
Spring 2008 EEE 8007 

 

 

 

 

 

Chapter #3 

 

EEE 8007 

Digital Control 

 

 Kalman Filter 

 

 

 

 

Chapter 3 1/11



Spring 2008 EEE 8007 

1. Derivation of the KF 

The deterministic discrete time state space model of a system is given by: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )kkk

kkkkk
XHY

UΓXΦX
=

+=+1
 

The above representation of the system assumes that there is “perfect” knowledge of the 

system and the sensors have a perfect response.  

Unfortunately the model (which is a mathematical expression of the actual system) will 

merely be an approximation and this only under special assumptions/conditions.  For 

example for the cage rotor IM it is assumed that there is an equivalent three phase 

winding on the rotor which may be only a crude assumption.  Furthermore the nominal 

values of the system may vary during operation.  For example the rotor resistances of the 

IM may vary up to 50%.  Theoretically all these changes and uncertainties can be model 

exactly by differential equations.  But this is a very tedious and in some cases impossible 

task.  One solution is to assume that all these changes will have the same effect to the 

system as one random signal that is assumed to be a white noise Gaussian signal with 

zero mean.  Here this random signal will be called the “model uncertainty noise” and will 

be denoted as W. The number of these noisy signals will depend on the order of the 

system.  Hence for a fourth order system, four different signals will be needed.  These 

noisy signals can be coupled or not, depending on the system.  Their variance will be 

depended on the level of the uncertainty; hence a large variance will mean low 

knowledge of the system’s parameters and vice versa.  

The second problem is the fact that some states are not accessible and the ones that can 

be measured will be corrupted by the sensor noise.  Again in order to include those noises 

into the total model, white noise Gaussian signals with zero mean will be used.  These 

signals will be denoted as V and their number will depend upon number of the system’s 

outputs.  Once again the variance of these signals will describe the amount of noise that 

corrupts the outputs. 
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The state space model will now be called stochastic and will look like that of Fig. 1 
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Fig. 1 Stochastic state space model 

The final problem is that some states are inaccessible. For example the rotor currents at a 

cage rotor IM cannot be measured easily and if they are needed then expensive probes 

will have to be inserted in the motor and hence all the characteristics that make the IM 

popular will vanish.  

To overcome this problem estimators have to be used.  But the well known deterministic 

estimation methods are designed for non-stochastic models.  In the presence of noise they 

will not be able to produce the same satisfactory results as before.  For this reason 

another estimator that can cope with stochastic models has to be applied.  This estimator 

is the Kalman filter.  

Before the full derivation of the KF some assumptions are needed. The noisy signals are 

white, with zero mean and normal distribution, totally uncorrelated.  Also their 

autocorrelation for non-zero shift is zero, so: 

( )[ ] 0== kE Wwµ  (1) 

( )[ ] 0== kE Vvµ  (2) 

( ) ( )[ ] 0jany for  ,0)( ≠=+= jkkEj T
ww WWQ  (3) 

( ) ( )[ ] 0jany for  ,0)( ≠=+= jkkEj T
vv VVQ  (4) 
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( ) ( )[ ] ( )kkkE T
ww QWWQ ==)0(  (5) 

( ) ( )[ ] ( )kkkE T
vv RVVQ ==)0(  (6) 

( ) ( )[ ] jjkkEj T
wv any for  0)( =+= VWQ  (7) 

( ) ( )[ ] jjkkEj T
vw any for 0)( =+= WVQ  (8) 

The stochastic state space model is given: 

( ) ( ) ( ) ( ) ( ) ( )kkkkkk WUΓXΦX ++=+1  (9) 

( ) ( ) ( ) ( )kkkk VXHY +=  (10) 

The KF has a similar structure to the classical posteriori estimator: 

( ) ( ) ( ) ( ) ( ) ( )[ ]kkkkkk XHYKXX ~~ˆ −+=  

where  is the “posteriori” estimation and ( )kX̂ ( )kX~  is the “priori” or predicted estimation 

of the state. 

( ) ( ) ( )[ ] ( ) ( ) ( )kkkkkk YKXHKX +−= ~1ˆ  (11) 

Or: ( ) ( ) ( )[ ] ( ) ( ) ( )111~1111ˆ ++++++−=+ kkkkkk YKXHKX  (12) 

Where: ( ) ( ) ( ) ( ) ( )kkkkk UΓXΦX +=+ ˆ1~  (13) 

Another notation, [90], is ( ) ( )kkk /ˆ XX =  and ( ) ( )1/~ −= kkk XX , where ( ij /X )  is the 

estimation of the vector state at the moment j by having information up to i.  

From eqn. A.12 with the use of A.13: 
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( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) )1()1(111

/ˆ1111/1ˆ

+++++++
++++−=++

kkkkk
kkkkkkkkk

VKXHK
UΓXΦHKX  (14) 

Notice that the gain matrix K is variable to have optimal estimation. 

Since there is noise in the signal, it is assumed that ( )kk /X̂  is the best estimation of 

.  The error between the actual state vector and the posteriori estimated is: ( )kX

( ) ( ) ( 1/111/1 ++−+=++ kkkkk XXX ) (15) 

By using eqns. 9 and 14: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )11111

/1111/1
++−+++−

++++−−++=++
kkkkk

kkkkkkkkkkkkkk
VKXHK

UΓXΦHKWUΓXΦX  

Again by using eqn. 9 to eliminate the term ( )1+kX : 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )1111

/1111/1
++−++++−

++++−−++=++
kkkkkkkkk

kkkkkkkkkkkkkk
VKWUΓXΦHK

UΓXΦHKWUΓXΦX  

After the multiplications and by selecting the terms that contain ( )kX  and ( kk /X )  the 

right hand side is: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )+++−++−−

++++−−++−
kkkkkkkk

kkkkkkkkkkkkk
UΓHKUΓHK

UΓXΦHKΦXΦHKΦ
11111

/1111

( ) ( ) ( ) ( ) ( ) ( )1111 ++−++−+ kkkkkk VKWHKW  (16) 

The terms with  will be self-cancelled.  Also since the error at the sample k+1 

is 

( ) ( )kk UΓ

( ) ( ) ( 1/111/1 ++−+=++ kkkkk XXX )  at k is ( ) ( ) ( )kkkkk // XXX −=  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1111/11 ++−++−+++− kkkkkkkkkkkk VKWHKWXΦHKΦ )
 (17) 

By selecting now the terms that contain ( )kW  and ( )1+kV : 
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( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )111/11 ++−+−+++− kkkkkkkkk VKWHKIXΦHKI  (18) 

By substituting F(k+1) where ( ) ( )( )11 ++− kk HKI : 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )111/11/1 ++−+++=++ kkkkkkkkkk VKWFXΦFX  (19) 

The covariance of the error is 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ]111/1

111/1[1/11/1
T

T

kkkkkkkk

kkkkkkkkEkkkkE

++−+++

++−+++=++++

VKWFXΦF

VKWFXΦFXX

 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( ) ( ) (( ))( )]111/1

111/1[
TTT kkkkkkkk

kkkkkkkkE

++−+++

×++−+++

VKWFXΦF

VKWFXΦF
 (20) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )]1111/

111/1[
++−+++

×++−+++

kkkkkkkk
kkkkkkkkE

TTTTTTT KVFWFΦX
VKWFXΦF  (21) 

By doing the multiplications:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )+++−+++−

++++−+++

++++++

−+++++

kkkkkkkkkk
kkkkkkkk

kkkkkkkkkkkk
kkkkkkkkkkkkkkE

TTTTT

TTTT

TTTTT

TTTTT

FWVKFΦXVK
KVWFFWWF

FΦXWFKVXΦF
FWXΦFFΦXXΦF

111/11
11111

1/111/1
1/11//1[

( ) ( ) ( ) ( )]1111 +++++ kkkk TT KVVK  (22) 

By breaking the eqn. 22 to its parts: 

( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )[ ]−+++−

++++−+++

+++++++

−+++++

1/11
11111

1/111/1
1/11//1

kkkkkkE
kkkkEkkkkE

kkkkkkEkkkkkkE
kkkkkkEkkkkkkkkE

TTT

TTTT

TTTTT

TTTTT

FΦXVK
KVWFFWWF

FΦXWFKVXΦF
FWXΦFFΦXXΦF

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]1111111 +++++++++ kkkkEkkkkE TTTT KVVKFWVK  (23) 
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( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ]++++−+++−

+++++++

++++−

++++

+++=++++

1/11111
111/1

11/1
1/1

1//11/11/1

kkkkkkEkkkkE
kkkkEkkkkkkE

kkkkkkE
kkkkkkE

kkkkkkkkEkkkkE

TTTTT

TTTTT

TT

TT

TTTT

FΦXVKKVWF
FWWFFΦXWF

KVXΦF
FWXΦF

FΦXXΦFXX

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]1111111 ++++++++− kkkkEkkkkE TTTT KVVKFWVK  (24) 

So now the expectations of the above 9 terms must be found and calculated: 

( ) ( )( ) ( )1/11/11/1 ++=++++ kkkkkkE T PXX , where P is the covariance matrix of the 

error. 

( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ] ( ) ( ) =++=

=++

1//1
1//1

kkkkkkEkk
kkkkkkkkE
TTT

TTT

FΦXXΦF
FΦXXΦF

 

( ) ( ) ( ) ( ) ( )1/1 ++= kkkkkk TT FΦPΦF  (25) 

( ) ( ) ( ) ( ) ( )[ 01/1
CorrelatedNot

TT kkkkkk =+++ FWXΦF ]  (26) 

( ) ( ) ( ) ( ) ( )[ 011/1
CorrelatedNot

TT kkkkkkE =+++− KVXΦF ]  (27) 

( ) ( ) ( ) ( ) ( )[ 01/1
CorrelatedNot

TTT kkkkkkE =++ FΦXWF ]  (28) 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( )
( )5

1111 =++=++ kkkEkkkkkE TTTT FWWFFWWF  
( ) ( ) ( 11 ++ kkk TFQF )  (29) 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( )
( )

0111111
7
=+++−=+++− kkkEkkkkkE TTTT KVWFKVWF  (30) 

( ) ( ) ( ) ( ) ( )[ 01/11
CorrelatedNot

TTT kkkkkkE =+++− FΦXVK ]  (31) 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( )
( )

0111111
8
=+++−=+++− kkkEkkkkkE TTTT FWVKFWVK  (32) 
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( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( )
( )

( ) ( ) ( )111

11111111
6

+++

=++++=++++

kkk

kkkEkkkkkE
T

TTTT

KRK

KVVKKVVK  

So the outcome is: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) =++++

++++++=++

111
111/11/1

kkk
kkkkkkkkkkk

T

TTT

KRK
FQFFΦPΦFP

 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )1111/11/1 +++++++=++ kkkkkkkkkkkk TTT KRKFQΦPΦFP
 (33) 

By defining as  

( ) =+= )/1(* kkk PP   

( )( )( ) ( ) ( ) ( ) (kkkkkkkkkkk TT QΦPΦXXXXE +=+−+−= /)/1()()/1()( )  (34) 

( ) ( ) ( ) ( ) ( ) ( )1111)/1(11/1 +++++++=++ kkkkkkkkk TT KRKFPFP  (35) 

By substituting F(k+1) again: 

( ) ( ) ( )( ) ( ) ( )( ) +++−+++−=++ Tkkkkkkkk 11)/1(111/1 HKIPHKIP  

( ) ( ) ( 111 ++++ kkk TKRK ) (36) 

The goal is now to minimise P(k+1/k+1) by the optimal choice of K(k+1).  To do the 

above Riccatti Differential Equation (DE) must be solved.  (Eqn. 36 is also called Joseph 

form of the covariance update equation).  This is a very difficult task and requires 

numerical methods; hence the answer is given without any proof: 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] 111/111/11 −
+++++++=+ kkkkkkkkk TT RHPHHPK   (37) 

and: ( ) ( ) ( )[ ] ( )kkkkkk /1111/1 +++−=++ PHKIP  (38) 
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To summarise, the next equations form a recursive set to implement the KF: 

( ) ( ) ( ) ( ) ( )kkkkkkk T QΦPΦP +=+ //1  (39) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )kkkkkkkkkkkk UΓXΦUΓXΦXX +=+=+=+ /ˆ/11~  (40) 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] 111/111/11 −
+++++++=+ kkkkkkkkk TT RHPHHPK  (41) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )11/11111/11ˆ ++++++−=++=+ kkkkkkkkk YKXHKXX  (42) 

( ) ( ) ( )[ ] ( )kkkkkk /1111/1 +++−=++ PHKIP  (43) 

If there was coupling between the noisy signals that represent the parameters sensitivity 

then a new matrix G must be introduced, Fig. 2. 
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Fig. 2 Stochastic state space model with coupled parameter uncertainty noise 

And the above equations would be exactly the same except the first one: 

( ) ( ) ( ) ( ) ( ) ( ) ( )kkkkkkkkk TT GQGΦPΦP +=+ //1  (44) 

By using all the above equations the block diagram of the KF is shown in Fig. 3. 
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Fig. 3 Block diagram of the discrete time Kalman filter 

2 Intuitive Approach to the KF 

The Kalman Filter works exactly as a deterministic posteriori estimator.  The only 

difference is that the goal is not to achieve some error dynamics criteria but to minimise 

the error covariance matrix.  Hence it can be said that it consists of two parts.  In the first 

part the prediction of the new state and the new error covariance matrix are taking place, 

eqns. 39 & 40 respectively.  Also at this stage the new KF gain matrix is calculated from 

the previous predicted values eqn. 41.  Here the estimator is using the previous posteriori 

estimation of the state and error covariance matrix.   

In the second part the KF corrects the previous measurements.  First it corrects the 

previous prediction of the states by using current information from the output.  The 

correction is accomplished by adding to the previous state prediction a weighted 

difference between the actual and the predicted output.  The weight is nothing more than 

the previous KF gains, eqns. 42.  At this stage the filter is also correcting the error 

covariance matrix, eqn. A.43, again by using the KF gain.  

As can be seen from the previous equations, to calculate the KF gains the state space 

model of the system and the characteristics of the noise signals are needed.  Also it is 

assumed that the noise signals are represented completely by their mean values (zero in 

this case) and covariances.  If the characteristic of those signals change then the KF will 

not know this and will produce wrong results.  Thus the KF must be provided with the 

accurate Q and R.  Also from eqn. 42 can be seen that the error is influenced by the 

matrix H. Fortunately this is not a big problem since the output matrix is usually the 
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identity matrix.  The uncertainty of A and B (or Φ and Γ) can be described by Q and 

hence they do not need to be very accurate.   

The covariance matrix Q represents the uncertainty of the model of the system.  So if Q 

decreases at some point then the KF will assume that the model of the system is more 

accurate and hence will focus more on the stage of predicting and not at the stage of 

correcting.  Therefore the KF gains will decrease.  Theoretically if Q=0 then the matrix 

gains will converge to zero.  Obviously this is will produce poor results since the 

estimator tends towards an open loop.   

On the other hand if Q increases then the KF will assume that the model of the system is 

very inaccurate and hence will increase its gains.  The same results will appear if R is 

increased in the first case or R is decreased in the second.  The problem that appears here 

if R=0 is that the calculation of eqn. 41 might not be possible (even numerically) since it 

is not guaranteed that the matrix that is inversed is not singular.  On the other hand if R is 

very big then the numerical solution of the equation will diverge.   

Since the noise signals W and V are totally uncorrelated the error covariance matrix must 

be diagonal.  Big values of the elements of the main diagonal of P indicate large error in 

the estimation process.   

Furthermore the initial estimation of error must be such to indicate big error; hence the 

elements in P must be very big.  Also P must be positive semi - definite since its 

elements represent the square of the variances, which they must be zero or positive.    

Finally if the system is LTI then gains of the KF will converge very fast to a specific 

value.  Then the so-called Steady State Kalman Filter (SSKF) can be used where the 

gains have been pre-calculated.   
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