Chapter 3 Exercises

1. The state matrix of a homogeneous system is given by $\mathbf{A}=\left[\begin{array}{cc}-1 & 1 \\ 0 & -10\end{array}\right]$.

- Find the eigenvalues and eigenvectors.
- Find the general solution.
- Find the particular solution for 2 arbitrary initial conditions. Discuss your results.
- Find the fundamental solution matrix using the previously calculated eigenvectors.

2. The state matrix of a homogeneous system is given by $\mathbf{A}=\left[\begin{array}{cc}-1 & -1 \\ 1 & -3\end{array}\right]$.

- Find the eigenvalues and eigenvectors.
- Find the general solution.
- Find the particular solution for 2 arbitrary initial conditions. Discuss your results.
- Find the fundamental solution matrix using the previously calculated eigenvectors.

3. The state matrix of a homogeneous system is given by $\mathbf{A}=\left[\begin{array}{cc}-1 & -1 \\ 1 & -1\end{array}\right]$.

- Find the eigenvalues and eigenvectors.
- Find the general solution.
- Find the particular solution for 2 arbitrary initial conditions. Discuss your results.
- Find the fundamental solution matrix using the previously calculated eigenvectors.

4. The state matrix of a homogeneous system is given by $\mathbf{A}=\left[\begin{array}{lll}0 & -1 & 2 \\ 2 & -3 & 2 \\ 3 & -3 & 1\end{array}\right]$.

- Find the eigenvalues and eigenvectors.
- Find the general solution.
- Find the fundamental solution matrix using the previously calculated eigenvectors.

5. The state matrix of a homogeneous system is given by $\mathbf{A}=\left[\begin{array}{ccc}-4 & 5 & -3 \\ -17 / 3 & 4 / 3 & 7 / 3 \\ 23 / 3 & -25 / 3 & -4 / 3\end{array}\right]$.

- Find the eigenvalues and eigenvectors.
- Find the general solution.
- Find the fundamental solution matrix using the previously calculated eigenvectors.

6. The state matrix of a homogeneous system is given by $\mathbf{A}=\left[\begin{array}{ccc}4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2\end{array}\right]$.

- Find the eigenvalues and eigenvectors.
- Find the general solution.
- Find the fundamental solution matrix using the previously calculated eigenvectors.

7. Prove that the matrix $G=\left[\begin{array}{cc}1-t^{2} & t-t^{2} \\ -2 t & 1-2 t\end{array}\right]$ is the STM of

$$
A=\left[\begin{array}{cc}
0 & 1 \\
\frac{-2}{(t-1)^{2}} & \frac{2}{t-1}
\end{array}\right]
$$

8. Check if the matrix $G=e^{-t}\left[\begin{array}{cc}\cos \left(t^{2}\right) & \sin \left(t^{2}\right) \\ -\sin \left(t^{2}\right) & \cos \left(t^{2}\right)\end{array}\right]$ is the STM of $A=\left[\begin{array}{cc}-1 & 2 t \\ -2 t & -1\end{array}\right]$.
9. Check if the matrix $G=e^{-t}\left[\begin{array}{cc}\cos \left(t^{2}\right) \sin \left(t^{2}\right) \int_{2}^{t} e^{-38 t \sqrt{\cos t}} & \sin \left(t^{2}\right) \\ -\sin \left(t^{2}\right) & \cos \left(t^{2}\right)\end{array}\right]$ is the STM of $A=\left[\begin{array}{cc}-1 & 2 t \\ -2 t & -1\end{array}\right]$.
10. The state matrix of a homogeneous system is given by $\mathbf{A}=\left[\begin{array}{ll}1 & 1 \\ 0 & 3\end{array}\right]$.

- Find the eigenvalues and eigenvectors.
- Find the general solution.
- Find the particular solution for 2 arbitrary initial conditions. Discuss your results.
- Find the fundamental solution matrix using the previously calculated eigenvectors.
- Find the STM using the previously found eigenvectors
- Find the STM using exponential matrix (hint: you will need to use the formula for a geometric series).

11. Find the eigenvalues/eigenvectors of:
$A_{1}=\left[\begin{array}{cc}-2 & 2 \\ 2 & -5\end{array}\right], A_{2}=\left[\begin{array}{cc}-1 & 2 \\ 0 & -5\end{array}\right], A_{3}=\left[\begin{array}{cc}-1 & 5 \\ -1 & -5\end{array}\right], A_{4}=\left[\begin{array}{cc}1 & -3 \\ 1 & 3\end{array}\right], A_{5}=\left[\begin{array}{cc}4 & 1 \\ -1 & 2\end{array}\right]$
12. Find the analytic solution for 5 homogeneous systems described by the 5 state matrices given in the previous question, using both methods (eigenvectors/state transition matrix).
13. Find the particular solutions of the above systems for $x(0)=\left[\begin{array}{ll}1 & 2\end{array}\right]^{T}$.
