
Asynchronous Communication
and Self-timed Systems: Can
they help to simulate Brain?

Alex Yakovlev, Fei Xia
Microelectronic Design Group

Elec.Elec&Comp Eng, Newcastle

Acknowledgement to Ran Ginosar (Technion) for providing slides
about ITRS

Agenda

• What seems difficult … but still possible in
Silicon (messages from ITRS)

• The problem of System Timing
• Why we want to design asynchronous

systems
• What should be communication/timing

mechanisms in brain-like machines?

Int. Technology Roadmap for
Semiconductors

• Published every two years (last 2003,
http://public.itrs.net/)

• Industry driven: fabs, equipment, EDA, design, testing,
integrated companies (Intel,…)

• 15 years outlook (6 short-term, 9 long-term)
It says for example that:
• 2010 will bring a system-on-a-chip with:

– 4 billion 50-nanometer transistors, run at 10GHz
– Moore’s law: steady growth at 60% in the number of

transistors per chip per year as the functionality of a
chip doubles every 1.5-2 years.

• Process parameter variation, power dissipation, clock
distribution, design productivity (validation and test)
present new challenges for Design and Test

ITRS: Four main product areas

• High speed microprocessors
– 300 mm2 area, highest density, highest clock rates

• DRAM: Highest density, special niche
• Analog / Mixed signal: LNA, PA, VCO, ADC

– Challenges: Automated design (lack of designers),
low Vdd, high device variation, high noise, high
leakage, SOC integration

• System on Chip (used to be ASIC)
– Smaller dies (5-50Mtx/2001), clock 10% of max, low

power

Growing Silicon Complexities

• Non-ideal device scaling:
– Leakage,

– Power delivery

• Non-ideal wire scaling:
– Communication,
– Synchronization

• High frequency coupling:
– Noise,
– Signal integrity,

– Delay variation

• Process variation:
– Characterization,

– Error tolerance

• Lower reliability:
– Insulator breakdown,
– Electro-migration,

– Single event upsets

• Manufacture handoff:
– Time and money

Growing System Complexities

• Reuse:
– Heterogeneous SOC,
– AMS

• Verification:
– Spec design,
– DfV,
– hSOC,
– AMS

• Test:
– Noise/delay testing,
– Test reuse,
– Tester timing

• Implementation Portability:
– Fab-independent designs

• Embedded Software Design:
– Co-design,
– Co-verification,
– Platform-based design

• Design Management:
– Team size,
– Geographic distribution,
– Data management,
– Metrics,
– Supply chain management

Implications of Complexities

• No chip-wide synchronization
– Asynchronous design suggested as

“challenge”

• Statistical behavior of transistor / gate /
cell

• Some signals lost sometimes
– Error-tolerant design

Network on Chip (NoC)

• Single bus does not meet needs, even with:
– Spilt transactions
– Pre-emptive scheduling
– Dynamic priorities

• Complex design
• Load limits speed
• Many off-bus special cases
• New approaches:

– Multi-buses – keep the bus semantic / software
– Nets hidden behind bus semantic
– On-chip “nets” – just send a packet…

New Types of SoC

• Platform-based SoC
– Many IPs and NoC pre-packaged
– Add your own logic and submit to fab

• SOPC: System on Programmable Chip
– Many IPs and NoC pre-packaged
– A gate-array for your own logic:

• Customizable:
– Chips was fabbed most of the way
– Only last few metal layers waiting for your custom part

• Field-Programmable:
– Chip bought as is, customized by customer like FPGA

The Problem of System Timing

Register

Sender Logic
Register

Receiver

Clock

Data input

Clock

Tsetup Thold

Synchronous (globally clocked) design

Timing constraint: input data must stay unchanged within a
setup/hold window around clock event. Otherwise, the latch may fail
(e.g. metastability)

Req/Ack (local) signal handshake protocol instead of global clock

Causal relationship. Handshake signals implemented with completion
detection in data path

Register

Sender Logic
Register

Receiver

Data

Data input

Req

Ack(nowledge)

Req(est)

Ack

The Problem of System Timing

Asynchronous (unclocked) design

The Problem of System Timing

• Globally Clocked Design reigns in Industry. It is
conceptually simple and many D&T tools support it.

• It however faces problems: clock distribution, timing
closure, excessive power consumption, EMI, … and it is
NOT natural to many applications (perhaps it is just good
for pure computations) – timing relations are not causal!

• Asynchronous Design has a lot of design methods
developed (some at Newcastle), and some use in
Industry (e.g. Philips) but it is not well supported by tools
and the majority of design community … they just don’t
see where it is natural

The Problem of System Timing

• Moreover, the common understanding of
Asynchrony is quite limited to the idea of
handshakes, which actually makes systems look
as Synchronous! … because handshakes act
as interlocks.

• This leads to systems that are not running freely
according to their “natural motive powers”

• We need truly Asynchronous, Self-timed
Systems!

• Asynchronous processing.
• Improved EMI - dependent on data being processed.
• Lower power - energy only used when work is done.

Example – A to D conversion based
on level-crossing rather than on
periodic sampling

Data communication between
processes

• Point to point: connecting two processes

writer reader
data

Data is a stream of items of a set type.
Writer and reader are cyclic processes.
Writer provides one item of data per cycle.
Reader uses one item per cycle.

writer timing domain reader timing domain

ACMs

• An ACM is implemented with shared
memory

writer readerACM

temporal divide

ACMs

• An ACM can specify the following
protocols
– Writer may be required to wait for reader

– Writer may not be required to wait for reader
– Reader may be required to wait for writer

– Reader may not be required to wait for writer

• Qualitative asynchrony specifications
naturally divides all ACMs into four types

Data communication

• Traditional approach

writer reader••• •••w/r

Data communication

• Traditional approach is synchronized
– Either reader or writer must wait for the

other side during the transfer of every
data item

– Not ideal for many concurrent systems
(esp. embedded, real-time, and low power
systems)

Asynchrony in concurrent systems

• Inevitable
– High degrees of integration mean that

distribution of global clocks becomes
impractical, so even on the same chip
there will be asynchrony

– Distributed systems naturally have local
clocks. Synchronizing such clocks can be
problematic.

– Self-timed systems (esp. useful for low
power) have no regularly pulsing clocks.

Asynchrony in concurrent systems

• Real-time elements
– Most obvious characteristic is timing

predictability
– Such processes thus should not be

delayed by outside influences, e.g. data
communications with another process

– Data communications should therefore
follow “not obliged to wait for data”
protocols

Asynchrony in concurrent systems

• Low power elements
– In such things as battery powered remote

sensors, timing for data items can depend
on two factors

– Some sensors only produce data when
they detect changes in the input signal

– Other sensors may produce data when
their communication partners request data
from them

– Each requires a different approach to data
communication synchrony

Asynchronous data communication

• A buffer increases scope for asynchrony

writer reader••• •••

r

w

full

empty

ACMs

• Writer may be required to wait

writer •••

w
unread

read

ACMs

• Writer may not be required to wait

writer •••
w

unread

read

ow

ACMs

• May be required to wait on both sides
– Traditional buffer in computers

– Full data continuity (no overwriting or re-
reading)

– Message data
– Increasing the size of the buffer increases

quantitative asynchrony, at the expense of
latency (true for all ACMs)

ACMs

• Reader may be required to wait

reader•••

r

unread

read

ACMs

• Reader may not be required to wait

reader•••
r

rrread

unread

ACMs

• No wait on either side

reader•••
r

rrread

writer •••
w

unread
ow

ACMs

• No wait on either side
– Connecting together two independently

timed processes (e.g. real-time processes)
– Reference data
– Clock example

ACMs

• May be required to wait on one side,
either reading or writing
– Connecting self-motivated timing with

reactive timing
– Signal or command data

– One side real-time the other low power, etc.

An asynchronous demonstrator
chip designed at Newcastle

Contains:

•ACM

•Priority arbiter

•Async A/D
converter

These and other
components can
be used to
design complex
self-timed neural
networks

How to communicate/interact in
brain-like machines?

• Dynamic connectivity seems to be the biggest
problem, does it?

• Is it feasible to multiplex 1015 of synapses on a
limited interconnect fabric of a chip or wafer?

• What mechanisms are used for timing in the
brain? Is it cell-based, layer-based, sensor-
tiggered, … - where are “motive powers”?

• What mechanisms are used for tolerating data
errors and losses in the brain?

Building a brain-like machine
(smart widget)

• Produce a detailed functional/algorithmic
description – neuro-info-scientist task

• Map it into a silicon (or some emerging
technology) space – system designer task

Finding a good mapping is a key!

Finding a good mapping

• Refine the functional description:
– Find a good set of representations for data

(most efficient for temporal/spatial integration)
– Find a good implementation architecture;

• Interconnection (static and programmable)
structure

• Timing mechanisms

• Produce specifications for all functional
blocks and map to (say) library cells in the
given technology

H tree (good for 2D layouts)

Can be combined with local routes and shortcuts between branches
and custers

Asynchronous counterflow pipeline
(with data loss and repetition)

Pred
.

pattern

pred. pattern pred. pattern

STEP
pattern
storage

STEP: self-timed event processor

STEP: self-timed event processor

response
evaluator

response trigger

priority arbiter + switch

switch

