |nput condition
Output produced

N islocal priority value Nmax=max(N,Nin)

Nin isincoming priority value Rqislocal request condition

Figure 4: Ring channel acquisition procedure defined
by interpreted Petri net

Note. All the tokens are also encoded as half-
byte(s), which is made possible because the six-bit self-
synchronising code C2 allows to have 16 data words
and 4 spare words that are used to encode control
tokens, three of which are employed in the channel
acquisition process, and the forth, M4, is used as a
terminator in the sequence of half-bytes for each mes-
sage transmitted by the current master of the ring.

In subsequent operation, the current master be-
comes a source of the initial token M 1. It generates
M1 immediately after the ending half-byte of the last
transmitted message.

Each RAC, starting in state 0 (“idle”), upon re-
ceiving M1 from its input channel, checks if there is a
request from its FIFO1 to transmit a message (this is
done by means of a two-way arbitration as the choice
is essentially non-deterministic since the arrival of the
request is totally independent of token propagation).
If there is no such a request, the RAC remains in state
0 and simply issues M 1 to its output channel, allowing
the token to propagate further. If the request has been
registered (through a local mutual exclusion mecha-
nism), the RAC 1ssues, first, token M2 and then a
half-byte with its priority value N, extracted from the
first byte of the message to be sent. It also changes
its state (from 0 to 1), becoming a “bidder” in the
competition.

If a RAC, being in state 0, receives M2 and then
a half-byte with the current maximum priority value
Nin, it becomes an “observer” (state 3) if no request
has been registered, and transmits M2 and N;,. If,
however, the request is set on, it becomes a “bidder”
(state 1), issuing M2 and followed by the priority value
Npaz, which is equal to the greater of the following
two: its own value N and the value N;, arrived from
the channel (current maximum). If the RAC being in
the “observer” state receives M2 and N;,, it remains
in the same state and passes M2 and N;, to the chan-
nel.

If a “bidder” receives M2 and N;,, from the chan-

nel, and its priority N is less than N;,, it remains
“bidder” and passes M2 and N;,, whereas if N;;, < N
it enters the “master” state (represented by a pair of
places 4.1 and 4.2) and issues token M3, after which it
immediately initiates message transfer from its FIFO1
to the channel.

If an “observer” or a “bidder” receives M3 it be-
comes a “recipient-observer” or “recipient-bidder”, re-
spectively, passes M3 to the channel and activates its
reception operation. The RAC which has become the
master of the ring, upon receiving M3, also becomes
a “potential recipient” of its own message (the data
transfer protocol allows this option for error-checking
purposes), therefore an intrinsic concurrency, between
transmission and reception, is implied by the protocol
inside the ring master.

The channel acquisition is completed when all the
RACs in the ring are in one of the following three
states: “master with recipient”, “recipient-bidder”
and “recipient-observer”. Two recipient states are dis-
tinguished to indicate a recipient which has a pending
request for the channel but whose priority has been
insufficient to become the master in the last compe-
tition. To avoid starvation, the protocol uses a dy-
namic priority increase mechanism (note a transition
labelled with N++) relative to the priority that is ini-
tially specified in the message 3.

It 1s easy to estimate the worst case in which any
module may stay a “recipient-bidder” until it becomes
“master”. If the total number of modules in the ring
is n and the number of priority levels is m, the largest
possible number of channel acquisitions before a mod-
ule acquires the medium is n 4+ m — 3. Indeed, assume
that the given module needs to send a message with
the lowest priority level (say, 0). Then let, for every
acquisition session, be always a module whose prior-
ity is higher. The largest number of sessions before
the given module’s priority reaches the max priority
is therefore m — 1. Then, if we assume that, when
the last such session completes, the “master” of the
ring is the forward neighbour of the given module. It
is obvious that there can be at most n — 2 more ses-
sions won successively by other modules, before the
“winning turn” reaches the given module. Of course,
in this estimation we assume that the arbitration ele-
ment inside every module is “locally fair”, i.e. it does
not ignore the pending request of the module when
the “polling” token arrives.

The “master with recipient” option is introduced
with the aim to allow the master, when transmitting
a message in a broadcast mode, to address itself, e.g.
to facilitate a check of the message back in the sender
and by whom and how it has been received. A spe-
cial mechanism of invalidating the valid address bits
is used (see the next section).

The net shown in Figure 4 plays the key role in
verifying the overall protocol. An outline of the veri-
fication technique is presented in Appendix.

3Note that when the dynamic priority level in a “recipient-
bidder” has reached its maximum possible value it will remain
constant until the arbitration is won.

3.3 Addressing Method

As was pointed out in [12], within a bus architec-
ture, there seems to be no purely speed-independent
solution to a problem of the implementation of a “col-
lective acknowledgement” in one-to-many data broad-
casts. The use of wired-OR logic can be a way but
only with certain delay assumptions. In a ring-based
organisation the principle of speed-independence can
be implemented fully. Here a message sent by the
master into the ring and received back can be such a
“collective acknowledgement” .

We used the following relative addressing method
in the ring. Since the address is given by unitary code,
the length of the address field of the message is equal
to the number of modules in the system. Each module,
whose number in the ring corresponds to the number
of the bits set to 1 in the address field is selected as
a recipient of the message. Thus, the presence of sev-
eral (all) I’s in the address specifies a one-to-many
(one-to-all) broadcast mode of interaction. In addi-
tion, to ensure that the address-decoding circuit is
self-checking, each module must ensure a one-to-one
mapping between the “geographical” position of the
module relative to the master and the number of the
corresponding bits in the address field. The latter is
achieved as follows.

Consider a module that is at position ¢ from the
master in the “forward” direction of the ring (say,
clockwise). The “geographical” position of the module
relative to the master stipulates that 1 is set in the i-th
bit of the address counting from the most-significant
bit (MSB). When a message travels around the ring,
each module records the MSB, and then passes the ad-
dress field to the ring with a one-bit shift towards the
MSB. Thus, the i-th module receives the address field
whose MSB always contains the “selected/unselected”
(SEL) flag for the i-th module. This flag is stored for
the period until the next decoding event. If SEL is
equal to 1, then RAC copies the message (byte-by-
byte) to FIFO2 and to its output channel port. If SEL
is at 0, only the latter action is performed. Using this
organisation of addressing we virtually avoid building
a decoder circuit and resolving its self-checking prob-
lem. This imposes, however, additional functional-
ity on the higher network layer, which should provide
relative addresses in the transmitted messages. This
is practically the only factor negatively affecting the
transparency of the MAC layer. As a possible way
to implement the relative addressing, each user sub-
system can store a table to map between relative and
absolute addresses of other subsystems in the network.

The following approach may be used to facilitate
the update of this mapping in each subsystem should
such a need arise after a potentlal system reconfigu-
ration. Assume that a module ¢ that has been in the
r-th geographical position relative to a given subsys-
tem fails. The formerly r 4+ 1-th module would thus
become the r-th in the ring and so forth. To update
the mapping, the network layer protocol should exe-
cute a procedure in which the subsystem becoming the
System Manager (SM) sends a message of a “Who are
you?” type to each module individually (successively
generating a 1 — in a “one-hot” way — in each of the

- Link with FIFO1, ULC and FIFO2 -

BT1 R1 AlFF1 BT2 R2 A2 FF2

9 SM -reset
g1l gﬁr ?
FIFO1 Interface FIFO2 Interface <:|Status
Unit (FIU1) w Unit (FIU2) Byte
FromRC
8 BH LHB
|
HHB
=
Comparator (PC)| Address Byte Master
Counter (ABC) SM) FR
HHB
[] [
8 1 Ly’ LHB+SEL
0] |
Channel Input ab Global ab Channel Output
Unit (CIU) Control Unit (COU)
Unit (GCU) 3
GQ ¢ $D|agnost|c @ /‘\
Data-In (DI) Ack-In (Al) Signals pata-out (DO) Ack-Out (AO)
| K With RC

Figure 5: Protocol Machine Structure

address bits), thus learning the absolute addresses of
its newly configured relative neighbours. Upon receiv-
ing a 1 in the r-th position, the r-th module issues a
“This is who I am” message in a one-to-all broadcast
mode (since it cannot know who sent him the “Who
are you?” request). This message is received by the
SM, who records the new absolute address of the mod-
ule in the r-position of the table. After the table is
updated, the SM can transmit its own table to the re-
maining modules. The latter adjust their own tables
allowing for a shift of the table positions made relative
to the SM’s table.

The remaining parts of the protocol and its verifi-
cation are described in Appendix.

4 Protocol Controller Design

4.1 General Structure

Recall the ring access controller (RAC) structure
from Figure 2(b). By separating the MAC proto-
col functions from the fault-tolerance mechanism em-
ployed at the ring level we try to insulate the PM from
all problems concerned with fault-diagnosis and recov-
ery. The RC therefore acts as a structural “wrapper”
for the PM. At the same time, when faults occur in
the interface between the RCA and FIFOs they are de-
tected by the PM and lead to exceptions raised to the
ULC (see Appendix) through special control signals.

In this section we present the major ideas lying be-
hind the PM design. The two main aspects of concern
here are the operational structure (i.e., data path) and
the control mechanism of the PM. Other issues in-
clude the types of data path operations, the notation
for control flow specification (obviously related to the
Petri net language we used for protocol description),
and the way of converting the control description into
the circuit. All these are briefly outlined in the follow-
ing subsections.

4.2 Operational structure

The overall structure of PM is shown in Figure 5.
It consists of channel input and output units (CIU and

HHB LHB SEL SEL’

a8 o 11
8 High-Half-Byte g Low-Half-Byte >b3
Z HB -) Z HB ’ .
6 Input Register (HHBR) Register (LHBR)
DI Z) HB_ack
Code =

2| d 3| c4| d2
Al < convertor|__Data HB BT_RDY
|~
(ico) Token Channel Input Control Unit (CICU)| pa
cl ——
maA /Pae

Figure 6: Structure of the channel input unit

COU), FIFO1 and FIFO2 interface units (FIU1 and
FIU2), a priority comparator (PC), an address byte

counter (ABC) #, an arbiter, a “System Manager” flag
flip-flop (SM-FF), and a global control unit (GCU).

All these units, excluding the GCU, comprise the
data path. They interact with the GCU via handshake
pairs, requests a; and acknowledgements b;. Their
internal implementation is based on aperiodic circuit
design solutions published elsewhere. For example,
the “Sperner code — dual-rail code” convertor is de-
scribed in [10]. All internal data paths in the PM
are dual-rail encoded. This is to facilitate the purely
speed-independent implementation of the PM. Due to
the lack of space we cannot describe the logic of each
unit. Only their major functionality is outlined below.

The CIU receives half-bytes (Cg-encoded) from the
input channel, converts them into dual-rail code for
16 data words and one-hot signals for each token
M1,...,M4. It also builds a byte out of two adjacent
half-bytes, the byte to be sent to the FIFO2 via FIU2,
registers an incoming priority half-byte for compari-
son (in PC) with the local priority value, places the
address length value into ABC, and forwards a half-
byte, either intact or with an MSB shift (for address
or end word), to the output channel via COU.

The FIU1 receives and temporarily stores a byte
from FIFO1, produces two half-bytes for the out-
put channel via COU, maintains the local priority
value (incrementing it in the “recipient-bidder” state),
passes the “Message is Ready” request to the arbiter
and signals to the ULC if a fault occurs in reading
from FIFOZ2.

Both CIU and FIUL are units with a storing ca-
pacity. They contribute as a memory stage to the
data path pipeline of the ring. Other data path units,
COU and FIU2, are combinatorial with respect to
data path, their main function being multiplexing sev-
eral paths into one. A specific feature of COU is that it
is also a convertor from the internal dual-rail (one-hot
for tokens M1, ..., M4) to the external C3 code.

The meaning of the remaining units, arbiter, CP,
ABC and SM-FF should be obvious from their names.
Note also that the CIU provides a flip-flop to store
the value of the SEL flag. The mechanism of sig-
nalling faults (FF1 and FF2) by FIUl and FIU2 is

based on the idea of applying a critical time-out (a

4This counter actually consists of two independent counters,
for the address and end word length counting.

cluMm)

CIUM) COUM2)|) COU(H) CIUH) COU(H)

Q4™ M2 o5 Q7 Q8 Q9

cIuM)
COU(M2) COU(Pr=N)
1

Q13 Q4 Q15
M2\ CIU(M) Priority

couM2) CIUH) compare (N|n>N)COU<H)

Q11

Q17
(Nin<=N)

Q19

Figure 7: Fragment of Petri net specifying the control
circuit

scalable delay element) when waiting for a request R1
from FIFO1 and an acknowledgement A2 from FIFO2.

4.3 Two-level control structure design

When organising the control structure, a number
of design factors should be born in mind to a much
greater extent than for the data path units. The most
important are performance, control circuit complexity
and overall wiring complexity. We use a two-level con-
trol approach. The top level is centralised to conform
the nature of the MAC protocol, whose main part was
shown in Figure 4. At the same time, some operations
involved in the protocol actions (see the transition la-
bels in Figure 4), such as receiving tokens or half-bytes
with or without a shift, address recognition, produc-
ing a byte from two adjacent half-bytes and others
can be controlled at a lower level. As an example let’s
consider the internal structure of the CIU shown in
Figure 6.

This unit is a typical case for the second control
level. The overall organisation of this unit is a two-
stage pipeline register with a code convertor at the
front. Its interface with the central control (GCU) is
realised via the (a, b) handshake pairs, where the CIU
also produces a number of “condition” signals, such
as one-hot token values, and the “byte is ready” and
SEL flags, which help to steer the global control flow
in GCU. The local control is based on the (¢, d) hand-
shakes, where the sequences of lower level commands
¢; are produced from higher level requests a;.

Note that the signals involved in different pairs are
not necessarily disjoint — e.g., request a4 may be re-
sponded by either b3 or b4, depending on the value in
the data path. Appropriate elements are used in the
control circuit to synchronise the pairs.

To determine the nomenclature of the handshakes
operated by the GCU, we first refined the operation
labels in the protocol description. Then, to minimise
the number of individual handshake pairs we parti-
tioned a total set of operations into the sets of generic
operations as per data path units. For example, for
the CIU: CIU(M) means “receive a token from the
input channel”, its controls are (a4,bs); CIU(H) is
“receive a half-byte from the input channel” (a4, bg);
CIU(S) is “receive a half-byte from the input channel

Q1 10p1 .3
1 Op2 —& al- > bl- = al+=> bl+—= dummy

Opl
pQZ - O Cl+ 1Op2
Q1 Q4 CcO0p3 Q6 from a2- = b2- = a2+= b2+=> s
O Q5 ; Op3 Q
Q3 Q5 Q7

Cor —= a3- B b3 = a3+=> b3+>Q7

@ (b)

() &) 1) &)
= Q6
© LD

Q1. Q2
@] @@ ool @1 o @
: al bl Lo

O
B [€1) e e
© O el ®
Q3 Q5 Q7
Ol ol 9 oo Lo
YoV Ay © ®
@@ ey
(&))
O @ DF7 ®
® —
N, ©
Cell Implementations | P
© o

©

Figure 8: “Circuit compilation” of Petri net specifi-
cation: fragment of net specification (a); graph de-
scribing the operation synchronisation at the signal
level (b); circuit implementation based on “distribu-
tor cells” (c)

with shift towards MSB” (ag, b3); CIU(H,M) is “carry
out either CIU(H) or CIU(M) depending on the input
half-byte’s code value” (a4, (bs, bs)); CIU(S,M) is also
either CIU(H)or CIU(S) (as, (b4, bs));

On the basis of such a refinement we constructed a
labelled Petri net model of the control executed by the
GCU. A fragment of this net corresponding mainly to
the transitions from the “idle” (0) state in the net of
Figure 4 is shown in Figure 7.

The next design step was to translate the net-based
behavioural description into the structural implemen-
tation of the GCU. In this work we resorted to the so-
called syntax-driven approach to translation of nets
into circuits. This was because we wanted to avoid
problems with race-free encoding and hazard elimina-
tion, which would be quite complex to resolve for the
control of such a size and under the accepted speed-
independence requirements. At least, none of the au-
tomated tools available at the time were capable to
synthesize our circuit.

The principles of the “circuit compilation” of a
Petri net have been presented in a number of pub-
lications. Our approach followed the idea of a phase-
distributed circuit implementation of parallel algo-
rithms described in [10]. Here each (or almost each,
since some “code optimisation” is performed at the
level of control circuit macro-cells, which is an inter-
mediate representation in our “compilation”) place of
the net is associated with a state-holding macro-cell.
The gating logic, both AND and OR, normally realised
by the Petri net transitions and places, is implemented

within the macro-cells. Figure 7 illustrates the major
idea of our “circuit compilation”.

As a result of such a two-step compilation, “Petri
net model — macro-cell network — gate-level con-
trol circuit”, we obtained an implementation consist-
ing of 220 NAND and AND-OR-NOT gates with the
maximum fan-in limit of 4. In general, any syntax-
driven method, including ours, would produce a cir-
cuit whose size is proportional to the size of the
behavioural description (unlike STG-based synthesis
methods, e.g. [9]).

5 Summary and Conclusions

In this paper we have tried to share our experi-
ence in designing an asynchronous interface based on
a pipeline ring. The implementation of the protocol
machine is totally speed-independent: the ring oper-
ates according to its protocol regardless of the delays
in the interconnections between adaptors and all gate
delays in the adaptor circuits. Speed-independence
implies self-checking with respect to stuck-at faults on
gate outputs. We were therefore able to detect on-
line faults in the adaptors and transmission lines of
the ring, and construct a special fault-tolerance mech-
anism, based on fault-localisation and self-recovery.
The implementation of the latter is left outside the
scope of the present paper (see [7]). We believe that
the use of a ring instead of a bus, irrespective of its fur-
ther enhancement with fault-tolerance facilities, can
itself be a way to improve the realiability of interfaces,
even of on-chip ones, in asynchronous systems. The
performance of systems can also be improved in some
cases, due to the effect of point-to-point interconnec-
tions and pipelining.
Acknowledgements

Two of our former colleagues, Vladimir Volodarsky
and Yuri Tatarinov, took an active part in the de-
sign of the fault-tolerant ring channel. We thank Ken
Stevens for his useful comments about our work.

References
[1] B. Coates, A. Davies and K. Stevens. The Post Office
experience: designing a large asynchronous chip. In-
tegration: the VLSI journal, Vol. 15, No. 3, Oct. 1993,
pp. 341 — 266.

[2] K.S. Stevens. Practical Verification and Synthesis of
Low Latency Asynchronous Systems. PhD Thesis,
The University of Calgary, Calgary, Alberta, Sept.
1994.

[3] J. Theus and D.B. Gustavson. Wired-OR on trans-
mission lines. IEEE Micro, Vol.3, No.3, June 1983,
pp- 51 — 55.

[4] D.M. Taub. Arbitration and control acquisition in the
proposed IEEE 896 Futurebus. IEFE Micro, Vol.4,
No.4, August 1984, pp. 28 — 41.

[5] V.I.Varshavksy,V.B. Marakhovsky, L.Ya.Rosenblyum
and A.V.Yakovlev. Implementation and analysis of
the TRIMOSBUS self-clocking interface. Automatic
Control and Computer Science, Vol. 19, No. 4, pp. 80
— 87, 1985 (translated from Russian).

[6] V.I.Varshavksy,V.Ya.Volodarsky,V.B.Marakhovsky,
L.Ya.Rosenblyum, Yu.S.Tatarinov and A.V.Yakovlev.
Structural organisation and information interchange
protocols for a fault-tolerant self-synchronous ring
baseband channel (pt.1). Hardware implementation
of protocols for a fault-tolerant self-synchronous ring
channel (pt.2). Algorithmic and structural organ-
isation of test and recovery facilities in a self-
synchronous ring (pt.3). Automatic Control and Com-
puter Science, Vol. 22, No. 4, pp. 44 — 51 (pt.1), No.
5, pp. 59 — 67 (pt.2), Vol. 23, No. 1, pp. 53 — 58 (pt.3),
1988, 1989 (translated from Russian).

[7] V.I.Varshavsky and V.B.Marakhovsky. Fault-tolerant
The Institute of
Electronics, Information and Communication Engi-
neers, Tokyo, Japan, Technical Reports CPSY94-24,
FTS94-24, ICD94-24, April 1994, pp.79-85.

[8] ANSI/TEEE Standard 802.5 Working Group. Token
Ring Access Method and Physical Layer Specifica-
tions. IEEE, N.Y., 1985.

[9] A.Yakovlev,A.M.Koelmans and L.Lavagno. High level
modelling and design of asynchronous interface logic.
IFEFE Design and Test of Computers, Spring 1995.

[10] V.I.Varshavsky, M.K.Kishinevsky, V.B.Marakhovsky,
V.A.Peschansky, L.Ya.Rosenblum, A.R.Taubin and
B.S.Tsirlin. Self-Timed Control of Concurrent Pro-
cesses, Ed. by V.I. Varshavsky. Kluwer AP, Dor-
drecht, 1990 (Translated from Russian; Russian Edi-
tion — Nauka, 1986).

self-timed system mono-channel.

[11] E.Sperner. Ein Satz uber Untermengen einer
endlichen Menge. Math. Z., 27, 1928, pp. 544-548.

[12] V.I.Varshavksy,V.B.Marakhovsky,L.Ya.Rosenblyum,
Yu.S.Tatarinov and A.V.Yakovlev. Towards fault-
tolerant hardware implementation of physical layer
network protocols. Automatic Control and Computer
Science, Vol. 20, No. 6, pp. 71 — 76, 1986.

[13] H.J.Genrich. Predicate/transition nets. Advances in
Petri Nets, LNCS 256, Springer-Verlag, 1987.

[14] P. Gronberg, M. Tiusanen and K. Varpaaniemi.
PROD - A Pr/T-net reachability analysis tool. Se-
ries B: Technical Reports, No. 11, Helsinki University
of Technology, June 1993.

Appendix
Other Protocol Functions

Here we briefly outline the message transmission and
reception functions. The labelled Petri net (LPN) for
the transmission procedure executed by the ring master
is shown in Figure 9(a) while the global description of the
message reception procedure carried out by any recipient
is shown in Figure 9(b).

The module that has won the arbitration and become
“master with reception” begins to transmit the message
immediately after sending token M3. Then the master
takes each byte (BT') of the message from its FIFO1, splits

{Count:=AddressL ength*2}
FIFO1>>BT Address
Reception

FFL:=1 SEL’ SEL
Cout<<LHB(BT) Reception

Reception when SEL=1

Cout << M4 when SEL=0

Cout<<HHB(BT)

g(:oul <M1
(b)

@

End Word
Reception

Figure 9: LPNs for message transmission (a) and a
global view of reception (b)

it into two half-bytes (LH B for “low half-byte”, and H H B
for “high half-byte”) and places them to the output chan-
nel (Cout) a pipeline fashion. This process continues until
the last byte (marked with Bit 9 equal to 1) is encountered.
Then the master produces the end token M4, followed by
a sequence of zero half-bytes (Z H B) which are needed to
“assemble” the end word of the ring channel. The length
of the end word (in half-bytes) is twice the address length,
measured in bytes. It is obvious that the length should be
available with the master after it has been extracted from
the header of the message from FIFO1 (the byte consisting
of the priority and the address size). Finally, the master
issues M1 to start the new bidding “campaign” in the ring.

The main parts of the reception procedure are refined
in Figure 10. Note that the procedure of the reception
of the end word is almost identical to that of the address
reception (see explanation below).

The address recognition procedure in any receiver (ex-
cept for the receiver section of the master) is begun with
the reception (from input channel Cin) of a half-byte (H B)
containing the address length, which follows token M 3.
This information (converted into the address size in half-
bytes) is stored (variable Count) in the module. The value
of the SEL variable is initialised at 0. Then, with each new
address half-byte received (it is assumed that the address
bits are transmitted in the ascending order of significance
- the least significant one goes first), the current value of
SEL is first copied in SEL_cp, and then this half-byte is put
to the channel being shifted towards the higher-significance
end. The MSB of the half-byte is thus stored in the SEL
flag, while the previous contents of the SEL becomes the
LSB of the forwarded half-byte. This continues until the
most significant half-byte of the address is received. Here
the last value shifted into SEL becomes the actual value of
the Selected flag. If this value is 1, the module will start
to copy the remainder of the message into its FIFO2 (see
Figure 10(b)) beginning with the header which consists of
the status byte. Alternatively, the module will play the
role of a repeater (simple pipeline cell) in the ring (see
Figure 10(c)).

The reception and forwarding of the end word is much

Cin>>HB
SEL:=0

Cin>>LHB

Count:=(HB)*2

FIFO2<<BT
Cout << HHB

Reception
when SEL=0 cm«mg Cout<<HB

€) (b) (0)

Figure 10: LPNs for address reception and recognition
(a) and message reception when SEL=1 (b) and when

SEL=0 (c)

similar to that of the address. The only difference is that
the value of the SEL variable is initialised with the SEL
flag. Using the same method of half-byte shifting-copying,
we achieve the effect that each module contributes to the
end word with the last value of its SEL flag (which may
not be the same as the one taken from the address; the
flag could have been reset due to an error in the module).
Thus each bit of the end word effectively tells the mes-
sage originator (recall that the message taken from FIFO1
ends in FIFO2 of the master) about the success in deliv-
ering the message to its recipient at the MAC layer. This
information can be used by the network layer functions.

Note that the receiving section of the master executes
the general reception protocol except that it does not copy
the message half-bytes to its output channel °.

The protocol descriptions involve explicit checking for
errors in reading a byte from FIFO1 and writing a byte
into FIFO2. The actual implementation of these condi-
tions (EFR1 and ER2) is based on timeouts associated with
the handshakes between the FIFOs and RAC. Should an
error arise, e.g., in the master reading a byte from FIFO1,
the message ceases to be copied to the channel, and token
M4 is produced instead. At the same time a special ex-
ception (signal F'F'1) is raised to the ULC. Similarly, if an
error occurs in the FIFO2 link of the receiving module, its
SEL flag is immediately reset to 0 and an exception signal
(FF2) is produced to the ULC. The module thus becomes

a repeater (i.e., unselected recipient).

Protocol verification using Pr/T nets

The main part of the protocol specification was shown
in Figure 4. This Petri net describes the behaviour of a
single protocol entity, one of the ring adaptors. To ver-
ify the protocol we need a model of the entire protocol

5 Although in our present version the master must always be
a selected receiver, with the message thus always being copied
into its FIFO2, the latter can be easily reorganised as an option
by using an explicit self-addressing mechanism.

I

Data2 Ack2

Pri Datal Term Ackl FIFO2

FIFO1
a) b)

Figure 11: Pr/T net description of Master transition
and FIFO modules.

layer. Note that the ring is a regular structure consisting
of an “array” of identical elements. Predicate/Transition
nets (Pr/T nets) [13] offer a convenient way to represent
it. To obtain an Pr/T model we introduce explicit places
for inputs and outputs of an adaptor. There are six places
(M1, ..., M4, Data, Ack) representing inputs/outputs of an
adaptor from/to its left- and right-hand side neighbour, 4
places (Pri, Datal, Term, Ackl) representing its interface
to the FIFOZ1 and 2 places (Data2, Ack2) representing its
interface to FIFO2. We model each FIFO as simple Pt/T
nets shown in Figure 11(b). (Here and below we assume
that all uninscribed arrows carry a token with the adap-
tor’s number (a).) Each token is assigned with an adaptor
number representing the fact that the token is enabling ac-
tions of that particular adaptor. Tokens in place M2 are
assigned with a tuple consisting of the adaptor number and
the priority value. Each of the net transitions in Figure 4
which consume tokens from the places representing inputs
connected to the left-hand side neighbour of an adaptor are
transformed to transitions of the Pr/T net which take a to-
ken from the adaptor’s interface places labelled with the
number of the adaptor concerned. Similarly, transitions
that produce tokens into the output places of an adaptor
(and hence into places of its right-hand side neighbour)
are transformed into transitions producing tokens labelled
with the “next in the row” adaptor. Transitions that are
“local” to the adapter are transformed so that they con-
sume and produce tokens labelled with the adapter number
without changing it. An example of the Pr/t net descrip-
tion of the Master transition (changing an adapter’s state
to “master-receiver”) is shown in Figure 11(a). Here the
transition consumes a token labelled with the number {a)
from place M2 which corresponds to accepting the token
from the left-hand side neighbour and produces tokens la-
belled with {a + 1) into place M3 which corresponds to it
producing an output for the righ-hand side adaptor. Sim-
ilar, it consumes token (a) from Ack place and produces
token (a+1) in it denoting the receipt of the acknowledge-
ment from the righ-hand side neighbour.

The behaviour of FIFO1is described as follows: it issues
a token labelled with its adaptor’s number into the place
Pri first and then generates an arbitrary finite number
of tokens (to model the length of the message) into the
Datal place followed by a token in Term. Each token can

M2N A (Nin=N M
M3

M3
3 Reception

w

| Auxs Datal Ackl

Aux3 Datal Ackl

M4 _ <atl

<atl>

Ack

1 Reception K1 Reception

Transmission

Reception
(Observer, Rec.bidder)

Reception
(Master-receiver)

Figure 12: Pr/T description of transmission and re-
ception.

only be generated if there exists a token labelled with the
appropriate adaptor number in the Ack? place. FIFO2
models a simple behaviour being able to consume a token
labelled with the adaptor number arrived into Data?2 place
and to generate a token labelled with the same into Ack2
place.

We also refine the Transmission and Reception transi-
tions from the net in Figure 4. Note that there are two
possible refinements of Reception for the “master-receiver”
state and the “observer-receiver” / “receiver-bidder” states.
The corresponding Pr/T nets are shown in Figure 12.
Each of the processes is connected to the adaptor’s Pr/T
net through auxiliary places, tokens in which are pro-
duced/consumed by appropriate transitions.

The Pr/T-net model of the ring has been verified using
one of the existing tools called PROD [14]. For deadlock
detection we used the “stubborn set” method implemented
in PROD. This method builds a reduced reachability state
space (RRSS). Analysis showed no deadlocks in the model.
The reachability analysis (see Table 1) reveals exponential
growth of the RRSS in the number of adaptors and polyno-
mial growth in the number of priorities in the ring. As the
number of adaptors we take the number of active adaptors
in the ring of three, i.e. those adaptors trying to gain ac-
cess to the channel. An inactive adaptor is assumed not to
have received requests from its user for data transmission.

We are also interested in some safety and fairness prop-
erties of our protocol. We analyse them by reducing their
check to deadlock detection.

Safety property of arbitration. It ensures that the
access to the ring will not be given to two or more adaptors
simultaneously. To reduce the problem to deadlock detec-
tion we add a stop-transition to the Pr/T net description
of the protocol with the input place corresponding to a
place of the adapter being in the master state and out-
putting into a deadlock. This transition is allowed to fire
when there are two tokens in the master state. Analysis of
the ring with three adaptors and three levels of priorities
shows that there are no deadlocks in the net with the new
transition, checking 77661 states in its RRSS.

<l+2+.+A-1> Req.High; Req.Low,

Protocol

Protocol
PHT et || <> PI/T net ”

<a>

Master BidM1;

a b)

Figure 13: Verification of protocol properties.

Number | Number | Reduced State
adaptors | priorities Space Size
1 1 104
1 2 130
1 3 156
2 1 1050
2 2 2301
2 3 4135
2 5 9204
2 10 30049
3 1 8307
3 2 31404
3 3 84432

Table 1: Experimental results.

Fairness of arbitration. It shows that a user issuing
a request for data transmission via its adaptor will eventu-
ally gain access to the ring. We can check it by composing
the net description of the protocol with the net shown in
Figure 13(b) (where transition Master denotes an adap-
tor’s state transition to master). In the Pr/T nets we need
to add a place “guarding” the change into the master state.
This place is marked with A — 1 tokens labeled with the
adaptor numbers. Thus we will prevent the A-th adaptor
from entering the master state, i.e. acquiring the channel,
and reaching any further state. If arbitration was unfair,
our composed Pr/T net would not have deadlocks as in
this case the inability of some adapter to reach the master
will be ignored. Analysis shows that the net deadlocks,
after exploring 57639 states in its RRSS.

Priority order. It ensures that if two users have issued
requests with two different priorities prior to the arrival
of token M1 into the leftmost adaptor, the one with the
higher priority will gain access to the ring first. This prob-
lem can be reduced to deadlock detection by performing
concurrent composition of nets as shown in Figure 13(b).
Verification shows absence of deadlocks if the proper access
ordering is used and reports a deadlock otherwise. Since
there can be no two adapters simultaneously accessing the
ring (safety property) we conclude that the required order
is maintained in our protocol.

