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Outline

• Asynchronous  Design Principles

• Praises and curses  

• (Some  of the) Models, Techniques and Tools 
for Asynchronous Design

• Synchronization and Arbitration 

• “Asynchronous History” (in brief)

• “Who is who” in Async design

• Where do we go?
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Asynchronous Behaviour

• Synchronous vs Asynchronous behaviour in general 
terms, examples:

– Orchestra playing with vs without a conductor

– Party of people having a set menu vs a la carte

• Synchronous means all parts of the system acting 
globally in tact, even if some or all part „do nothing‟

• Asynchronous means parts of the system act on demand 
rather than on global clock tick

• Acting in computation and communication is, generally, 
changing the system state

• Synchrony and Asynchrony can be in found in CPUs, 
Memory, Communications, SoCs, NoCs etc.
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Why think about Timing and Synchrony 

4
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Key Principles of Asynchronous Design

• Asynchronous handshaking

• Delay-insensitive encoding

• Completion detection

• Causal acknowledgment (aka indication or 
indicatability)

• Strong and weak causality (full indication and 
early evaluation)

• “Time comparison” (synchronisation, arbitration)
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Why and what is handshaking?

Mutual Synchronisation is via Handshake
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Synchronous clocking 

How we 
think

What we 
design
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Asynchronous handshaking 

What we 
design

How we 
think

Handshake latch Handshake CL
”Channel” or ”Link”
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Handshake Signalling Protocols

Level Signalling (RTZ or 4-phase)

Transition Signalling (NRZ or 2-phase)

One cycle

req

ack

req

ack

One cycle

req

ack
One cycle
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Handshake Signalling Protocols

Pulse Signalling

Single-track Signalling (GasP)

One cycle

req

ack

req

ack

One cycle

req + ackreq

ack
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Why and what is delay-insensitive coding?

Data Token = (Data Value, Validity Flag)
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Bundled Data 

req

ack

Data

One cycle

req

ack

Data

RTZ:

NRZ:

One cycle

req

ack

Data

One cycle
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DI encoded data (Dual-Rail)

ack

Data.0

One cycle

Data.1

ack

Data.0Data.1

Logical 1
Logical 0

One cycle

NULL (spacer) NULL

cycle

Data.1

ack

Data.0
Logical 1

Logical 0

cycle cycle

Logical 1Logical 1

cycle

RTZ:

NRZ:NRZ coding leads 
to complex logic 
implementation; 
special ways to 
track odd and 
even phases and 
logic values are 
needed, such as 
LEDR
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DI codes (1-of-n and m-of-n)

• 1-of-4: 

– 0001=> 00, 0010=>01, 0100=>10, 1000=>11

• 2-of-4:

– 1100, 1010, 1001, 0110, 0101, 0011 – total 6 
combinations (cf. 2-bit dual-rail – 4 comb.)

• 3-of-6:

– 111000, 110100, …, 000111 – total 20 combinations 
(can encode 4 bits +  4 control tokens)

• 2-of-7:

– 1100000, 1010000, …, 0000011 – total 21 
combinations (4 bits + 5 control tokens)
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Why and what is completion detection?

Signalling that the Transients are over

15



Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Bundled-data logic blocks  

Single-rail logic

•
•
•

•
•
•

delaystart done

Conventional logic + matched delay

Completion 

is implicit: by 

done signal

The delay must 

scale with the 

worst case 

delay path, 

So … not really 

self-timed
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True completion detection 

Dual-rail

logic

•
•
•

•
•
•

C done

Completion detection tree

Completion 

detection for one 

dual-rail bit

C

•
•
•

Multi-input C-

element
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Why and what is causal acknowledgment?

Every signal event must be acknowledged by 

another event

18
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Causal acknowledgment

a(0)

b(0)
c(0)

x1 (1)

x2 (1)

x3(1)

C-element implementation using simple gates

a+

b+

x1- c+

x2-

x1+

c-

x3-

a+

b+

a-

b-

c+ c-

a-

b- x2+

x3+
Unack’ed transitions x2- and 

x3- may cause a hazard on 

output c

However, under Fundamental 

Mode (slow environment) the 

circuit is safe
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Principle of causal acknowledgement

a(0)

b(0)

c(0)
x1(1)

x4(0)

x2(0)

x3(1)

a+

b+

a-

b-

c+ c-

C-element implementation using simple gates

a-

b-
x4- x3+ x2- c-

a+

b+

x1- x2+
x3- x1+ c+

x4+

Each transition is 

causally ack’ed, 

hence no hazards 

can appear
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Why and what are strong and weak causality ?

Degree of necessity of precedence of some events 

for other events

21
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Strong Causality 

• Petri net transitions synchronising as rendez-vous 

A

C

B

• Logic circuits: Muller C-element (in 0-1 and 1-0 
transitions), AND gate (in 0-1 transitions), OR gate (in 1-
0 tranisitions)

A

B

C

A     B     C+

0      0      0

0      1      C

1      0      C

1      1      1

Strong precedence

22
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Weak Causality

• Petri net transitions communicating via places

A

C

B

• Logic circuits: AND gate (in 1-0 transitions), OR gate (in 
0-1 transitions)

A(0->1)

B(0->1)

C(0)
A(1->0)

B(1->0)

C(1)

Weak precedence
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Full indication versus Early Evaluation

A.t

A.f

B.t

B.f

C.t

C.f

Dual-rail AND gate

with “early propagation”

Allows outputs to be produced from NULL 

to Codeword only when some (required) 

inputs have transitioned from NULL to 

Codeword  (similar for Codeword to NULL)

C

C

C

C

B.t
A.t

C.t

C.f

A.t

A.f

A.f
B.f

B.t

B.f

Dual-rail AND gate

with full input 

acknowledgement
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Why and what is timing comparison?

Telling if some event happened before 

another event

25
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Synchronizers and arbiters

Your system

Input

Your system

Input 1

Input 2

 Synchronizer
Decides which clock
cycle to use for the 

input data

 Asynchronous 
arbiter
Decides the order of 
inputs

26
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Metastability is....

Not being able to decide…

Q

Q

Clock

D

tin

tin -> 0

D

Clock

Request

Processor Clock

Set-up time violated
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Typical responses

• We assume all starting points are equally probable
• Most are a long way from the “balance point”
• A few are very close and take a long time to resolve

Clock

Q Output

Clock

D Q
#1 

Q Trigger
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Synchronizer

• t is time allowed for the Q to change between CLK a and CLK b

•  is the recovery time constant, usually the gain-bandwidth of the 
circuit

• Tw is the “metastability window” (aperture around clock edge in 
which the capture of data edge causes a delay that is greater than 
normal propagation delay of the FF)

•  and Tw depend on the circuit

• We assume that all values of tin are equally probable

D Q D Q

CLK a

VALID

#1 #2

dcw

t

ffT

e
MTBF

..

/


CLK b
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Two-way arbiter (Mutual exclusion element)

req1

req2

ack2

ack1

(0)

(0)

(1)

(1)

(0)

(0)

Basic arbitration element: Mutex (due to Seitz, 1979)

An asynchronous data latch with 

metastability resolver can be built similarly

Metastability 

resolver
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Praises…

• People have always been excited by asynchronous design, 
and motivated by:

– Higher performance (work on average not worst case delays)

– Lower power consumption (automatic fine-grain “clock” gating; 
automatic instantaneous stand-by at arbitrary granularity in time and 
function; distributed localized control; more architectural 
options/freedom; more freedom to scale the supply voltage)

– Modularity (Timing is at interfaces) 

– Lower EMI and smoother Idd (the local “clocks” tend to tick at 
random points in time)

– Low sensitivity to PVT variations (timing based on matched delays or 
even delay insensitive)

– Secure chips (white noise current spectrum)

– Plus, … a lot of scope and fun for research (there are many 
unexplored paths in this forest!)
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• So why have async designers been often “crucified” in the past?

– Overhead (area, speed, power)

• Control and handshaking 

• Dual-rail and completion detection costs

– Hard to design

• yes and no, ... It‟s different – there are very many styles and 
variants to go and one can easily get confused which is better

– Very few **practical** CAD tools (but many academic tools)

• Tools are quite specific to particular design styles and design 
niches; hence don‟ t cover the whole spectrum

• Complexity of timing and performance models  

• Difficulty with sign-off (for particular frequency requirements)

• ... But the situation is improving

– Hard to Test 

• Possible, but not as mature as sync

… Curses
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Models and techniques for design

33
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Models and techniques for asynchronous design

• Models:

– Delay model (inertial, pure, gate delay, wire delay, bounded and 
unbounded delays)

– Models of environment (fundamental mode, input-output)

– Models of switching behaviour (state-based, event-based, hybrid)

• RTL level:

– Data and control paths separate (data flow graphs, FSMs, STGs, 
Synchronised Transitions)

– Pipeline based (Combinational logic plus registers and latch controllers, 
e.g. micropipelines, gate-level pipelining)

– Process-based (CSP-like, Balsa, Haste, Communicating Hardware 
Processes)

• High-level models

– Flow graphs (Marked graphs, extended MGs), Petri nets, Markov Chains

– Behavioural HDLs (C, SystemC)
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Gate vs wire delay models

• Gate delay model: delays in gates, no delays in wires

• Wire delay model: delays in gates and wires

35
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• Bounded delays (BD): realistic for gates and wires.

– Technology mapping is easy, verification is difficult

• Speed independent (SI): Unbounded (pessimistic) 
delays for gates and “negligible” (optimistic) delays 
for wires.

– Technology mapping is more difficult, verification 
is easy

• Delay insensitive (DI): Unbounded (pessimistic) 
delays for gates and wires.

– DI class (built out of basic gates) is almost empty

• Quasi-delay insensitive (QDI): Delay insensitive 
except for critical wire forks (isochronic forks).

– In practice it is the same as speed independent

Classes of asynchronous circuits

BD

SI  QDI

DI
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Designing in the small: Control Logic Synthesis

y := 0;

loop

x := READ (IN);

WRITE (OUT, (x+y)/2);

y := x;

end loop

RinAin

Aout Rout

IN

OUT

filter

A simple filter example:

We build the filter by separating the data path and control path. 

Data path can be designed using dual-rail of bundled data.

Control can be synthesized using the Signal Transition Graph 

model (Rosenblum, Yakovlev, Chu, 1985)  
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Data path description 

x y
+

control
Rin

Ain

Rout

Aout

Rx Ax
Ry Ay Ra Aa

IN
OUT

• x and y are level-sensitive latches (transparent when R=1)

• + is a bundled-data adder (matched delay between Ra and Aa)

• Rin indicates the validity of IN

• After  Ain+ the environment is allowed to change IN

• (Rout,Aout) control a level-sensitive latch at the output
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Control specification using Signal Transition Graphs

x y
+

control
Rin

Ain

Rout

Aout

Rx Ax
Ry Ay Ra Aa

IN
OUT

Rin+

Ain+

Rin-

Ain-

Rx+

Ax+

Rx-

Ax-

Ry+

Ay+

Ry-

Ay-

Ra+

Aa

+
Ra-

Aa-

Rout+

Aout+

Rout-

Aout-
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Control implementation

C

Rin

Ain

Rx Ax RyAy AaRa

Aout

Rout

Rx+

Rin+

Ax+ Ra+ Aa+ Rout+ Aout+ z+ Rout- Aout- Ry+

Ry- Ay+Rx-Ax-Ay-

Ain-

Ain+

Ra-

Rin-

Aa-
z-

Speed-independent 

circuit (by method)

z

z is internal state signal added by the synthesis method 
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From STG specification to logic implementation

C

Rin

Ain

Rx Ax RyAy AaRa

Aout

Rout

z

Rin+

Ain+

Rin-

Ain-

Rx+

Ax+

Rx-

Ax-

Ry+

Ay+

Ry-

Ay-

Ra+

A

a+
Ra-

Aa-

Rout+

Aout+

Rout-

Aout-

Synthesis method and Petrify tool
J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and 

A. Yakovlev. Logic Synthesis of Asynchronous Controllers and 

Interfaces. Springer-Verlag, 2002. (Petrify software can be 

downloaded from: http://www.lsi.upc.edu/~jordicf/petrify/) 

It is possible to synthesize circuits with up to 50 signals – limited by 

state explosion (state space is generated inside the tool)

Recent developments at Newcastle, Barcelona, Augsburg and Potsdam 

have led to methods based on direct mapping of Petri nets, structural 

decomposition and use of Petri net unfoldings.
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Designing async in the large: “desynchronisation”

Source: J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, “Desynchronization: 

Synthesis of asynchronous circuits from synchronous specifications ”, IEEE 

Transactions on Computer-Aided Design, pp. 1904–1921, October 2006.

• Think synchronous

• Design synchronous:

– One clock

– Edge-triggered flip-flops

• De-synchronize (automatically)

– Remove clock

– 1 edge-triggered flip-flop = 2 latches

– Add latch controllers (any mix of “valid” controllers is allowed)

– Add Joins and Forks

– Add delay elements

• Run it asynchronously (possible dynamic voltage scaling)
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Example: Synchronous DLX

Global Clock distribution network

clk
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“Desynchronized” (Elastic) DLX

ctr ctrctrctr ctr

master
& slave
latches

44



Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Designing async in the large: use of HDLs

• VHDL or Verilog: 

– Event driven + parallel processes. Fine, but …

– … “programming” of req-ack handshake is tedious.

• Inspiration from parallel programming languages:

CSP, OCCAM, …

– Message passing across
communiction channels
(Send, Receive, Probe)

• Asynchronous HDL‟s
– Haste (Tangram)

– Balsa

– CHP

– …

Channel is buffer-less
 Processes synchronize

Handshake 

Solutions

U. of Manchester

Caltech
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Asynchronous Networks (Sparsø, ASYNC 2005) 

Sparsø

Synchronization requiredMultiple Clocks

AsynchronousArbitration required
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Back to synchronizers and arbiters

Your system

Input

Your system

Input 1

Input 2

 Synchronizer
Decides which clock
cycle to use for the 

input data

 Asynchronous 
arbiter
Decides the order of 
inputs
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Synchronisers and future processes

• Synchronizers and arbiters don‟t work well 
in nanometre technologies, especially at 
low Vdd

• Worse than gates! Why? 

• A gate input is either HIGH

– Output pulled down

• Or LOW

– Output pulled up

• A metastable gate is neither

– Both transistors can be off 

• Vdd/Vth decreases with process shrink, 

– Transcondunctance  gm very low 

• Synchronization time constant  = C/gm

Vdd

Ground

Ids
Vdd

IdsGround

Ids

Ids

Vdd/2
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Robust synchronizer (Zhou et al, 2006)

Data Reset

Clock

Vdd

0V

 Jamb latch synchronizer slow 

for low Vdd, low temp

 In metastability, both outputs are 

the same

 Extra p-types are switched fully 

on, so gm increases, and 

improves

 Because extra p-types are only 

on during metastability, set/reset 

transistors can now be small and 

do not load latch
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History – “classics”

• 1950s and early 60s: 

– Theory of Languages, Automata, Switching Circuits (Kleene, Mealy, 
Moore)

– Asynchronous Automata and Switching Circuits (Huffman)

– Speed-Independent Circuits (Muller, Bartky) – analysis, early 
synthesis, compositionality

– Building real async computers using SI circuits (!) from first 
transistors (Illiac II)

Leitmotiv: theory of asynchronous switching behaviour

• Late 60s, early 70s: 

– Building real async computers in TTL and ECL (DEC PDP-16, MU-5, 
Atlas)

– Metastability and synchronisation (Catt, Molnar, Chaney, Kinniment)

Leitmotiv: observing asynchronous phenomena in vivo
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History – “middle ages”

• 70s: 

– Macromodule project at Washington University St. Louis (Clarke, 
Molnar); 

– Design methods based on data/control-flow graphs, Petri nets, 
project MAC at MIT (Dennis, Holt, Patil)

– Aperiodic Automata, USSR Academy of Science (Varshavsky et al)

– Leitmotiv: modularity to cope with complexity and concurrency

• 80s: 

– VLSI (clocked design dominates in industry and leads to mature CAD); 

– Self-timed circuits in massively parallel architectures to get speed 
(Seitz); Postoffice design (Davis et al); Micropipelines (Sutherland)

– Early foundations for Async CAD (analysis and synthesis),interfaces 
(Varshavsky et al); Signal Transition Graphs (Rosenblum  et al, Chu)

– Leitmotiv: async is pushed on the fringe: first experiments in VLSI 
and understanding that CAD is crucial 
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History – modern times

• 90s: 

– Theory of delay-insensitive circuits (Josephs, Udding)

– CAD developments: verification (Ebergen), synthesis and Petrify tool 
(Cortadella et al, Nowick),  syntax-direct compilation and Tangram at 
Philips (van Berkel)

– Processor Designs (Martin, Furber); design experiments at HP, Sun and 
Intel (RAPPID, 1999)  

Leitmotiv: The main thrust is that async is good for Low power 

• 2000s:

– High-speed designs for internet switches (Fulcrum)

– GALS, Asynchronous Interconnects, NoCs (Vivet et al, Bainbridge)

– Synchronizers for SoCs (Kinniment, Ginosar, Greenstreet)

– “More practical” CAD: desynchronisation (Cortadella et al), Haste 
(Peeters)

Leitmotiv: Robustness against variability; mitigating timing closure
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History - summary

• Early stages: relatively small circuits that could be designed by hand 
from specification, either by synthesis, or by direct mapping, or by 
assemble-verify techniques, and clock was not needed – good times 
for ASYNC!

• Clock was introduced into the design practice later to avoid the 
complexities of dealing with causal relations

• Clock fitted better in the FSM approach, and allowed to avoid 
complex procedures with hazard-elimination or avoidance

• But, with concurrent processes and Petri nets, clock is becoming a 
trouble, even though we can keep measuring time and performance

• With NoCs, variability, timing closure and power problems , global 
clocking is a problem – good times for ASYNC!

• PLUS: many people design asynchronous circuits but do NOT admit 
that – name “asynchronous” implies something negative …

53



Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Who is Who in Async : Industry

• Europe
– Elastix, Spain – USA/CA
– Handshake Solutions, Netherlands
– Tiempo, France
– Silistix, UK

• USA
– Achronix,
– Fulcrum,
– IBM,
– Intel,
– Timeless,
– Theseus (if still exists?)

– Sun - Oracle

 Mostly startup companies

on CAD tools & some circuit 

niches

 A few R&D labs within major 

companies (IBM, Intel, Sun) 
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Who is Who in Async: Academia
• In the USA

– Caltech
– Columbia Univ.
– Cornell Univ.
– Portland State University (ARC lab)
– Univ. North Carolina at Chapel Hill
– Univ. of British Columbia (Canada)
– Univ. of South California
– Univ. of Utah

• In Europe
– CEA-LETI, France
– IHP, Germany
– Cambridge Univ., UK
– Newcastle Univ., UK
– Manchester Univ., UK
– Politechnico de Torino, Italy
– Technical University of Denmark, Denmark
– Technion, Israel,
– TIMA, France
– TU Vienna, Austria
– UPC, Spain

• In Japan
– Himeji Institute of Technology 
– University of Tokyo

 About  a few 

hundred people around 

the world…

 ASYNC IEEE 

symposia running

annually since 1994
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Where do we go next?

56
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Technology Trends

From Asenov,UKDF’10
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Performance/power/yield trade off

From Asenov,UKDF’10
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Outlook for asynchronous ...

• New models

– Combining choice, concurrency and causality better (e.g. 
Conditional Partial Order Graphs – CPOGs)

– Models for elastic behaviour (with or w/o clocking)

– Hybrid, discrete-continuous-stochastic (to enable design for 
variability and uncertainty – e.g. design to a certain MTBF level)

• Time and power-elastic interfaces 

– Bio to silicon and silicon to bio (e.g. synthesis of comm channels 
between brain and prosthetic limbs or other actors)

• Energy-proportional, power-adaptive designs 

– Energy-harvesting based systems (design from the premise that 
power is constrained and performance optimised; traditional: 
performance constrained, power is optimised)

• Designs resilient to transient defects (SEUs) and adaptive to 
parametric instability and degradation

• And ... let‟s remember ASYNC design works well for “small circuits” !!!
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Example: Asynchronous Logic for AC supply

2-bit Sequential Dual-

rail Asynchronous 

Counter

Supply: AC 

200mV±100mV

Frequency: 1Mhz

A1.f

A1.t

A0.f

A0.t



Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

MSD Group at Newcastle

• Academic Members: 
– Alex Bystrov, Graeme Chester, 

Nick Coleman, David 
Kinniment, Albert Koelmans, 
Gordon Russell, AlexYakovlev

• Research Associates: 
– Frank Burns, Fei Xia, Danil 

Sokolov, Delong Shang, Julian 
Murphy, Basel Halak , Andrey 
Mokhov, Ivan Poliakov

• 25+ postgraduate research 
students

• Close Links to CS school Theory 
of Concurrent and Async Systems 
Group – Maciej and Marta Koutny 
and Victor Khomenko

61
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Engineering activities
involved

Technology, Devices 

(Variability)

Cells and 

components

(synchronisers, 

arbiters)

Systems
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