Supplementary material for Fundamental solution matrices

For second order systems x = Ax we have seen that we have 2 solutions (xi, X2)

depending on the eigenvalues of A (real and distinct, repeated and complex):
x =ee™t x, =e, e if L #4,, 4,4, eR.

x, =ee™, x, =(et+ble™ if L =2,=1,1R.

X, = Re(ee”) X, = Im(eelt) if ,=4,=1,1¢eC.

Now any combination x =c;X; +C,X, is also a solution (principle of superposition)

and also any other solution can be expressed by the above combination. This
effectively means that to describe the behaviour of a 2™ order system we just need x;

and xo. When we are given an initial condition x, effectively we are asked to find a
specific solution that passes (starts) through x,, and this can be done by finding the

appropriate values of c, ¢, (this is what we have before).

Now, x; and x, are 2 2by1 column vectors. If we put them together in one matrix (the

fundamental solution matrix) we have X =[x, x,] which is 2by2. It will be better if

we write us: X (t)=[x(t) x,(t)].
Thus x = ¢;x, +C,X, can be written as: x(t)= X (t)xC, where C=[c;, c,[

We are given the value at t=0 as X,: X, = X(0)xC or C =X *(0)x,. Hence going

back to x(t)= X (t)x C we have: |x(t)= X (t)x X ~(0)x,

The product X (t)x X "(0) is called the State Transition Matrix.

This means that if found or we are given X (t) we can easily find X(0) and X *(0).
Then using x(t)= X (t)x X *(0)x, we can find any solution given the initial

conditions. This is effectively what we previously did but now it is in a more compact

form, it can easily be extended to high order systems and above all it can be used in



time varying systems (i.e. where the state matrix A is not constant). Before we see
how it can be used for time varying systems let’s see how it can be used for the

systems that we previously studied:

Example 1:

x, = e, x, =e,e’? = X(t)= [eleilt ezeﬂ“zt]: X(0)=[e, e,]

2 ]X [el €, ]_1 Xo

Hence x = [ele’th e,e

Example 2:
x, =ee™, x, = (et +ble = X (t)=|ee” (et+b)e™|= x(0)=[e b]
Hence x = [eeﬂt (et+b)e“]><[e b]™ X,

Example 3:
Xy = Re(eeit ) Xy = Im(eeﬂt):> X(t)= [Re(ee“) Im(eelt )]:> X(0)=[Re(e) Im(e)]
Hence x = [Re(eeit) Im(ee”“t )]x[Re(e) Im(e)] " x,

Example 4:
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Unfortunately we cannot follow a similar strategy when A is time varying, for

1 . .
example A(t)={ L _Zt}. In these cases we have to rely on numerical solutions.

Even though we cannot find x; and x, we know that they exist. Hence we know that

the FSM exists as well: X (t)=[x(t) x,(t)]= Ki’*g; XZA?H and of course at t=0
)

t
we have a constant matrix X(O)—[?AE{; izAEt)} with the inverse
1g 2

- -1
X,(0) X5, (0
X(0)= 1A( ) 2 also being constant. Let’s assume that for our case
X1, (0) %, (0)
3 ‘a b
X0)= . 4| forsome constants a, b, c, d. Then:

|
_{xlA(t) sz(t)}[a b}{axlA(t)szA(t) bx,, (t)+dx,, (t)

axy (t)+cxy, () bxy, (t)+dx,, (t)

Or: [axy(t)+cx,(t)  bxy(t)+dx,(t)]

Now, since x, and x, are solutions of X = Ax then so must be x5 = ax, (t)+ cx,(t) and

X, = bx, (t)+ dx,(t). This means that X; = Axg and X, = Ax,.

Also X (0)x X‘l(O):[é (ﬂ and hence [x;(0) x4(o)]{l O} or x3(0):L1J and
x,(0)= E} Be careful we do not yet know the functions x,(t) and x,(t) since we do

not know x,(t) and x,(t).

In order for us to find x,(t) and x,(t) we simply have to numerically solve %; = Ax,

and x, = Ax, for x3(0):[ﬂ and x4(0)={ﬂ:
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No we need to combine them to get the STM:
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Now if we assume that we are given the IC as [2 4]:
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To crosscheck our answer the numerical solution of the original state space model is:

IC=[2 4]
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And the results that we got are:
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Now, in general our solutions x,(t) and x,(t) also depend on t, which may not be
zero as in the previous case, hence we should have written x,(t,t,) and x,(t,t,). To
avoid confusion and to comply with various other authors we will use x(t) and x,(t)
for most cases and ¢, (t,t,) and ¢,(t,t,) when we want to say that our solutions also
depend on the initial time. Hence the FSM is ®(t,t,) and not X(t). Also

since x(t)=®(t,ty)x D *(ty,ty )Xo, i.e. our solution to the IVP also depend on the

initial condition: ¢@(t,ty, X,) = D(t,ty)x D (ty, to )Xo -



