
Supplementary material for Fundamental solution matrices 

For second order systems  we have seen that we have 2 solutions (x1, x2) 

depending on the eigenvalues of A (real and distinct, repeated and complex): 

Axx =&

tt eexeex 21
2211 , λλ ==  if R∈≠ 2121 ,, λλλλ . 

( ) tt ebetxeex λλ +== 21 ,  if R∈== λλλλ ,21 . 

( ) ( )tt eexeex λλ Im,Re 22 ==  if C∈== λλλλ ,21 . 

Now any combination  is also a solution (principle of superposition) 

and also any other solution can be expressed by the above combination. This 

effectively means that to describe the behaviour of a 2nd order system we just need x1 

and x2. When we are given an initial condition  effectively we are asked to find a 

specific solution that passes (starts) through , and this can be done by finding the 

appropriate values of c  (this is what we have before).  

2211 xcxcx +=

21, c

0x

0x

Now, x1 and x2 are 2 2by1 column vectors. If we put them together in one matrix (the 

fundamental solution matrix) we have [ ]21 xxX =  which is 2by2. It will be better if 

we write us: ( ) ( ) ( )[ ]txtxtX 21= . 

Thus  can be written as: 2211 xcxcx += ( ) ( ) CtXtx ×= , where [ ]TccC 21=  

We are given the value at t=0 as : 0x ( ) CXx ×= 00  or ( ) 0
1 0 xXC −= . Hence going 

back to ( ) ( ) CtXtx ×=  we have: ( ) ( ) ( )1 0 xXtX −× 0x t =  

The product  is called the State Transition Matrix.  ( ) ( )01−× XtX

This means that if found or we are given ( )tX  we can easily find  and . 

Then using  we can find any solution given the initial 

conditions. This is effectively what we previously did but now it is in a more compact 

form, it can easily be extended to high order systems and above all it can be used in 

( )0X ( )01−X

( ) ( ) ( ) 0
1 0 xXtXtx −×=



time varying systems (i.e. where the state matrix A is not constant). Before we see 

how it can be used for time varying systems let’s see how it can be used for the 

systems that we previously studied: 

Example 1: 
( ) [ ] ( ) [ ]21212211 0, 2121 eeXeeeetXeexeex tttt =⇒=⇒== λλλλ   

Hence  [ ] [ ] 0
1
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21 xeeeeeex tt −×= λλ

 
Example 2: 

( ) ( ) ( )[ ] ( ) [ ]beXebeteetXebetxeex tttt =⇒+=⇒+== 0, 21
λλλλ   

Hence  ( )[ ] [ ] 0
1 xbeebeteex tt −×+= λλ

 
Example 3: 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]eeXeeeetXeexeex tttt ImRe0ImReIm,Re 22 =⇒=⇒== λλλλ   

Hence  ( ) ( )[ ] ( ) ( )[ ] 0
1ImReImRe xeeeeeex tt −×= λλ

 

Example 4: 
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Unfortunately we cannot follow a similar strategy when A is time varying, for 

example . In these cases we have to rely on numerical solutions. ( ) ⎥
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t
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Even though we cannot find  and  we know that they exist. Hence we know that 

the FSM exists as well: 
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 also being constant. Let’s assume that for our case 

 for some constants a, b, c, d. Then: 
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Or:  ( ) ( ) ( ) ( )[ ]tdxtbxtcxtax 2121 ++

Now, since  and  are solutions of 1x 2x Axx =& then so must be ( ) ( )tcxtaxx 213 +=  and 

. This means that ( ) (ttbxx 214 = )dx+ 33 Axx =&  and 44 Axx =& .  

Also  and hence  or  and 
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( )04x Be careful we do not yet know the functions ( )tx3  and  since we do 

not know  and . 

( )tx4

( )tx1 ( )tx2

In order for us to find  and ( )tx3 ( )tx4

( )04x

 we simply have to numerically solve  

and  for  and : 
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IC=[1 0]

[-u 1; -exp(-u) -exp(-2*u)]
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IC=[0 1]

[-u 1; -exp(-u) -exp(-2*u)]
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No we need to combine them to get the STM: 
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Now if we assume that we are given the IC as [2 4]: 
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To crosscheck our answer the numerical solution of the original state space model is: 

IC=[2 4]

[-u 1; -exp(-u) -exp(-2*u)]
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And the results that we got are: 
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Now, in general our solutions ( )tx1  and ( )tx2  also depend on t0 which may not be 

zero as in the previous case, hence we should have written ( )01 ,ttx  and . To 

avoid confusion and to comply with various other authors we will use  and 

( 02 ,ttx

( )t

)

x1 ( )t2x  

for most cases and ( 01 ,tt )φ  and ( )02 ,ttφ  when we want to say that our solutions also 

depend on the initial time.  Hence the FSM is ( )0, ttΦ  and not . Also 

since , i.e. our solution to the IVP also depend on the 

initial condition: 

( )tX

( ) ( ) )00, ttttx Φ= ( 0
1 ,t−Φ× 0x

( ) ( ) ( ) 0x00
1 , tt−

0, tt00 ,, xtt Φ×Φ=φ . 


