
Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Asynchronous Design: Quo
Vadis?

Alex Yakovlev

Microelectronics System Design Group

School of Electrical, Electronic and Computer Engineering,

Newcastle University, UK

Annibale Carracci, 1602

National Gallery, LondonTyne Bridge, 1928

Newcastle upon Tyne

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Outline

• Asynchronous Design Principles

• Praises and curses

• (Some of the) Models, Techniques and Tools
for Asynchronous Design

• Synchronization and Arbitration

• “Asynchronous History” (in brief)

• “Who is who” in Async design

• Where do we go?

2

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Asynchronous Behaviour

• Synchronous vs Asynchronous behaviour in general
terms, examples:

– Orchestra playing with vs without a conductor

– Party of people having a set menu vs a la carte

• Synchronous means all parts of the system acting
globally in tact, even if some or all part „do nothing‟

• Asynchronous means parts of the system act on demand
rather than on global clock tick

• Acting in computation and communication is, generally,
changing the system state

• Synchrony and Asynchrony can be in found in CPUs,
Memory, Communications, SoCs, NoCs etc.

3

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Why think about Timing and Synchrony

4

Gateshead Millennium Bridge, Newcastle, 2000

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Key Principles of Asynchronous Design

• Asynchronous handshaking

• Delay-insensitive encoding

• Completion detection

• Causal acknowledgment (aka indication or
indicatability)

• Strong and weak causality (full indication and
early evaluation)

• “Time comparison” (synchronisation, arbitration)

5

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Why and what is handshaking?

Mutual Synchronisation is via Handshake

6

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Synchronous clocking

How we
think

What we
design

7

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Asynchronous handshaking

What we
design

How we
think

Handshake latch Handshake CL
”Channel” or ”Link”

8

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Handshake Signalling Protocols

Level Signalling (RTZ or 4-phase)

Transition Signalling (NRZ or 2-phase)

One cycle

req

ack

req

ack

One cycle

req

ack
One cycle

9

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Handshake Signalling Protocols

Pulse Signalling

Single-track Signalling (GasP)

One cycle

req

ack

req

ack

One cycle

req + ackreq

ack

10

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Why and what is delay-insensitive coding?

Data Token = (Data Value, Validity Flag)

11

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Bundled Data

req

ack

Data

One cycle

req

ack

Data

RTZ:

NRZ:

One cycle

req

ack

Data

One cycle

12

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

DI encoded data (Dual-Rail)

ack

Data.0

One cycle

Data.1

ack

Data.0Data.1

Logical 1
Logical 0

One cycle

NULL (spacer) NULL

cycle

Data.1

ack

Data.0
Logical 1

Logical 0

cycle cycle

Logical 1Logical 1

cycle

RTZ:

NRZ:NRZ coding leads
to complex logic
implementation;
special ways to
track odd and
even phases and
logic values are
needed, such as
LEDR

13

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

DI codes (1-of-n and m-of-n)

• 1-of-4:

– 0001=> 00, 0010=>01, 0100=>10, 1000=>11

• 2-of-4:

– 1100, 1010, 1001, 0110, 0101, 0011 – total 6
combinations (cf. 2-bit dual-rail – 4 comb.)

• 3-of-6:

– 111000, 110100, …, 000111 – total 20 combinations
(can encode 4 bits + 4 control tokens)

• 2-of-7:

– 1100000, 1010000, …, 0000011 – total 21
combinations (4 bits + 5 control tokens)

14

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Why and what is completion detection?

Signalling that the Transients are over

15

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Bundled-data logic blocks

Single-rail logic

•
•
•

•
•
•

delaystart done

Conventional logic + matched delay

Completion

is implicit: by

done signal

The delay must

scale with the

worst case

delay path,

So … not really

self-timed

16

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

True completion detection

Dual-rail

logic

•
•
•

•
•
•

C done

Completion detection tree

Completion

detection for one

dual-rail bit

C

•
•
•

Multi-input C-

element

17

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Why and what is causal acknowledgment?

Every signal event must be acknowledged by

another event

18

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Causal acknowledgment

a(0)

b(0)
c(0)

x1 (1)

x2 (1)

x3(1)

C-element implementation using simple gates

a+

b+

x1- c+

x2-

x1+

c-

x3-

a+

b+

a-

b-

c+ c-

a-

b- x2+

x3+
Unack’ed transitions x2- and

x3- may cause a hazard on

output c

However, under Fundamental

Mode (slow environment) the

circuit is safe

19

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Principle of causal acknowledgement

a(0)

b(0)

c(0)
x1(1)

x4(0)

x2(0)

x3(1)

a+

b+

a-

b-

c+ c-

C-element implementation using simple gates

a-

b-
x4- x3+ x2- c-

a+

b+

x1- x2+
x3- x1+ c+

x4+

Each transition is

causally ack’ed,

hence no hazards

can appear

20

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Why and what are strong and weak causality ?

Degree of necessity of precedence of some events

for other events

21

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Strong Causality

• Petri net transitions synchronising as rendez-vous

A

C

B

• Logic circuits: Muller C-element (in 0-1 and 1-0
transitions), AND gate (in 0-1 transitions), OR gate (in 1-
0 tranisitions)

A

B

C

A B C+

0 0 0

0 1 C

1 0 C

1 1 1

Strong precedence

22

C

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Weak Causality

• Petri net transitions communicating via places

A

C

B

• Logic circuits: AND gate (in 1-0 transitions), OR gate (in
0-1 transitions)

A(0->1)

B(0->1)

C(0)
A(1->0)

B(1->0)

C(1)

Weak precedence

23

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Full indication versus Early Evaluation

A.t

A.f

B.t

B.f

C.t

C.f

Dual-rail AND gate

with “early propagation”

Allows outputs to be produced from NULL

to Codeword only when some (required)

inputs have transitioned from NULL to

Codeword (similar for Codeword to NULL)

C

C

C

C

B.t
A.t

C.t

C.f

A.t

A.f

A.f
B.f

B.t

B.f

Dual-rail AND gate

with full input

acknowledgement

24

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Why and what is timing comparison?

Telling if some event happened before

another event

25

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Synchronizers and arbiters

Your system

Input

Your system

Input 1

Input 2

 Synchronizer
Decides which clock
cycle to use for the

input data

 Asynchronous
arbiter
Decides the order of
inputs

26

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Metastability is....

Not being able to decide…

Q

Q

Clock

D

tin

tin -> 0

D

Clock

Request

Processor Clock

Set-up time violated

27

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Typical responses

• We assume all starting points are equally probable
• Most are a long way from the “balance point”
• A few are very close and take a long time to resolve

Clock

Q Output

Clock

D Q
#1

Q Trigger

28

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Synchronizer

• t is time allowed for the Q to change between CLK a and CLK b

• is the recovery time constant, usually the gain-bandwidth of the
circuit

• Tw is the “metastability window” (aperture around clock edge in
which the capture of data edge causes a delay that is greater than
normal propagation delay of the FF)

• and Tw depend on the circuit

• We assume that all values of tin are equally probable

D Q D Q

CLK a

VALID

#1 #2

dcw

t

ffT

e
MTBF

..

/

CLK b

29

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Two-way arbiter (Mutual exclusion element)

req1

req2

ack2

ack1

(0)

(0)

(1)

(1)

(0)

(0)

Basic arbitration element: Mutex (due to Seitz, 1979)

An asynchronous data latch with

metastability resolver can be built similarly

Metastability

resolver

30

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Praises…

• People have always been excited by asynchronous design,
and motivated by:

– Higher performance (work on average not worst case delays)

– Lower power consumption (automatic fine-grain “clock” gating;
automatic instantaneous stand-by at arbitrary granularity in time and
function; distributed localized control; more architectural
options/freedom; more freedom to scale the supply voltage)

– Modularity (Timing is at interfaces)

– Lower EMI and smoother Idd (the local “clocks” tend to tick at
random points in time)

– Low sensitivity to PVT variations (timing based on matched delays or
even delay insensitive)

– Secure chips (white noise current spectrum)

– Plus, … a lot of scope and fun for research (there are many
unexplored paths in this forest!)

31

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

• So why have async designers been often “crucified” in the past?

– Overhead (area, speed, power)

• Control and handshaking

• Dual-rail and completion detection costs

– Hard to design

• yes and no, ... It‟s different – there are very many styles and
variants to go and one can easily get confused which is better

– Very few **practical** CAD tools (but many academic tools)

• Tools are quite specific to particular design styles and design
niches; hence don‟ t cover the whole spectrum

• Complexity of timing and performance models

• Difficulty with sign-off (for particular frequency requirements)

• ... But the situation is improving

– Hard to Test

• Possible, but not as mature as sync

… Curses

32

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Models and techniques for design

33

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Models and techniques for asynchronous design

• Models:

– Delay model (inertial, pure, gate delay, wire delay, bounded and
unbounded delays)

– Models of environment (fundamental mode, input-output)

– Models of switching behaviour (state-based, event-based, hybrid)

• RTL level:

– Data and control paths separate (data flow graphs, FSMs, STGs,
Synchronised Transitions)

– Pipeline based (Combinational logic plus registers and latch controllers,
e.g. micropipelines, gate-level pipelining)

– Process-based (CSP-like, Balsa, Haste, Communicating Hardware
Processes)

• High-level models

– Flow graphs (Marked graphs, extended MGs), Petri nets, Markov Chains

– Behavioural HDLs (C, SystemC)

34

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Gate vs wire delay models

• Gate delay model: delays in gates, no delays in wires

• Wire delay model: delays in gates and wires

35

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

• Bounded delays (BD): realistic for gates and wires.

– Technology mapping is easy, verification is difficult

• Speed independent (SI): Unbounded (pessimistic)
delays for gates and “negligible” (optimistic) delays
for wires.

– Technology mapping is more difficult, verification
is easy

• Delay insensitive (DI): Unbounded (pessimistic)
delays for gates and wires.

– DI class (built out of basic gates) is almost empty

• Quasi-delay insensitive (QDI): Delay insensitive
except for critical wire forks (isochronic forks).

– In practice it is the same as speed independent

Classes of asynchronous circuits

BD

SI QDI

DI

36

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Designing in the small: Control Logic Synthesis

y := 0;

loop

x := READ (IN);

WRITE (OUT, (x+y)/2);

y := x;

end loop

RinAin

Aout Rout

IN

OUT

filter

A simple filter example:

We build the filter by separating the data path and control path.

Data path can be designed using dual-rail of bundled data.

Control can be synthesized using the Signal Transition Graph

model (Rosenblum, Yakovlev, Chu, 1985)

37

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Data path description

x y
+

control
Rin

Ain

Rout

Aout

Rx Ax
Ry Ay Ra Aa

IN
OUT

• x and y are level-sensitive latches (transparent when R=1)

• + is a bundled-data adder (matched delay between Ra and Aa)

• Rin indicates the validity of IN

• After Ain+ the environment is allowed to change IN

• (Rout,Aout) control a level-sensitive latch at the output

38

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Control specification using Signal Transition Graphs

x y
+

control
Rin

Ain

Rout

Aout

Rx Ax
Ry Ay Ra Aa

IN
OUT

Rin+

Ain+

Rin-

Ain-

Rx+

Ax+

Rx-

Ax-

Ry+

Ay+

Ry-

Ay-

Ra+

Aa

+
Ra-

Aa-

Rout+

Aout+

Rout-

Aout-

39

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Control implementation

C

Rin

Ain

Rx Ax RyAy AaRa

Aout

Rout

Rx+

Rin+

Ax+ Ra+ Aa+ Rout+ Aout+ z+ Rout- Aout- Ry+

Ry- Ay+Rx-Ax-Ay-

Ain-

Ain+

Ra-

Rin-

Aa-
z-

Speed-independent

circuit (by method)

z

z is internal state signal added by the synthesis method

40

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

From STG specification to logic implementation

C

Rin

Ain

Rx Ax RyAy AaRa

Aout

Rout

z

Rin+

Ain+

Rin-

Ain-

Rx+

Ax+

Rx-

Ax-

Ry+

Ay+

Ry-

Ay-

Ra+

A

a+
Ra-

Aa-

Rout+

Aout+

Rout-

Aout-

Synthesis method and Petrify tool
J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and

A. Yakovlev. Logic Synthesis of Asynchronous Controllers and

Interfaces. Springer-Verlag, 2002. (Petrify software can be

downloaded from: http://www.lsi.upc.edu/~jordicf/petrify/)

It is possible to synthesize circuits with up to 50 signals – limited by

state explosion (state space is generated inside the tool)

Recent developments at Newcastle, Barcelona, Augsburg and Potsdam

have led to methods based on direct mapping of Petri nets, structural

decomposition and use of Petri net unfoldings.

41

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Designing async in the large: “desynchronisation”

Source: J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, “Desynchronization:

Synthesis of asynchronous circuits from synchronous specifications ”, IEEE

Transactions on Computer-Aided Design, pp. 1904–1921, October 2006.

• Think synchronous

• Design synchronous:

– One clock

– Edge-triggered flip-flops

• De-synchronize (automatically)

– Remove clock

– 1 edge-triggered flip-flop = 2 latches

– Add latch controllers (any mix of “valid” controllers is allowed)

– Add Joins and Forks

– Add delay elements

• Run it asynchronously (possible dynamic voltage scaling)

42

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Example: Synchronous DLX

Global Clock distribution network

clk

43

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

“Desynchronized” (Elastic) DLX

ctr ctrctrctr ctr

master
& slave
latches

44

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Designing async in the large: use of HDLs

• VHDL or Verilog:

– Event driven + parallel processes. Fine, but …

– … “programming” of req-ack handshake is tedious.

• Inspiration from parallel programming languages:

CSP, OCCAM, …

– Message passing across
communiction channels
(Send, Receive, Probe)

• Asynchronous HDL‟s
– Haste (Tangram)

– Balsa

– CHP

– …

Channel is buffer-less
 Processes synchronize

Handshake

Solutions

U. of Manchester

Caltech

45

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Asynchronous Networks (Sparsø, ASYNC 2005)

Sparsø

Synchronization requiredMultiple Clocks

AsynchronousArbitration required

46

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Back to synchronizers and arbiters

Your system

Input

Your system

Input 1

Input 2

 Synchronizer
Decides which clock
cycle to use for the

input data

 Asynchronous
arbiter
Decides the order of
inputs

47

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Synchronisers and future processes

• Synchronizers and arbiters don‟t work well
in nanometre technologies, especially at
low Vdd

• Worse than gates! Why?

• A gate input is either HIGH

– Output pulled down

• Or LOW

– Output pulled up

• A metastable gate is neither

– Both transistors can be off

• Vdd/Vth decreases with process shrink,

– Transcondunctance gm very low

• Synchronization time constant = C/gm

Vdd

Ground

Ids
Vdd

IdsGround

Ids

Ids

Vdd/2

48

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Robust synchronizer (Zhou et al, 2006)

Data Reset

Clock

Vdd

0V

 Jamb latch synchronizer slow

for low Vdd, low temp

 In metastability, both outputs are

the same

 Extra p-types are switched fully

on, so gm increases, and

improves

 Because extra p-types are only

on during metastability, set/reset

transistors can now be small and

do not load latch

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

History – “classics”

• 1950s and early 60s:

– Theory of Languages, Automata, Switching Circuits (Kleene, Mealy,
Moore)

– Asynchronous Automata and Switching Circuits (Huffman)

– Speed-Independent Circuits (Muller, Bartky) – analysis, early
synthesis, compositionality

– Building real async computers using SI circuits (!) from first
transistors (Illiac II)

Leitmotiv: theory of asynchronous switching behaviour

• Late 60s, early 70s:

– Building real async computers in TTL and ECL (DEC PDP-16, MU-5,
Atlas)

– Metastability and synchronisation (Catt, Molnar, Chaney, Kinniment)

Leitmotiv: observing asynchronous phenomena in vivo

50

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

History – “middle ages”

• 70s:

– Macromodule project at Washington University St. Louis (Clarke,
Molnar);

– Design methods based on data/control-flow graphs, Petri nets,
project MAC at MIT (Dennis, Holt, Patil)

– Aperiodic Automata, USSR Academy of Science (Varshavsky et al)

– Leitmotiv: modularity to cope with complexity and concurrency

• 80s:

– VLSI (clocked design dominates in industry and leads to mature CAD);

– Self-timed circuits in massively parallel architectures to get speed
(Seitz); Postoffice design (Davis et al); Micropipelines (Sutherland)

– Early foundations for Async CAD (analysis and synthesis),interfaces
(Varshavsky et al); Signal Transition Graphs (Rosenblum et al, Chu)

– Leitmotiv: async is pushed on the fringe: first experiments in VLSI
and understanding that CAD is crucial

51

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

History – modern times

• 90s:

– Theory of delay-insensitive circuits (Josephs, Udding)

– CAD developments: verification (Ebergen), synthesis and Petrify tool
(Cortadella et al, Nowick), syntax-direct compilation and Tangram at
Philips (van Berkel)

– Processor Designs (Martin, Furber); design experiments at HP, Sun and
Intel (RAPPID, 1999)

Leitmotiv: The main thrust is that async is good for Low power

• 2000s:

– High-speed designs for internet switches (Fulcrum)

– GALS, Asynchronous Interconnects, NoCs (Vivet et al, Bainbridge)

– Synchronizers for SoCs (Kinniment, Ginosar, Greenstreet)

– “More practical” CAD: desynchronisation (Cortadella et al), Haste
(Peeters)

Leitmotiv: Robustness against variability; mitigating timing closure

52

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

History - summary

• Early stages: relatively small circuits that could be designed by hand
from specification, either by synthesis, or by direct mapping, or by
assemble-verify techniques, and clock was not needed – good times
for ASYNC!

• Clock was introduced into the design practice later to avoid the
complexities of dealing with causal relations

• Clock fitted better in the FSM approach, and allowed to avoid
complex procedures with hazard-elimination or avoidance

• But, with concurrent processes and Petri nets, clock is becoming a
trouble, even though we can keep measuring time and performance

• With NoCs, variability, timing closure and power problems , global
clocking is a problem – good times for ASYNC!

• PLUS: many people design asynchronous circuits but do NOT admit
that – name “asynchronous” implies something negative …

53

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Who is Who in Async : Industry

• Europe
– Elastix, Spain – USA/CA
– Handshake Solutions, Netherlands
– Tiempo, France
– Silistix, UK

• USA
– Achronix,
– Fulcrum,
– IBM,
– Intel,
– Timeless,
– Theseus (if still exists?)

– Sun - Oracle

 Mostly startup companies

on CAD tools & some circuit

niches

 A few R&D labs within major

companies (IBM, Intel, Sun)

54

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Who is Who in Async: Academia
• In the USA

– Caltech
– Columbia Univ.
– Cornell Univ.
– Portland State University (ARC lab)
– Univ. North Carolina at Chapel Hill
– Univ. of British Columbia (Canada)
– Univ. of South California
– Univ. of Utah

• In Europe
– CEA-LETI, France
– IHP, Germany
– Cambridge Univ., UK
– Newcastle Univ., UK
– Manchester Univ., UK
– Politechnico de Torino, Italy
– Technical University of Denmark, Denmark
– Technion, Israel,
– TIMA, France
– TU Vienna, Austria
– UPC, Spain

• In Japan
– Himeji Institute of Technology
– University of Tokyo

 About a few

hundred people around

the world…

 ASYNC IEEE

symposia running

annually since 1994

55

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Where do we go next?

56

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Technology Trends

From Asenov,UKDF’10

57

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Performance/power/yield trade off

From Asenov,UKDF’10

58

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Outlook for asynchronous ...

• New models

– Combining choice, concurrency and causality better (e.g.
Conditional Partial Order Graphs – CPOGs)

– Models for elastic behaviour (with or w/o clocking)

– Hybrid, discrete-continuous-stochastic (to enable design for
variability and uncertainty – e.g. design to a certain MTBF level)

• Time and power-elastic interfaces

– Bio to silicon and silicon to bio (e.g. synthesis of comm channels
between brain and prosthetic limbs or other actors)

• Energy-proportional, power-adaptive designs

– Energy-harvesting based systems (design from the premise that
power is constrained and performance optimised; traditional:
performance constrained, power is optimised)

• Designs resilient to transient defects (SEUs) and adaptive to
parametric instability and degradation

• And ... let‟s remember ASYNC design works well for “small circuits” !!!

59

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Example: Asynchronous Logic for AC supply

2-bit Sequential Dual-

rail Asynchronous

Counter

Supply: AC

200mV±100mV

Frequency: 1Mhz

A1.f

A1.t

A0.f

A0.t

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

MSD Group at Newcastle

• Academic Members:
– Alex Bystrov, Graeme Chester,

Nick Coleman, David
Kinniment, Albert Koelmans,
Gordon Russell, AlexYakovlev

• Research Associates:
– Frank Burns, Fei Xia, Danil

Sokolov, Delong Shang, Julian
Murphy, Basel Halak , Andrey
Mokhov, Ivan Poliakov

• 25+ postgraduate research
students

• Close Links to CS school Theory
of Concurrent and Async Systems
Group – Maciej and Marta Koutny
and Victor Khomenko

61

Metastability test chip

(Newcastle 2006)

Asynchronous Design: A. YakovlevDDECS, Vienna, April 2010

Engineering activities
involved

Technology, Devices

(Variability)

Cells and

components

(synchronisers,

arbiters)

Systems

(low power, NoCs,

asynchronous)

Applications

(cryptography, health

energy harvesting)

Modelling

Analysis and

Characterisation

Synthesis and

CAD tools development

Chip Design

Prototyping

ECHO

STEP

SEDATE

SCREEN
SURE

NEGUS

VERDAD

VARMA

HARVEY

SYRINGE

RELCEL

Levels of abstraction

(classes of objects studied)

Group’s Current Project Map

SCRIPT

62

