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Introduction 

Response depends on system’s and controller’s parameters => 

Closed loop pole location depends on system’s and controller’s parameters.  

Task: Find the controller gain(s) such as we have a satisfactory performance 

=> Find the controller gain(s) such as we have a satisfactory pole location. 

To do that we need a good understating of how poles move in the s-plane. 

We have already seen three cases: 

as
kGOL +

= , 22 2 nn
OL ss

kG
ωζω ++

= , 
( )( )22 2 nn

OL ssas
kG

ωζω +++
=  

Example (H=1): 

ks
kG

s
kG CLOL ++

=⇒
+

=
11

 so pole location: ksks −−=⇔=++ 101 : 

cnt=1; 
for k=0:0.01:10; 
r(cnt)=roots([1 1+k]); 
cnt=cnt+1; 
end 
  
  
plot(real(r),imag(r),'.') 
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Properties: 

• Starts from the OL pole location. 

• Ends at ∞− . 

Example (H=1): 

kss
kG

ss
kG CLOL

+++
=⇒

++
=

2323 22  so pole location: 

0232 =+++ kss : 

clear, clc 
cnt=1; 
for k=0:0.01:10; 
r(1:2,cnt)=roots([1 3 2+k]); 
cnt=cnt+1; 
end 
plot(real(r),imag(r)) 
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Properties: 

• Starts from the OL pole location. 

• Collides at a point. 

• Moves on a straight line perpendicular to the real axis. 

• Symmetrical with respect to the real axis 

• Ends at . ∞±− 5.1

 

Example (H=1): 

kss
kG

ss
kG CLOL

+++
=⇒

++
=

2222 22  so pole location: 

0222 =+++ kss : 
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clear, clc 
cnt=1; 
for k=0:0.01:10; 
r(1:2,cnt)=roots([1 2 2+k]); 
cnt=cnt+1; 
end 
plot(real(r),imag(r),'*') 
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Properties: 

• Starts from the OL pole location. 

• Starts already with complex poles so no collision. 

• Moves on a straight line perpendicular to the real axis. 

• Symmetrical with respect to the real axis 

• Ends at . ∞±−1
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Example (H=1): 

ksss
kG

sss
kG CLOL

++++
=⇒

+++
=

61166116 2323  so pole location: 

06116 23 =++++ ksss : 

clear, clc 
cnt=1; 
for k=0:0.01:10; 
r(1:3,cnt)=roots([1 6 11 6+k]); 
cnt=cnt+1; 
end 
plot(real(r),imag(r),'.') 
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Properties: 

• Starts from the OL pole location. 

• Two poles collide and then they follow asymptotically a line which is 

not perpendicular to the real axis. 
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• Symmetrical with respect to the real axis 

• The other pole goes to ∞− . 

 

Example (H=1): 

( ) ( )
( )226116
22

6116
22

223

2

23

2

++++++
++

=⇒
+++

++
=

ssksss
sskG

sss
sskG CLOL  so 

pole location:  

( ) ( ) ( ) 02621160226116 23223 =++++++⇔=++++++ ksksksssksss
 

clear, clc 
cnt=1; 
for k=0:0.01:10; 
r(1:3,cnt)=roots([1 6+k 11+2*k 6+2*k]); 
cnt=cnt+1; 
end 
plot(real(r),imag(r),'.') 
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Properties: 

• Starts from the OL pole location. 

• Two poles collide and then they follow asymptotically a line which is 

not perpendicular to the real axis. 

• They do not diverge to infinity but they converge to the two complex 

zeros. 

• Symmetrical with respect to the real axis 

• The other pole goes to ∞− . 

 

Hence it can be seen that the root location depends on the order and the 

number of zeros of the system. 

The procedure of finding the closed loop pole location for various values of 

the proportional gain, k, is known as root locus method.  
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We can find that location numerically or graphically (W. R. Evans). Matlab 

provides the command rlocus(num_OL,den_OL) but it is better to have a 

deeper understanding of the graphical method. This method can also be used 

for other parameters (apart from the proportional controller) but is rather 

tricky. In EEE205 we will superficially cover this analysis method. In 

EEE301 you will cover this topic extensively with Prof. J.W. Finch. 

To include the effect of the feedback TF we name as OLTF the  ( ) :)(sHsG

 

 

We always start from the location of the OL poles (i.e. poles of G(s)H(s)): 

HGHG

HG

H

H
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G

H

H

G

G

G

G

CL NkNDD
DkN

D
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kN

D
N

D
Nk

D
Nk
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+
=

+
=

+
=

+
=

11
 

0: =+⇒ HGHG NkNDDCE . For k=0 (first value): , so 

poles of G(s)H(s). 

0: =HG DDCE

We use the symbol “x” to denote OL poles. 

We use the symbol “o” to denote OL zeros. 

We use the symbol “□” to denote CL poles. 
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No need for CL zeros as they do not move. 

 

 

Angle and magnitude conditions 

1)()(0)()(1:
)()(1

)(
)(
)(

−=⇔=+⇒
+

= sHsGsHsGCE
sHsG

sG
sR
sC  

This implies that 1)()( =sHsG  and ( ) ( ,12180)()(arg )+±= nsHsG  

 ...2,1,0=n

For example: ( ) ( ) ( )
( )( )( )321

1
pspsps

zsksHsG
+++

+
=  
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1θ

1p

3θ

2θ

1φ

3p

2p

1z

s

1B
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2A
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( ) ( )
321

1

1321)arg(

AAA
kBsHsG

s

=

+−−−= φθθθ
 

Hence every point that belongs onto the Root Locus (RL) satisfies these two 

criteria.  

 

For example for the system that we studied before 
232 ++

=
ss

kGOL  

kss
kGCL

+++
=⇒

232  the point js 5.18.1 ±−=  does not belong while the 

point js 5.15.1 ±−=  does.  
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The OL case is 
232 ++

=
ss

kGOL  so I have two poles at -1 and -2 and no 

zeros: 

1θ

1p

2θ

jxs 5.1±−=

2A

1A

2p

 

1θ

jxs 5.1±−=

1A

xs −= 1−=s

1−x

5.1

 

 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

−
−=⇒

−
=−

1
5.1atan180

1
5.1180tan 11 xx

θθ  
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( )22
1 15.1 −+= xA  

2θ

xjs ±−= 2

2A

2−=s xs −=

 

5.1

x−2  

( ) ⎟
⎠
⎞

⎜
⎝
⎛

−
=⇒

−
=

xx 2
5.1atan

2
5.1tan 22 θθ  

( )22
2 25.1 xA −+=  

For the point js 5.18.1 ±−= :  

o
1 07.118

18.1
5.1atan180 =⎟

⎠
⎞

⎜
⎝
⎛

−
−=θ  

o
2 40.82

8.12
5.1atan =⎟

⎠
⎞

⎜
⎝
⎛

−
=θ  

So 18047.20021 −≠−=−− θθ  so that point does not belong to the root locus. 
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For the point js 5.15.1 ±−= :  

o
1 43.108

18.1
5.1atan180 =⎟

⎠
⎞

⎜
⎝
⎛

−
−=θ  

o
2 56.71

8.12
5.1atan =⎟

⎠
⎞

⎜
⎝
⎛

−
=θ  

So 18021 −=−− θθ  so that point belongs to the root locus. 

By using the magnitude condition we can find the gain: 

( ) ( )
( ) ( ) 58.15.125.125.1

58.115.15.115.1
2222

2

2222
1

=−+=−+=

=−+=−+=

xA

xA
 

5.21 21
21

==⇒= AAk
AA
k  

Analytically: 

js 5.18.1 ±−=  

0
23

11 2 =
++

+=+
ss

kGH 09.04120232 =+⇒=+++⇒ kj- .-kss => 

WRONG since k is real. 

js 5.15.1 ±−=  

0
23

11 2 =
++

+=+
ss

kGH 05.20232 =+⇒=+++⇒ k-kss  
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x=1.5 
  
th1=180-atand(1.5/(x-1)) 
th2=atand(1.5/(2-x)) 
th1+th2 
  
A1=sqrt(1.5^2+(x-1)^2) 
A2=sqrt(1.5^2+(2-x)^2) 
k=A1*A2 
  
s=-x+1.5*j; 
K=-s^2-3*s-2 
 

Simple root locus 

Assume that the OLTF is ( ) ( )( )21 ++
=

sss
ksG . There are three real OL 

poles with angles: ( ) ( ) ( )2arg,1arg,arg ++ sss .  

First of all the number of branches equals the number of poles. The root 

locus is always symmetrical with respect to the real axis and the branches 

start from poles and end up to zeros or infinity (infinite zero). 

In this specific case I have three braches, which will diverge to imaginary 

zeros at infinity. 

If s>0 then  ( ) ,0arg =s ( ) ,01arg =+s  ( ) 02arg =+s  and therefore that area 

does not belong to the root locus as ( ) ( ) ( ) 02arg1argarg =+−+−− sss . 

If s<0 and s>-1 then ( ) ,180arg =s ( ) ,01arg =+s   and 

therefore that area belongs to the root locus as  

( ) 02arg =+s
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( ) ( ) ( ) 180001802arg1argarg −=−−−=+−+−− sss . 

If s<-1 and s>-2 then ( ) ,180arg =s ( ) ,1801arg =+s   and 

therefore that area does not belong to the root locus as  

( ) 02arg =+s

( ) ( ) ( ) 36001801802arg1argarg −=−−−=+−+−− sss . 

If s<-3 then ( ) ,180arg =s ( ) ,1801arg =+s  ( ) 1802arg =+s  and therefore 

that area belongs to the root locus as  

( ) ( ) ( ) ( )1121801801801802arg1argarg +××−=−−−=+−+−− sss  with 

. 1=n

So the root locus on the real axis is: 

0=s1−=s2−=s

 

We have seen that when we numerically calculate the root locus. 
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At some point the poles from -1 and -2 will collide. To find this break-out 

point we rearrange the CE as: 

( ) ( ) ( )
( )sA
sBkskAsBsfCE −=⇔=+⇔= 00)(:  and then we find the 1st 

derivative with respect to s and we equate the result with zero: 

0=
ds
dk . Hence in this case: ( )( ) ( )( )21021 ++−=⇔=+++ ssskksss  and 

hence ( )( )
⎩
⎨
⎧
−
−

=⇔=++=++−=
42.0
5.1

026321 2 ssssss
ds
dk . Since the 2nd 

point only belongs to the root locus the other one (-1.5) is ignored: 

0=s1−=s2−=s

 

The same procedure can be used to find break-in points. 

To find the asymptote that the locus of these two poles will follow: 

The angle of the asymptote is: ( )
zp nn

n
−

+± 12180 , where  is the number of 

finite poles and  is the number of finite zeros. Hence in this case 

pn

zn
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0,3 == zp nn  and hence their angle is 180/3=60. The point of intersection 

with the real axis is:  

zp

n

i
i

n

i
i

nn

zp
s

zp

−

−
−=

∑∑
== 11  => 1

3
210

−=
++

−=s : 

0=s1−=s2−=s

Asymptote

5.1−

 

The point of intersection of the root locus with the imaginary axis can be 

calculated by using the CE at ωjs = . So in this case  

( )( ) 023023021 2323 =++−−⇒=+++⇔=+++
=

kjjksssksss
js

ωωω
ω

 

So  and 
⎩
⎨
⎧

=⇒=+−
4.1

0
023 ωωω 60603 2 =⇔=+−⇒=+− kkkω . 
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0=s1−=s2−=s

5.1−

 

A similar result will be obtained if we use Matlab: 

>> num=1; den=[1 3 2 0]; rlocus(num,den) 

-6 -4 -2 0 2
-4

-3

-2

-1

0

1

2

3

4
Root Locus

Real Axis

Im
ag

in
ar

y 
A

xi
s
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Example: Find the root locus of: ( )
32

)2(
2 ++

+
=

ss
sksG , H(s)=1: 

1. I have two complex poles and 1 real zero. 

2. Hence I have two branches that are symmetrical with respect to the 

real axis. 

3. Place the OL poles and zeros: 

1−

j4.1

j4.1−

2−

 

4. Find the loci on the real axis: 

a. For s>-2 I have no poles or zeros so even number and hence 

that area does not belong to the locus. 

b. From  to -2 I have 1 zeros, i.e. odd number and hence this 

belongs to the locus: 

∞−
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1−

j4.1

j4.1−

2−

 

5. Determine break in and out points:  

( ) ⇒
+

++
−=⇔=++++⇒

++
+

=
2

320)2(32:
32

)2( 2
2

2 s
sskskssCE

ss
sksG  

⎩
⎨
⎧
−
−

=⇒=++=
268.0
73.3

0142 sss
ds
dk . The acceptable value is  73.3−=s

6. Determine behaviour of complex poles: 

 These poles will move towards the real axis by increasing k. After the 

 collision at -3.73 one will move towards to the zero at -2and the other 

 will diverge to .  ∞−

 The angle of departure of the complex poles is calculated by  

 180 -angle with respect to other poles +angle with respect to other 

 zeros: : ∑∑ +− φθ180
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1−

j4.1

j4.1−

2−

1θ

1φ

902 =θ

 

So 1455590180180 121 =+−=+−= φθθ . The angle of departure for  

-1-1.4j is -145 since the locus is symmetric. 

1−

j4.1

j4.1−

2−
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Now we simply have to draw the locus from the complex poles to the real 

axis: 

1−

j4.1

j4.1−

2−

 

With Matlab: 

>> num=[1 2]; den=[1 2 3]; rlocus(num,den) 
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Generally the rules are: 

1. The branches are always symmetric with respect to the real axis. 

2. The number of the branches equals the number of the OL poles. 

3. Every branch starts from an OL pole (k=0) and ends at an OL zero 

(k= ). If we have more poles than zeros then we assume that there 

are imaginary zeros at 

∞

∞ . 

4. There are  asymptotes where they intersect on the real axis at: zp nn −

zp

n

i
i

n

i
i

nn

zp
s

zp

−

−
−=

∑∑
== 11  

5. The angle between them is ( )zp nn −/2π .The angle of the 1st 

asymptote with the real axis is ( )zp nn −/π  

6. The branch exists on a point on the real axis if there are odd number 

of real poles and zeros on its right. Complex poles do not contribute. 

7. The break in and out points are found by solving 0=
ds
dk . 

8. The points where we have intersection with the imaginary axis are 

found by replacing s  with ωj  at the CE. 

9. The departure angle from a complex pole is ∑∑ +− φθ180 . 

10. The arrival angle at a complex zero is ∑∑ −+ φθ180  

 

Generally the root locus of more complicated systems will be very difficult 

to be derived and for that reason we use Matlab.  
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