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Agenda

• What seems difficult … but still possible in 
Silicon (messages from ITRS)

• The problem of System Timing
• Why we want to design asynchronous 

systems
• What should be communication/timing 

mechanisms in brain-like machines?

Int. Technology Roadmap for 
Semiconductors

• Published every two years (last 2003, 
http://public.itrs.net/)

• Industry driven: fabs, equipment, EDA, design, testing, 
integrated companies (Intel,…)

• 15 years outlook (6 short-term, 9 long-term)
It says for example that:
• 2010 will bring a system-on-a-chip with: 

– 4 billion 50-nanometer transistors, run at 10GHz
– Moore’s law: steady growth at 60% in the number of 

transistors per chip per year as the functionality of a 
chip doubles every 1.5-2 years. 

• Process parameter variation, power dissipation, clock 
distribution, design productivity (validation and test) 
present new challenges for Design and Test 

ITRS: Four main product areas

• High speed microprocessors
– 300 mm2  area, highest density, highest clock rates

• DRAM: Highest density, special niche
• Analog / Mixed signal: LNA, PA, VCO, ADC

– Challenges: Automated design (lack of designers), 
low Vdd, high device variation, high noise, high 
leakage, SOC integration

• System on Chip (used to be ASIC)
– Smaller dies (5-50Mtx/2001), clock 10% of max, low 

power



Growing Silicon Complexities

• Non-ideal device scaling: 
– Leakage, 

– Power delivery

• Non-ideal wire scaling: 
– Communication, 
– Synchronization

• High frequency coupling: 
– Noise, 
– Signal integrity, 

– Delay variation

• Process variation: 
– Characterization, 

– Error tolerance

• Lower reliability: 
– Insulator breakdown, 
– Electro-migration, 

– Single event upsets

• Manufacture handoff: 
– Time and money

Growing System Complexities

• Reuse: 
– Heterogeneous SOC, 
– AMS

• Verification: 
– Spec design, 
– DfV, 
– hSOC, 
– AMS

• Test: 
– Noise/delay testing, 
– Test reuse, 
– Tester timing

• Implementation Portability: 
– Fab-independent designs

• Embedded Software Design: 
– Co-design,
– Co-verification, 
– Platform-based design

• Design Management: 
– Team size, 
– Geographic distribution, 
– Data management, 
– Metrics, 
– Supply chain management

Implications of Complexities

• No chip-wide synchronization
– Asynchronous design suggested as 

“challenge”

• Statistical behavior of transistor / gate / 
cell

• Some signals lost sometimes 
– Error-tolerant design 

Network on Chip (NoC) 

• Single bus does not meet needs, even with:
– Spilt transactions
– Pre-emptive scheduling
– Dynamic priorities

• Complex design
• Load limits speed
• Many off-bus special cases
• New approaches: 

– Multi-buses – keep the bus semantic / software
– Nets hidden behind bus semantic
– On-chip “nets” – just send a packet… 



New Types of SoC

• Platform-based SoC
– Many IPs and NoC pre-packaged
– Add your own logic and submit to fab

• SOPC: System on Programmable Chip
– Many IPs and NoC pre-packaged
– A gate-array for your own logic:

• Customizable: 
– Chips was fabbed most of the way
– Only last few metal layers waiting for your custom part

• Field-Programmable:
– Chip bought as is, customized by customer like FPGA

The Problem of System Timing
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Synchronous (globally clocked) design

Timing constraint: input data must stay unchanged within a 
setup/hold window around clock event. Otherwise, the latch may fail 
(e.g. metastability)

Req/Ack (local) signal handshake protocol instead of global clock

Causal relationship. Handshake signals implemented with completion 
detection in data path
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The Problem of System Timing

Asynchronous (unclocked) design

The Problem of System Timing

• Globally Clocked Design reigns in Industry. It is 
conceptually simple and many D&T tools support it.

• It however faces problems: clock distribution, timing 
closure, excessive power consumption, EMI, … and it is 
NOT natural to many applications (perhaps it is just good 
for pure computations) – timing relations are not causal!

• Asynchronous Design has a lot of design methods 
developed (some at Newcastle), and some use in 
Industry (e.g. Philips) but it is not well supported by tools 
and the majority of design community … they just don’t 
see where it is natural



The Problem of System Timing

• Moreover, the common understanding of 
Asynchrony is quite limited to the idea of 
handshakes, which actually makes systems look 
as Synchronous! … because handshakes  act 
as interlocks.

• This leads to systems that are not running freely 
according to their “natural motive powers”

• We need truly Asynchronous, Self-timed 
Systems!

• Asynchronous processing.
• Improved EMI - dependent on data being processed.
• Lower power - energy only used when work is done.

Example – A to D conversion based 
on level-crossing rather than on 
periodic sampling 

Data communication between 
processes

• Point to point: connecting two processes

writer reader
data

Data is a stream of items of a set type.
Writer and reader are cyclic processes.
Writer provides one item of data per cycle. 
Reader uses one item per cycle.

writer timing domain reader timing domain

ACMs

• An ACM is implemented with shared 
memory

writer readerACM

temporal divide



ACMs

• An ACM can specify the following 
protocols 
– Writer may be required to wait for reader

– Writer may not be required to wait for reader
– Reader may be required to wait for writer

– Reader may not be required to wait for writer

• Qualitative asynchrony specifications 
naturally divides all ACMs into four types

Data communication

• Traditional approach

writer reader••• •••w/r

Data communication

• Traditional approach is synchronized
– Either reader or writer must wait for the 

other side during the transfer of every
data item

– Not ideal for many concurrent systems 
(esp. embedded, real-time, and low power 
systems)

Asynchrony in concurrent systems

• Inevitable
– High degrees of integration mean that 

distribution of global clocks becomes 
impractical, so even on the same chip 
there will be asynchrony

– Distributed systems naturally have local 
clocks. Synchronizing such clocks can be 
problematic.

– Self-timed systems (esp. useful for low 
power) have no regularly pulsing clocks.



Asynchrony in concurrent systems

• Real-time elements
– Most obvious characteristic is timing 

predictability 
– Such processes thus should not be 

delayed by outside influences, e.g. data 
communications with another process

– Data communications should therefore 
follow “not obliged to wait for data” 
protocols

Asynchrony in concurrent systems

• Low power elements
– In such things as battery powered remote 

sensors, timing for data items can depend 
on two factors

– Some sensors only produce data when 
they detect changes in the input signal

– Other sensors may produce data when 
their communication partners request data 
from them

– Each requires a different approach to data 
communication synchrony

Asynchronous data communication

• A buffer increases scope for asynchrony
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ACMs

• Writer may not be required to wait
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ACMs

• May be required to wait on both sides
– Traditional buffer in computers

– Full data continuity (no overwriting or re-
reading)

– Message data
– Increasing the size of the buffer increases 

quantitative asynchrony, at the expense of 
latency (true for all ACMs)
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ACMs

• No wait on either side
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ACMs

• No wait on either side
– Connecting together two independently 

timed processes (e.g. real-time processes)
– Reference data
– Clock example

ACMs

• May be required to wait on one side, 
either reading or writing 
– Connecting self-motivated timing with 

reactive timing
– Signal or command data

– One side real-time the other low power, etc.

An asynchronous demonstrator 
chip designed at Newcastle

Contains:

•ACM

•Priority arbiter

•Async A/D 
converter

These and other 
components can 
be used to 
design complex 
self-timed neural 
networks



How to communicate/interact in 
brain-like machines?

• Dynamic connectivity seems to be the biggest 
problem, does it?

• Is it feasible to multiplex 1015 of synapses on a 
limited interconnect fabric of a chip or wafer? 

• What mechanisms are used for timing in the 
brain? Is it cell-based, layer-based, sensor-
tiggered, … - where are “motive powers”?

• What mechanisms are used for tolerating data 
errors and losses in the brain? 

Building a brain-like machine 
(smart widget)

• Produce a detailed functional/algorithmic 
description – neuro-info-scientist task

• Map it into a silicon (or some emerging 
technology) space – system designer task

Finding a good mapping is a key!

Finding a good mapping

• Refine the functional description:
– Find a good set of representations for data 

(most efficient for temporal/spatial integration)
– Find a good implementation architecture;

• Interconnection (static and programmable) 
structure

• Timing mechanisms

• Produce specifications for all functional 
blocks and map to (say) library cells in the 
given technology

H tree (good for 2D layouts)

Can be combined with local routes and shortcuts between branches
and custers



Asynchronous counterflow pipeline 
(with data loss and repetition)

Pred
.

pattern

pred. pattern pred. pattern

STEP
pattern 
storage

STEP: self-timed event processor

STEP: self-timed event processor

response 
evaluator

response trigger

priority arbiter + switch

switch


