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1. Derivation of the KF

The deterministic discrete time state space model of a system is given by:

X(k +1)= @(k)X(k)+I(k)U(k)
Y(k)=H(k)X(k)

The above representation of the system assumes that there is “perfect” knowledge of the

system and the sensors have a perfect response.

Unfortunately the model (which is a mathematical expression of the actual system) will
merely be an approximation and this only under special assumptions/conditions. For
example for the cage rotor IM it is assumed that there is an equivalent three phase
winding on the rotor which may be only a crude assumption. Furthermore the nominal
values of the system may vary during operation. For example the rotor resistances of the
IM may vary up to 50%. Theoretically all these changes and uncertainties can be model
exactly by differential equations. But this is a very tedious and in some cases impossible
task. One solution is to assume that all these changes will have the same effect to the
system as one random signal that is assumed to be a white noise Gaussian signal with
zero mean. Here this random signal will be called the “model uncertainty noise” and will
be denoted as W. The number of these noisy signals will depend on the order of the
system. Hence for a fourth order system, four different signals will be needed. These
noisy signals can be coupled or not, depending on the system. Their variance will be
depended on the level of the uncertainty; hence a large variance will mean low

knowledge of the system’s parameters and vice versa.

The second problem is the fact that some states are not accessible and the ones that can
be measured will be corrupted by the sensor noise. Again in order to include those noises
into the total model, white noise Gaussian signals with zero mean will be used. These
signals will be denoted as V and their number will depend upon number of the system’s
outputs. Once again the variance of these signals will describe the amount of noise that
corrupts the outputs.
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The state space model will now be called stochastic and will look like that of Fig. 1
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Fig. 1 Stochastic state space model

The final problem is that some states are inaccessible. For example the rotor currents at a
cage rotor IM cannot be measured easily and if they are needed then expensive probes
will have to be inserted in the motor and hence all the characteristics that make the IM

popular will vanish.

To overcome this problem estimators have to be used. But the well known deterministic
estimation methods are designed for non-stochastic models. In the presence of noise they
will not be able to produce the same satisfactory results as before. For this reason
another estimator that can cope with stochastic models has to be applied. This estimator

is the Kalman filter.

Before the full derivation of the KF some assumptions are needed. The noisy signals are
white, with zero mean and normal distribution, totally uncorrelated. Also their

autocorrelation for non-zero shift is zero, so:

w, =E[W(K)]=0 €
u, =E[V(k)]=0 2
Q. (J) = EW(K)WT (k + )] =0, forany j = 0 3)
Q,.(})=E[V(k)V (k+ j)|=0, forany j =0 (4)
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Q... (0) = E[W()W" (k)]= (k) ©)
Q. (0) =E[V(k)V" (k)|=R(K) )
Q... () =E[W()VT (k+ )]=0forany j ™)
Q.. (i) = E[V()W (k+ j)]=Oforany | ®)

The stochastic state space model is given:

X(k +1) = @(k)X(k)+ T (k)U(k)+ W(k) (9)
Y(k)=H(k)X(k)+V(k) (10)
The KF has a similar structure to the classical posteriori estimator:

(k) = X(k)+ K (k) (k) - HkOX(K)]

where X(k) is the “posteriori” estimation and X(k) is the “priori” or predicted estimation

of the state.

X(k)=[L-K(k)HK)X(K)+K(K)Y(K) (11)
or: X(k +1)=[1- K(k + DH(k +1)]X(k +1)+ K(k +1)Y(k +1) (12)
Where: X(k +1) =@ (k)X(k)+ T (k)U(k) (13)

Another notation, [90], is X(k)=X(k/k) and X(k)=X(k/k —1), where X(j/i) is the

estimation of the vector state at the moment j by having information up to i.

From eqn. A.12 with the use of A.13:

Chapter 3 4/11



Spring 2008 EEE 8007

X(k+1/k +1)=(1- K(k + DH(k + D) @(k)X(k/k)+ T(K)U(K )+

FK(k+DHK+D)X(k +1)+ K(k+DV(K +1) (14)

Notice that the gain matrix K is variable to have optimal estimation.

Since there is noise in the signal, it is assumed that X(k/k) Is the best estimation of

X(k). The error between the actual state vector and the posteriori estimated is:
X(k+1/k +1)=X(k +1)— X(k +1/k +1) (15)
By using eqgns. 9 and 14:

X(k +1/k +1) = @(k)X (k) + T(K)U(K)+ W(k) - 1- K (k + DH(k + 1)@ (K)X(k /k)+ T(K)U(K))+
~K(k +)H(k +1)X(k +1)- K(k +1)V(k +1)

Again by using eqn. 9 to eliminate the term X(k +1):

Xk +1/k +1) = ®(k)X(k)+ T(K)U(K)+ W(k) - (1 - K(k + DH(k + 1))@ (k)X (k / k)+ T()U(K))+
~K(k +DH(k + 1 @(k)X(k)+ T(k)u(k)+ W(k)) - K(k + 1)V (k +1)

After the multiplications and by selecting the terms that contain X(k) and X(k/k) the

right hand side is:

(@(k)-K(k +D)H(k + 1)@ (k ))X(k) - (@(k ) - K(k +1)H(k +D)(k ))X(k /k)+ T(k)JU(k )+
~(1-K(k+DH(k +2))0(k)u(k) - K(k +)H(k +)r(k)Ju(k)+

+W(K)-K(k +)H(k +)W(k)-K(k +1)V(k +1) (16)

The terms with T'(k)U(k) will be self-cancelled. Also since the error at the sample k+1

i X(k +1/k +1)= X(k +1)— X(k +1/k +1) at k is X(k/k)= X(k)=X(k/k)

(@(k)—K(k + DH(k + D0 (k)X(k /K)+ W(K)~ Kk + Dk + D)W (K)~ K (k +)V(k +1)

(17)

By selecting now the terms that contain W(k) and V(k +1):
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(1-K(k+DH(k + 1))k )X(k /k)+ (T -K(k +1)H)W(K)- K (k +1)V(k +1) (18)

By substituting F(k+1) where (I-K(k +1)H(k +1)):

X(k+1/k +1)=F(k + )@ (k)X(k /k)+ F(k +1)W(k ) - K(k +1)V(k +1) (19)
The covariance of the error is

E(X(k +1/k + )X (k +1/k +1))= E[(F(k + 1)@ (kX (k /k)+ F(k + )W (k) - K(k + )V (k +1))

(F(k + Do (k)X(k /k)+ F(k + IW(K) - K(k +1)V(k + 1)) ]

E[(F(k +1)@(k )X (k /k)+ F(k +1))W (k) - K(k +1)V(k +1))x 20)
((F(k + Dok )Rk /)] + (F(k + )W(K)) —(K(k +DV(k + D) ]

E[(F(k + )@k X(k /k)+F(k + )W (k) - K(k +1)V(k +1))x 21)
(X7 (k/K)DT (K)E™ (k +1)+ WT (K)F" (k +1)- V7 (k + DK (k +1))]

By doing the multiplications:

E[F(k + (k)X (k / k)X (k/k)@" (K)FT (k +1)+ F(k + L)@ (k)X (k /kK)W' (K)FT (k +1)-
F(k +1)@(k)X(k/K)VT (k + )K" (k +1)+ F(k + )W(K)X" (k /K)D" (kK )FT (k +1)

+Fk +)WE)WT (K)FT (k +1)-F(k +)W(K)VT (k + )K" (k +1)+

~KKk+2)V(k + )X (k/k)D" (k)FT (k +1)- K(k +)V(k + )W (K)ET (k )+

+ KKk +D)V(k+D)VT (k + )K" (k +1)] (22)

By breaking the eqn. 22 to its parts:

E[F(k + Do(k)X(k /KX (k /K)DT (k) (k +1)]+ E[F(k + 1)@ (k)X (k / k)W ()F (k +1)]-
+E[F(k + D) (k)X (k /K)VT (k + DK (k +1)]+ E[F(k + DW(K)XT (k /K)D" (k)FT (k +1)]
+E[F(k+D)W(K)WT (K)FT (k +1)]- E[F(k+1)w(k)VT(k+1)KT(k+1)]+
—E[K(k+1)V(k +D)X" (k/ k)™ (k)FT (k +1)]

+E[K(k+1)V(k + D)W (K)F" (k +1)|+ E[K(k + )V (k + )V (k + K (k +1)] (23)
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E(X(k +1/k + D)X (k+1/k +1))= E[F(k + D)(k)X(k /K )X (k /K )" (k)E™ (k +1)]+
+ E[F(k + D)o (k)X (k /K)WT (K)FT (k +1)]+

—E[F(k + Dok )X(k /K)VT (k + DK (k +1)]+

+E[F(k + W)X (k 7K)®T (k) (k +1)]+ E[F(k + )W(K)W" (K)F" (k +1)]+

—E[F(k + )W)V (k + DK (k +1)]- E[K (k + )V (K + )X (k /K )" (k)E™ (k +1)]+
—EKK+D)V(k+ D)W (KFT (k +1)|+ EK(k +DV(k + 1)V (k + DK (k+1)]  (24)

So now the expectations of the above 9 terms must be found and calculated:

E(X(k +1/k +1)XT (k +1/k +1))= P(k +1/k +1), where P is the covariance matrix of the

error.

E[F(k + D)o (k)X(k /KX (k/K)DT (K)FT (k +1)|=

= F(k + )oK )E[X(k /K)XT (k /K)o (K)FT (k +1) =

= Flk+ D0(k)P(k /K)o (O (k +1) @5)
ARk + DX KW KF (k+2)] =0 (26)
~ E[F -+ DRV (kDK (k+2)] =0 @)
R+ DW(OX (/0" (OF (k+1)] = 0 28)

e (- DWW (FT (k 1) Flk = DE[WOWT (< (k +1)

Flk +)Q(K)F" (k+1) (29)

—E[Fk+ WKV (k + 1)K (k +1)|= ~F(k + DE[W KV (k +))K" (k 9% @0

Not Correlated

—E[R(Kk+1)V(K+D)X (k/K)" (K)F (k+1)] = 0 (31)

—E[K K +2)V(k + )W (KFT (k +1)]= -K(k + DE[V(k + )W (K)JF" (k 2% @
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EK(k +D)V(k + VT (k + DK™ (k+1)|= K(k + DE[V(k + )V (k + 1)K (k +1) =
Kk +DR(k +1K" (k +1)

So the outcome is:

Pk +1/k +1)=F(k +1)@(k)P(k /K)D" (k)F" (k +1)+ F(k +)Q(K)JF" (k +1)+
+K(k+1)R(Kk+DK"(k +1)=

P(k +1/k +1)= F(k + 1{@(k)P(k / k)" (k)+ Q(K)JFT (k +1)+ K(k + DR (k + 1)K (k +1)

(33)
By defining as
P'(k)=P(k +1/K) =
= B((X(k) - X(k+1/K) X (K) - X(k +1/K))" )= @(K)P(k /K )@ (k)+ Q(K) (34)
Pk +1/k +1)=F(k +)P(k +1/K)F" (k +1)+ K(k + )R (k + 1)K (k +1) (35)
By substituting F(k+1) again:
P(k+1/k +1)= (1-K(k +DH(k +1))P(k +1/ k)T - K (k +D)H(k +1))" +
+K((k+1)R(Kk+1)K" (k +1) (36)

The goal is now to minimise P(k+1/k+1) by the optimal choice of K(k+1). To do the
above Riccatti Differential Equation (DE) must be solved. (Eqgn. 36 is also called Joseph
form of the covariance update equation). This is a very difficult task and requires

numerical methods; hence the answer is given without any proof:
K(k+1)=P(k +1/K)H" (k + D[H(k +)P(k +1/K)H" (k +1)+ R(k +1)]" (37)

and: P(k+1/k +1)=[1-K(k +)H(k +1)[P(k +1/k) (38)
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To summarise, the next equations form a recursive set to implement the KF:

Pk +1/k)=®(k)P(k /k)D" (k)+Q(k) (39)
X(k +1)= X(k +1/k) = ®(k)X(k )+ T(k)U(k) = @(k) X(k / k) + T(k )JU(K) (40)
K(k+1)=P(k +1/K)H" (k + D[H(k +1)P(k +1/K)H" (k +1)+ R(k +1)]" (41)

X(k+1)=X(k +1/k +1) = (01— K(k +D)H(k +1))X(k +1/k )+ K(k +1)Y (k +1) (42)
Pk +1/k+1)=[1-K(k +1)H(k +1)[P(k +1/k) (43)

If there was coupling between the noisy signals that represent the parameters sensitivity

then a new matrix G must be introduced, Fig. 2.

w Vv

G
U rU+h>'< X Y
—» T —»@4 21 » H -
+L
()]
X

Fig. 2 Stochastic state space model with coupled parameter uncertainty noise

And the above equations would be exactly the same except the first one:

P(k+1/k)=@(k)P(k /k )@ (k)+ Gk )Q(K)G (k) (44)

By using all the above equations the block diagram of the KF is shown in Fig. 3.
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Fig. 3 Block diagram of the discrete time Kalman filter

2 Intuitive Approach to the KF

The Kalman Filter works exactly as a deterministic posteriori estimator. The only
difference is that the goal is not to achieve some error dynamics criteria but to minimise
the error covariance matrix. Hence it can be said that it consists of two parts. In the first
part the prediction of the new state and the new error covariance matrix are taking place,
eqns. 39 & 40 respectively. Also at this stage the new KF gain matrix is calculated from
the previous predicted values egn. 41. Here the estimator is using the previous posteriori

estimation of the state and error covariance matrix.

In the second part the KF corrects the previous measurements. First it corrects the
previous prediction of the states by using current information from the output. The
correction is accomplished by adding to the previous state prediction a weighted
difference between the actual and the predicted output. The weight is nothing more than
the previous KF gains, egns. 42. At this stage the filter is also correcting the error

covariance matrix, eqn. A.43, again by using the KF gain.

As can be seen from the previous equations, to calculate the KF gains the state space
model of the system and the characteristics of the noise signals are needed. Also it is
assumed that the noise signals are represented completely by their mean values (zero in
this case) and covariances. If the characteristic of those signals change then the KF will
not know this and will produce wrong results. Thus the KF must be provided with the
accurate Q and R. Also from eqn. 42 can be seen that the error is influenced by the

matrix H. Fortunately this is not a big problem since the output matrix is usually the
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identity matrix. The uncertainty of A and B (or @ and I') can be described by Q and

hence they do not need to be very accurate.

The covariance matrix Q represents the uncertainty of the model of the system. So if Q
decreases at some point then the KF will assume that the model of the system is more
accurate and hence will focus more on the stage of predicting and not at the stage of
correcting. Therefore the KF gains will decrease. Theoretically if Q=0 then the matrix
gains will converge to zero. Obviously this is will produce poor results since the

estimator tends towards an open loop.

On the other hand if Q increases then the KF will assume that the model of the system is
very inaccurate and hence will increase its gains. The same results will appear if R is
increased in the first case or R is decreased in the second. The problem that appears here
if R=0 is that the calculation of eqn. 41 might not be possible (even numerically) since it
is not guaranteed that the matrix that is inversed is not singular. On the other hand if R is

very big then the numerical solution of the equation will diverge.

Since the noise signals W and V are totally uncorrelated the error covariance matrix must
be diagonal. Big values of the elements of the main diagonal of P indicate large error in

the estimation process.

Furthermore the initial estimation of error must be such to indicate big error; hence the
elements in P must be very big. Also P must be positive semi - definite since its

elements represent the square of the variances, which they must be zero or positive.

Finally if the system is LTI then gains of the KF will converge very fast to a specific
value. Then the so-called Steady State Kalman Filter (SSKF) can be used where the
gains have been pre-calculated.
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