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* Motivation
— Energy proportional computing
— Designing systems for harvested energy supplies
» Power-adaptive computing: design aspects
» Potential for asynchronous (self-timed) logic:
— Robustness
— Energy-efficiency
» Power adaptive research in Holistic project
— Speed-independent SRAM
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to:

— Leakage,
— Power management and delivery

Messages from ITRS

* Non-ideal device and supply/threshold voltage scaling leads

holistic®

energy harvesting

* We're entering the 2D world of progress: “More More”
(scaling factor) and “More than Moore” (functional
diversification) — so scaling is not everything to battle
against!

+ The “More than Moore” increasingly includes non-digital
aspects — RF comms, power control, passive components,
sensors, actuators etc.
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Energy-proportional computing
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“Systems tend to be designed and
optimized for peak performance. In reality,
most computation nodes, networks and
storage devices typically operate at a
fraction of the maximum load, and do this
with surprisingly low energy efficiency. If we
could design systems that do nothing well
(as phrased by David Culler), major energy
savings would be enabled.

Accomplishing energy-proportional
computing requires a full-fledged top-down
and bottom-up approach to the design of IT
systems.” (from Jan Rabaey’s lecture The
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For mobile computing applications the choices of power supply are
either batteries or emerging energy-harvester supplies.

Battery

 Can supply finite energy (E) —
depends on the battery capacity.
» The available power (P) can be
very large.

Energy-Harvester

« Can supply infinite energy (E).
* The rate of energy production
(dE/dt = P) is variable and small.

| e Magrats - Cptmozes Migress
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* Specifications determine the required

Performance / Voltage Supply

t(H)

operating time for the circuit (TO)
* Available energy E is constant so TO
determines power consumption of the

e

circuit
» Supply characteristics stable and
known in advance

/
/

*Consumption depends on the

Vo

Supply (V)

computational load and may vary

U

g

Power Consumption / Voltage Supply

Discharge Time / Power Consumption

T

S

Supply (V)

gl
%nergy-Harvester Supplied

Circuits

» Specifications determine the possible output power
range (Pmin, Pmax)

» Power P is variable depending on ambient conditions
» Supply characteristics may be unstable and
unpredictable

*Consumption modes may be different, but for simple
sensor systems the load is simple and regular, so
scheduling computations to modulate supply is

needed @
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S P Beeby et al., 2007, “A micro electromagnetic
generator for vibration energy harvesting”,
J. Micromech. Microeng. 17 (2007) 1257-1265.

Power Consumption / Voltage Supply

Performance / Voltage Supply
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* Determine from TO the required power
Battery consumption PO.
Supply |:> * Design the circuit for constant PO consumption
— constant VO supply — constant fO
performance (or apply DVS and DVFS to
maximise battery life)
-
* Design the circuit for constant Pmin consumption
— constant Vmin supply — constant fmin
Energy-Harvester | performance.

Supply :> OR

* Track available power Paverage — change circuit

Circuit Designer Choices (2) holisti C%?

energy harvesting

To maximise a circuit’'s power utilization of a variable power
output source:

* increase voltage supply of the circuit to the maximum

possible value (variable voltage). <:|
* switch on/off parts of the circuit (constant voltage).

Real-time

* For both cases special controller circuits have to be developed.

* For the first case (variable voltage) self-timed circuits have an
advantage — no additional circuit required to change the operating
frequency.

AC supplied self-timed circuits have been demonstrated in practice.

For eve ly cycle: wake up the circuit, perform
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AC-powered self-timed circuit
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VDD
Coefficient T
V_I:I)_D Input =
Data Data
- Out
CRITICAL In FIR u
Filter

Fast Power-on Reset (4.1nW),
3T DRAM to keep state across supply

cycles,
135K transistors in 180nm CMOS

PATH
REPLICA
POR
Cireuit [gnable Clk

J Wenck, R Amirtharajah, J Collier and J Siebert, 2007, “AC

Power Supply
Circuits for Enel
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Power-adaptive Computing
(Holistic view)

time

=~ o Vag
Harvester g ¢ Computational .
R electronics with
_ P~ | harvesting-aware design
Energy info
Supply Optimized Control )
Schedulin design-time / run- Consum'ptlon
9 Scheduling
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Optimization

E:Max

S

Useful energy consumption is maximized for a given amount
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Power-Adaptive System Design

» Adaptation levels:

— Cell and component level
» Resilience to Vdd variations (e.g. robust synchronisation,
self-timed logic and completion detection)

» Leakage control mechanisms (e.g. body biasing)
- Circuit level (clock/power gating, DVF scaling)
- System level (power sensing and control of power
supply and consumption chains)
- Optimal control of Vdd for minimum energy per operation
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Robust Synchronizer (adapting holistic'ﬁﬁf
performance to Vdd changes)
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Closer look at AC-powered hOlelneSrg'thlaC o
self-timed logic

2-bit Sequential Dual-rail
Asynchronous Counter
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Synchronous vs Asynchronous Design ™"

(in terms of energy efficiency)
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|]gvssv ]P—cﬁleep
gvddv
PUN ]I: L
1 0

+_ o
PDN :|

|I—a gvddv
l gVssV 4

Newcastle
+ University

Zero-Delay Ripple Turn On hOllSth’
» Leverage Pipeline Stage Computation Latency
— Hide Latency of Powering Up Downstream Stages
» Leverage Asynchronous Circuit Robustness
— Do Computation During Power Up
* Pipeline Cluster = Power Gating Domain
* Choose
— Pipeline Cluster sizing for your application

— Power Gating techniques for each cluster
Cco C1 C2 C3
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energy harvesting

(Holistic view)

Vg
Harvester %E Computational - Optimization
SE — 2 electronics with
P | harvesting-aware design
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Supply Optimized Control E
Scheduling design-time / run- Consumption S

time Scheduling

Useful energy consumption is maximized for

Holistic Project

* Component level characterisation and design:
— Inverter chain, ring oscillators, counters, arithmetic,
SRAM, DRAM cells
— Design of self-timed (sub-threshold) logic
* Power control methods:

— New power gating techniques to reduce leakage in
computational load for lower frequency range

* Power-adaptive system design:
— Supply and consumption modelling and control

P o
Focus of our research in hollstlctﬁ'
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Delay Mismatch in existing
asynchronous (bundled delay)
SRAMs
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* Mismatch between delay lines and SRAM memories when
reducing Vvdd

Number of Inverters to track
SRAM delay

8 58

Number of Inverters
£
(=]

*Wr

mReading

0.1 03 0.5 0.7 0.9

vdd(V)

* The problem has been well
known so far

« Existing solutions:

— Different delay lines in
different range of vVdd

iting

— Duplicating a column of
SRAM to be a delay line to
bundle the whole SRAM

* The solutions require:
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SRAM: Speed Independent Solution hOllStth ©
energy harvesting
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1k-bit (64x16) SI SRAM is implemented
using the Cadence toolkit with the UMC
90nm CMOS technology

Energy consumption during writing one Energy consumption during reading one
= G The curves show that the
| .o i T . minimum energy point of
fo L o S I P the chip is at 400mV-
=T ! 500mV.
- R wmm o nst Y " " " The SRAM consumes
. Energy consumption during writing zero  Energy consumption during reading sero 5.8pJ in 1V when writing a
sen PUR 16-bit word to the SRAM
;:Z: 196 }*“ | memory and 1.9pJ in

o
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energy harvesting

Varying Vdd supply: “computation model” with limited
energy and power source

4 Output
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Power Sensing via self-timing(2) hOllS‘[lC“'
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6-bit Self-timed Counter

Energy optimality
region

@==Newcastle
+ University

Power Sensing via self-timing (3): hOllSth‘*’
Charge to code conversion N
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Vi IC SR Energy and transition count

‘ vs different Vdd samples
into the Capacitor
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Run-time power modulation by holisti Cgﬁ:
dynamic scheduling methods

*  Objectives

Modulate the power consumption of a system which is constrained by
real-time power supply, e.g. in an energy-harvesting-system
(EHS), by tuning the concurrency degree of the system by
dynamic scheduling methods, such that the power consumption of
the system will satisfy the power supply bounds, and at the same
time, achieve certain optimality in performance (e.g., its
execution latency).

* Rationale for power modulation

Adjusting the concurrency degree of a system by tuning of the active
capacitance for charge/discharge, i’:lccording to the dynamic power
consumption formula P=«a
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A design flow for run-time holisti Cl@ﬁ;
power modulation

Data Flow Graph
(DFG)

................
.

Power/latency
models for
operations

Transformation

methods >' synthesis time

annotated by

..................

Scheduling Decision
Graph (SDG)

Real-time Dynamic scheduling

power constrains — methods
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A toy matrix multiplication example including
additions (op 5~6):

1 unit delay and 1 unit power
multiplication (op 1~4):

wFlnnety o e
Scheduling decision graph (SDG), h l t “J‘\,#?jl'
transformation methods, and scheduling 0 elnesgy hlagemng
policies

. A SDG is a triplet (V, E, F) where
V is the vertex set, and each vertex is a state when scheduling the DFG and
is labeled by the operation set ready for scheduling at that state.
E is the edge set, and each edge represents a schedule step at a state. A
step is labeled with triple elements: the operations scheduled in the step, its
length (in terms of clock cycles devoted to executing the step), and the
associated power.
F is the flow relation specifying how a state enables a scheduling step.

. A schedule corresponds to a path from the initial state to the Null state.

. Algorithms exist for both complete and truncated transformation from DFG to
SDG.

. Scheduling policies for a truncated transformation for now consider the

5/20/2010
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Algorithm  run-time heuristic scheduling with SDG
1: Inputs: A SDG = (V,E, F) and P(t.)
2: Outputs: An optimal schedule for ¢,
3. prune the edges ¢ in SDG with p(e) > P(t,)
4 find the path s i the pruned SDG with the shortest
latency, ie., min(Y.| 4 Me:) e €5)
5- form the schedule according to s

The optimal path has a minimal latency of 5
time units and a maximal average power

consumption of 16.4 units, in the remaining
graph.
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* Energy-harvesting changes the dynamic balance between
supply and consumption — supply add operational
constraints in real-time

* Adaptation to power changes should be at all levels of
abstraction, from logic cells to systems

* Asynchronous (self-timed) techniques support more
effective adaptation to Vdd changes via natural temporal
robustness; they also offer better energy proportionality

» Good energy characterisation of loads (logic, memory, i/o,
RF) is essential for high-quality adaptation

* More theory, models and algorithms are needed for

5/20/2010
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