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Introduction

Response depends on system’s and controller’s parameters =>

Closed loop pole location depends on system’s and controller’s parameters.

Task: Find the controller gain(s) such as we have a satisfactory performance

=> Find the controller gain(s) such as we have a satisfactory pole location.

To do that we need a good understating of how poles move in the s-plane.

We have already seen three cases:

k k k
Go =, G GoL =
o T (s+a)s? +2w,s + @?)

oL =~ )
s+a s% + 20w, S + o}

Example (H=1):

GeL = so pole location: S+1+k=0<s=-1-k:
s+1 s+1+k

cnt=1;

for k=0:0.01:10;
r(cnt)=roots([1 1+k]);
cnt=cnt+1;

end

plot(real(r),imag(r),".")
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Properties:

e Starts from the OL pole location.

e Endsat — .
Example (H=1):

s +3s+2 T s2435+24k

s2+3s+2+k=0:

clear, clc

cnt=1;

for k=0:0.01:10;
r(l:2,cnt)=roots([1 3 2+k]);
cnt=cnt+1;

end

plot(real(r),imag(r))
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Properties:

e Starts from the OL pole location.

e Collides at a point.

e Moves on a straight line perpendicular to the real axis.
e Symmetrical with respect to the real axis

e Endsat —1.5+00.

Example (H=1):

k k
Gy =—— = Gpn = SO ole
oL "2 10542 T2 105424k P

s2 +25+2+k=0:
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clear, clc

cnt=1;

for k=0:0.01:10;
r(l:2,cnt)=roots([1 2 2+k]);
cnt=cnt+1;

end
plot(real(r),imag(r), "*")

4 ‘
kk:10
2 L 3 _
P
O, _
k=0
21 |
k=10
-4 w
-1 1 -1 1 -1

Properties:

e Starts from the OL pole location.

e Starts already with complex poles so no collision.

e Moves on a straight line perpendicular to the real axis.
e Symmetrical with respect to the real axis

e Endsat -1+,

Chapter 4

EEE 2002

524



Spring 2008

Example (H=1):

k

GOL = :>G

s +65%+11s+6
3 +65+11s+6+k=0-:
clear, clc

cnt=1;
for k=0:0.01:10;

k

EEE 2002

= so pole location:

s +6s2+11s+6+k

r(l:3,cnt)=roots([1 6 11 6+k]);

cnt=cnt+1;
end

plot(real(r),imag(r),".")

15f-------

0.5f-------

A5p------- s
4

Properties:

e Starts from the OL pole location.

e Two poles collide and then they follow asymptotically a line which is

not perpendicular to the real axis.
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e Symmetrical with respect to the real axis

e The other pole goes to — 0.

Example (H=1):

K(s2 +2s+2) G - k(s +2s+2)
465 +11s+6 s +657 +11s+6+k(s? +25+2)

GoL = SO

pole location:

§7 4652 +11s+6+K(s” +25+2)=0 8> +(6+k)s® +(11+2K)s + 6+ 2k =0

clear, clc

cnt=1;

for k=0:0.01:10;

r(l:3,cnt)=roots([1 6+k 11+2*k 6+2*k]);
cnt=cnt+1;

end

plot(real(r),imag(r),".")
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0.5

Properties:

e Starts from the OL pole location.

e Two poles collide and then they follow asymptotically a line which is
not perpendicular to the real axis.

e They do not diverge to infinity but they converge to the two complex
ZEeros.

e Symmetrical with respect to the real axis

e The other pole goes to — 0.

Hence it can be seen that the root location depends on the order and the

number of zeros of the system.

The procedure of finding the closed loop pole location for various values of

the proportional gain, k, is known as root locus method.
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We can find that location numerically or graphically (W. R. Evans). Matlab
provides the command rlocus(num_OL,den OL) but it is better to have a
deeper understanding of the graphical method. This method can also be used
for other parameters (apart from the proportional controller) but is rather
tricky. In EEE205 we will superficially cover this analysis method. In
EEE301 you will cover this topic extensively with Prof. J.W. Finch.

To include the effect of the feedback TF we name as OLTF the G(s)H (s):

—» G(s) >

H(s)

We always start from the location of the OL poles (i.e. poles of G(s)H(s)):

kNiG
G- G Do WNe __ KNgDy
1+GH 1+kNiGN7H DG+kNGN7H DgDyy + kNG Ny
G PH Dy

= CE:DgDy +kNgNy =0. For k=0 (first value): CE:DgDy =0, so
poles of G(s)H(s).

We use the symbol “x” to denote OL poles.
We use the symbol “o0” to denote OL zeros.

We use the symbol “0” to denote CL poles.

Chapter 4 9/24



Spring 2008 EEE 2002

No need for CL zeros as they do not move.

O
[

Angle and magnitude conditions

C(s)  G(9) ‘ ) B
R(S) 146 H(s) T TEEORE=0=6ERE)=-1

This implies that [G(s)H(s)=1 and arg(G(s)H(s))=+180(2n+1),

n=0,12...

k(s+2
For example: G(s)H(s)= (s+p )(s(+ p 1))(s+ ps)
1 2 3
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S
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arg(s)=-6, -6, -6, + ¢

G(s)H(s) = A;B;Az

Hence every point that belongs onto the Root Locus (RL) satisfies these two

criteria.

For example for the system that we studied before Gg = 2#
S"+3s+2
= G¢ = K the point S =—1.8%1.5] does not belong while the

s2 +3s+2+k

point s =-1.5+1.5] does.
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The OL case 1s G =2L so I have two poles at -1 and -2 and no
S*+3s+2
Zeros:
s=-x%1.5j
/N
/ \
S I \
/ \\A1
SR
V4 N\
) P
S=—Xx=x1.5]
~ N
\
\

tan(180 -6, ) = 1—51 =6, =180 - atan(l;i]
X_
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A =152 +(x-1)

S=-21X]
}j N
/
/
A/ > 15
/
‘92
/
VA _
\ J
Y
2-X

tan(6, )= % =0, = atan( 21'_5)()

A, =41.5% +(2— )’

For the point S=-1.8+1.5j:

0, =180—atan(1 ;'5 j:118.07°

0, = atan( L5 j =82.40°
2-1.8

So -6, -6, =-200.47 =-180 so that point does not belong to the root locus.
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For the point S=-1.5+1.5j:

1.5

6, =180 - atan(1 j =108.43°

0, = atan( :
2

> )=71.560
8

So — 6, — 8, =—180 so that point belongs to the root locus.

By using the magnitude condition we can find the gain:

A =15 + (x=1) =1.5> +(1.5-1) =1.58
A,:ﬁ5?+2—x =157 +(2—1.5) =1.58

k
——=1=k=AA =25
AN A

Analytically:

s=—18+1.5]

1+GH :1+2L=0:>32+3s+2+k:0:>-2.41— 09j+k=0=
S“+3s+2

WRONG since k is real.

s=—1.5+1.5]

1+GH :1+2L:O:>32+3s+2+k:0:>-2.5+k:0
S“+35+2
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x=1.5

th1=180-atand(1.5/(x-1))
th2=atand(1.5/(2-x))
thl+th2

Al=sqrt(1.5"2+(x-1)"2)
A2=sqrt(1.5"2+(2-x)"2)
k=A1*A2

S=-x+1.5%*};
K=-s"2-3*s-2

Simple root locus

Assume that the OLTF is G(s)= K . There are three real OL

s(s+1)s +2)

poles with angles: arg(s), arg(s +1), arg(s + 2).

First of all the number of branches equals the number of poles. The root
locus is always symmetrical with respect to the real axis and the branches

start from poles and end up to zeros or infinity (infinite zero).

In this specific case I have three braches, which will diverge to imaginary

zeros at infinity.

If s>0 then arg(s)=0, arg(s+1)=0, arg(s+2)=0 and therefore that area

does not belong to the root locus as —arg(s)— arg(s +1)—arg(s +2)=0.

If s<0 and s>-1 then arg(s)=180, arg(s+1)=0, arg(s+2)=0 and

therefore that area belongs to the root locus as
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—arg(s)—arg(s +1)—arg(s +2)=-180-0-0=-180.

If s<-1 and s>-2 then arg(s)=180, arg(s+1)=180, arg(s+2)=0 and

therefore that area does not belong to the root locus as
—arg(s)—arg(s +1)—arg(s +2)=-180-180—0=-360.

If s<-3 then arg(s)=180, arg(s+1)=180, arg(s+2)=180 and therefore

that area belongs to the root locus as

—arg(s)—arg(s+1)—arg(s +2)=-180—-180-180=—180x(2x1+1) with

n=1.

So the root locus on the real axis is:

We have seen that when we numerically calculate the root locus.
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At some point the poles from -1 and -2 will collide. To find this break-out

point we rearrange the CE as:

CE:f(s)=0< B(s)+ kA(s):0<:>k:—® and then we find the 1%

Als)

derivative with respect to s and we equate the result with zero:

dk_ 0. Hence in this case: S(s+1)(s+2)+k=0<k=-s(s+1)(s+2) and

ds

ds

—-1.5
hence %z—s(s+1)(s+2):3sz+6s+2:0<:>s={ 043" Since the 2"

point only belongs to the root locus the other one (-1.5) is ignored:

Break away point

The same procedure can be used to find break-in points.
To find the asymptote that the locus of these two poles will follow:

+180(2n +1)
n,—n,

The angle of the asymptote is: , Where n is the number of

finite poles and n, is the number of finite zeros. Hence in this case
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n, =3,n, =0 and hence their angle is 180/3=60. The point of intersection

with the real axis is:

g _id i =>s=—0+1+2:—1:
n,—n, 3
Asymptote
—q
S=-2 S=—
-1.5

The point of intersection of the root locus with the imaginary axis can be

calculated by using the CE at s= jw. So in this case
s=jw

s(s+1)s+2)+k=0=5>+3s* +2s+k=0 = — jo’ 30> +2jo+k=0

0
So —a)3+2a)=0:>a)={14 and —30’> +k=0=-6+k=0<k=6.
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Imaginary Axis

EEE 2002
=0
A similar result will be obtained if we use Matlab:
>> num=1; den=[1 3 2 0]; rlocus(num,den)
Root Locus
2
Real Axis
19/24
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k(s+2)

 H(s)=1:
s +2s+3

Example: Find the root locus of: G(s)=
1. T have two complex poles and 1 real zero.
2. Hence I have two branches that are symmetrical with respect to the
real axis.

3. Place the OL poles and zeros:

X————— 14]

O

% _____ -1.4]

4. Find the loci on the real axis:
a. For s>-2 I have no poles or zeros so even number and hence
that area does not belong to the locus.
b. From — o to -2 I have 1 zeros, i.e. odd number and hence this

belongs to the locus:
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X————— 1.4]

O

% _____ -14j

5. Determine break in and out points:

2
G(S):zk(S—Jr2)=>CZE:32 $25434k(s+2) =0 k=2 T25F3
S°+25+3 s+
—3.73
%=82 +45+1=0=>5s= . The acceptable value is S =—3.73
ds ~0.268

6. Determine behaviour of complex poles:

These poles will move towards the real axis by increasing k. After the
collision at -3.73 one will move towards to the zero at -2and the other

will diverge to — 0.
The angle ofdeparture of the complex poles is calculated by

180 -angle with respect to other poles +angle with respect to other

zeros: 180 —ZH+ Zgb:
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o,
| o | 1.4
|
|
—2 b 1l
~ |
|
| 92 :90
o,

So 6, =180-6, + ¢, =180-90 + 55=145. The angle of departure for

-1-1.4j is -145 since the locus is symmetric.

1.4j

Chapter 4
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Now we simply have to draw the locus from the complex poles to the real

axis:

1.4j

~14j

With Matlab:

[1 2 3]; rlocus(num,den)

>>num=[1 2]; den

Root Locus

sIxy Areuibew)

Real Axis

23/24
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Generally the rules are:

9.

. The branches are always symmetric with respect to the real axis.

The number of the branches equals the number of the OL poles.

. Every branch starts from an OL pole (k=0) and ends at an OL zero

(k=00). If we have more poles than zeros then we assume that there
are imaginary zeros at .

There are n, —n, asymptotes where they intersect on the real axis at:

Np
2P~
_ =l i=]

-N

Z

Zj

S

p

. The angle between them is 27/(n,—n,).The angle of the 1%

asymptote with the real axis is 7/ (n o —N; )

The branch exists on a point on the real axis if there are odd number

of real poles and zeros on its right. Complex poles do not contribute.

The break in and out points are found by solving 3—k =0.
S

. The points where we have intersection with the imaginary axis are

found by replacing s with jw at the CE.

The departure angle from a complex pole is 180 — 29 + Z¢ .

10.The arrival angle at a complex zero is 180 + Z 60— Z @

Generally the root locus of more complicated systems will be very difficult

to be derived and for that reason we use Matlab.
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