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Nonlinear Dynamics 

1. Linear Combination 

Until now we have seen only linear (autonomous) systems which 

unfortunately can only fully describe a small class of real systems. In general 

a nonlinear system is given by: 

      x t f x t ,u t  (1) 

with 1 1 1    n q nx ,u , f  

The main property of a linear system (as we have seen) is that if you have 2 

solutions x1 and x2 then also their linear combination is a solution. 

For example, if we have:   3x t x   and 
3

1

tx e  and 
3

2 7 tx e  then 

3 3

3 1 210 2 10 14t tx x x e e      is also a solution as: 
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However this is not the case in nonlinear systems:   2x t x   and a solution: 

1
x

t C



 as 

 
2

1
x

t C
 


 and 

 

2

2

2

1 1
x

t C t C

 
     

  
 but 

1
3Ax

t C



 is not a solution: 
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2

2
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3 9 3
x x

t C t C t C

 
        

   
  

2. Equilibrium points 

Before we see more differences between linear and nonlinear systems it is 

important to understand the concept of the equilibrium or rest or singular point 

which is defined as the point where  

  0x t  (2) 

For first order linear systems we have that 

                 10 0      EP EPx t A t x t B t u t x t A t B t u t  (3) 

For autonomous systems:   0EPx t  and for that reason in Chapter 3 all the 

state spaces were drawn with respect to the origin: 
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One of the biggest differences between linear and nonlinear systems is that a 

nonlinear system may have more than one EPs.  

Example 1.1: Find the EPs of 
1 1 2

2 2

2 1 2 2

 

  

x ' x x

x ' x x
 

The EPs are: 

1 2 1 2 1 21

2 2 2 2 2
2 1 2 1 1 1

0
0

02 2 2 2

          
           

            

x x x x x xx '

x ' x x x x x
 

   

   

1 2

1 2

11

1 1


 

  

x ,x ,

x ,x ,
 

So we have 2 Eps at (1,1) and at (-1,-1). 
1 

Example 1.2: Find the EPs of 

2

1 1 2 1 2 2

2

2 1 2 1

3 10

4

x ' x x x x x

x ' x x x

  

 
 

The EPs are: 

2

1 2 1 2 2

2

1 2 1

3 10 0

4 0

x x x x x

x x x

   


  

 

From the 2nd expression we have that 
1 0x  or 

2 4x  

From the 1st expression we have for 
1 0x  

2 0x  i.e.    1 2 0 0x ,x ,  and for 

1 2 4x x  we have that either 
2 0x  which implies that 

1 0x  (as before) or 

2

1 13 10 0  x x  which is a 2nd order polynomial and can easily be solved as: 

                                                 
1 syms x1 x2, f1=x1-x2, f2=x1^2+x2^2-2, [x1s x2s]=solve(f1,f2) 
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1

1 2

2

1 1 2

1

1 1 2

5 5 43 7
49

2 2 2 4

      
     

  
,

x x ,x ,
x

x x ,x ,
 

So the system has the following EPs: 

           1 2 1 2 1 20 0 5 4 2 4   x ,x , , x ,x , , x ,x ,  
2 

In linear systems we were using the term stable/unstable system but 

effectively we will referring to the equilibrium point. Now that we have 

multiple equilibriums we need to determine the stability of each EP. It has to 

be stated here that for nonlinear systems it does not make sense to talk about 

stable/unstable systems, but for stable/unstable EPs as it is possible to have 

systems with multiple EPs and some of them to be stable and other to be 

unstable. Also, the stability of linear systems was determined by the 

eigenvalues of the state matrix. Hence, now we need a state matrix for each 

fixed point.  

3. Linearisation 

In order to determine if each of the EPs of a nonlinear system is stable or not 

we have to take a “local” picture of each EP. This local picture is called a 

linearization. I.e. we will describe each EP in a neighbourhood around it. The 

main tool for that is the Taylor series. Remember that the Taylor series around 

a point x0 is defined as: 

   
           

0 0 0

2 32 3

0 0 0

0 2 31 2 3
  

    
   

  
x x x x x x

x x x x x xf x f x f x
f x f x ...

x ! x ! x !
  

                                                 
2 Notice how the command solve returns the results. 
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Example 1.3: Approximate the function y=sin(x) with respect to x around 

x=0, using several expansion orders.  

The TS of sin(x) around x=0 is: 

   
3 5 7 9

11sin
3! 5! 7! 9!

     
x x x x

x x O x  

Now let’s try to approximate sin(x): 
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3 

So by increasing the order of the Taylor Series we get a better approximation. 

But let’s get back to the first term y=x, obviously it is not a good 

approximation but if we focus close to the origin then: 

 

                                                 
3 x=-2*pi:0.01:2*pi; plot(x,sin(x)), hold on, plot(x,x), plot(x,x-x.^3/6), plot(x,x-x.^3/6+x.^5/120), plot(x,x-

x.^3/6+x.^5/120-x.^7/5040),  plot(x,x-x.^3/6+x.^5/120-x.^7/5040+x.^9/362880) 
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So we see that close to the origin effectively the two traces coincide, i.e. our 

approximation is good “close” to the point of expansion. This is exactly how 

we will study a nonlinear system and the stability of their EPs. By 

approximating them locally using a Taylor series expansion and by keeping 

only the linear term: 

Assume that we have a nonlinear system  

 

 

 
 

11

2 2

3 3

f xx

x f x
x t f x

x f x

  
  
    
  
  
    

 and a 

EP at x=xEP, then the TS expansion is: 

   
  
 

  
EP

EP EP

x x

f x t
x t f x x t x HOT

x t



   


 

By keeping only the linear term we have: 

   
  
 

  
EP

EP EP

x x

f x t
x t f x x t x

x t



  


 (4) 

As   0EPf x : 

 
  
 

  



 


EP

EP

x x

f x t
x t x t x

x t
 

Obviously we also have that: 0EPdx

dt
 and hence: 
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EP

EP

EP

x x

d x t x f x t
x t x

dt x t
 

We can define now a new variable:      EPx t x t x  and we have that: 

  
 







EPx x

f x tdx
x

dt x t
 

Also, 
  
 

  
 

  
 

  
 

  
 

  
 

  
 

1 1 1

1 2

2

1

1

EP

EP

n

x x

n n

n x x

f x t f x t f x t

x t x t x t

f x t
f x t

Ax t
x t

f x t f x t

x t x t





   
 

   
 

 
  

  
 
 
 
 
   

 (this 

matrix is called the Jacobian of f) and hence: 


dx

Ax
dt

 (5) 

Which is a linear equation that we know how to solve and how to determine 

its stability.  

Similarly if    x t f x,u  then: 

    
 

    
 

   

 
 

 
EP EP EP EPx x ,u u x x ,u u

f x t ,u t f x t ,u tdx
x u

dt x t u t
 (6) 

with   EPu u u  
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which will give us:  
dx

Ax Bu
dt

 

which is the form for a linear state space model.  

Example 1.4: Find the EPs and determine the stability of its EPs 2 1x x    

For the EPs we set 20 1 0 1EPx x x        . 

Now the Jacobian is: 
   2 1

2
xf x

A x
x x

  
   

 
 

And when this is evaluated at the 2 EPs: 
2

2
A


 


 

Hence, the 2 state space models are: 

2x x   for 1EPx   

2x x   for 1EPx    

This implies that the eigenvalue of the 1st EP is -2 and hence this EP is stable, 

while the eigenvalue of the 2nd EP is +2 and hence that EP is unstable. So we 

expect the following 1D state space: 

-1 +1  

It is interesting to note here, that if we start at the left of the EP -1, I will 

diverge to -. While otherwise I will converge to +1: 
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4 

 

Example 1.5: Find the EPs and determine their stability for 
1 1 2

2 2

2 1 2 2

 

  

x ' x x

x ' x x
  

We have seen that the EPs are: 
   

   

1 2

1 2

11

1 1

x ,x ,

x ,x ,




  

 

So we have: 

   

   

1 2 1 2

1 21 1 2

2 2 2 2 2 2
1 22 1 2 1 2 1 2

1 2

1 1

2 22 2 2

x x x x

x xx ' x x
A

x xx ' x x x x x x

x x

    
 

                       
   

 

Now the Jacobian evaluated at the EPs: 

 

                                                 
4 hold on, for x0=-1:0.5:1.5, sim('non_1D.slx'), plot(x(:,1),x(:,2)), end 
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1

1 1 3 17

2 2 2

i
A eigs

  
   
 

 which implies that (1,1) is an unstable focus. 

2

1 1 1 17

2 2 2
A eigs

   
   

  
 which implies that (1,1) is a saddle. 

Now in order to understand what happens we have to draw the eigenvectors of the saddle 

(the eigenvectors of the focus do not give us anything as we have seen). The saddle has 2 

eigenvalues at 1.56 and -2.56 with the corresponding eigenvectors being: 

1

1

0 56
e

.

 
  

 
 and 

2

0 28

1

.
e

 
  
 

 

Hence, the state space is: 

 

 
5 

                                                 
5 syms x1 x2, f1=x1-x2, f2=x1^2+x2^2-2, [x1s x2s]=solve(f1,f2), J=jacobian([f1 f2], [x1 x2]); 

A1=subs(J,{x1,x2},{x1s(1) x2s(1)}), A2=subs(J,{x1,x2},{x1s(2) x2s(2)}), eigsA1=eval(eig(A1)) 

eigsA2=eval(eig(A2)) 
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4. Limit cycles 

Apart from the previous difference of having multiple equilibria in nonlinear systems, 

another feature of these systems is that it is possible to have a persistence periodic motion, 

a limit cycle. Assume the Van der Pol system  2 1 0x x x x     . The time and the 

state space responses are: 
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5. Bifurcations 

Another difference between linear and nonlinear systems is the phenomenon 

of bifurcation, which (very briefly) is the creation (or destruction) of equilibria 

by changing some (one in our case) parameters of the system. This can be the 

inductance in an RL circuit, the mass of a mass-spring system, the force 

applied on a bridge, the temperature in a water tank… So now, we study 

systems of the form  x f x, p , where p is a vector that contains the system’s 

parameters that may change and effectively the algebraic equation  

  0f x, p   has different number of solutions for different parameters in p. 

Example 1.6: Assume6 the system 
2x r x   for various values of r. The 

equilibria are: 
2 2x r x x r     

 

So if r>0 there are no equilibrium points 

                                                 
6 Example taken from https://en.wikipedia.org/wiki/Saddle-node_bifurcation  
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While if  r<0: 

2 2x r x x r       

i.e. 2 equilibria which for various values of r are: 

 

The linearised system closed to these 2 points is: 

 

 

2

0

2

0

2

2

r

r

x x t ex rx

x rx x x t e



 

    
 

     

 

The response for r=-1: 

hold on 
for r=-10:0.1:0 
    plot(r,sqrt(-r),'k.') 
    plot(r,-sqrt(-r),'k.') 
end 
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6. Stability  

In linear systems we called a system stable if the orbit was not diverging to 

infinity (exponentially or with oscillations). In nonlinear systems, we have 

multiple equilibria and we must check the stability “locally” around each 

equilibrium point. But we need a more general definition that will allow us to 

focus on “global” stability. Assume that we have a general nonlinear ODE 

and a specific solution x(t). Obviously as this will depend on the initial 

conditions we can denote it as   0x t ,t . Now we want to test the stability 

of the general orbit φ (note that the EP can be one such orbit). To do that, we 

add a perturbation (say at t=t0)  and then we observe the perturbed orbit. If it 

stays “close” to the nominal then it is called stable. Effectively this means that 

for each required Δ we can always find a suitable δ.  
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  0 0x t ,t t 

  0 0x t ,t t  



  0 0x t ,t 

  0 0x t ,t



 
As we are focused on equilibria we have the following definition: 

An equilibrium point 
Ex is stable if for each R>0 there exists an r>0 such that 

 0Ex x t r  , then  Ex x t R   

One of the most important theorems that are used to study the stability of 

nonlinear systems is called: Lyapunov Stability Theorem 

Let function V of the states x, such as: 

   0V x   

   0V x   

  
x
lim V x


  

then the equilibrium point is globally asymptotic stable. 

The difficulty here is how to find the function V, so for the purposes of this 

module, this function V will be given.  

Example 1.7: Determine the stability of the origin of  

2

22

x x y xyd

ydt x y x y

    
   

     

, by using   2 2,V x y x y   as a candidate 

Lyapunov Function and by using local linearization: 
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  2 2, 0V x y x y    

     

 

2 2

2 2 2 2 2 2

22 2 2 2 2 2

, 2 2 2 2 2

2 2 2 4 2 2

2 2 2 4 2 4 0

V x y xx yy x x y xy y x y x y

x xy x y xy y x y

x xy y x y x y x y

          

       

         

 

 

2 2

22

2

2

1 1 2

2 2 12

1 1 1 1
0 1 2 0

2 1 2 1

2 4 12
2 3 0

2

complex with negative real part, so stable

x y xy y xy
F A

xy xx y x y

r
A r

r

r r r

       
      

        

   
              

  
     

 

 
7 

 

 

 

 

 

 

                                                 
7 syms x1 x2, f1=-x1+x2-x1*x2^2; f2=-2*x1-x2-x1^2*x2; [x1s x2s]=eval(solve(f1,f2)); J=jacobian([f1 f2], 

[x1 x2]); A1=subs(J,{x1,x2},{0 0}); eigsA1=eval(eig(A1)) 
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7. Exercises 

1) For the system 
 

2 2

1

4

u vud

vdt u v

   
   

     

,  

i. Find the fixed points and classify them according to their stability.  

ii. Make a draft sketch showing the fixed points and a few trajectories.  

 

2) For the system 
2

22

x x y xyd

ydt x y x y

    
   

     

, prove that the system has a stable equilibrium 

point at the origin, using: 

i.    2 2,V x y x y  .  

ii. Local linearization. 

 

3) For the Lorenz equations: 

  , ,x a y x y bx y xz z xy cz        where , , 0a b c   are constants: 

i. Find the equilibrium point(s). 

ii. Show that if 1b  , then the origin is the only equilibrium point, and that there 

three equilibrium points if 1b  . Discuss the stability of the origin for b<1 and 

for b>1. It is given that for b<1 we have that    
2 2

1 1 4a a ab     while for 

b>1 we have that    
2 2

1 1 4a a ab    . 

4) Determine the stability of the equilibrium points of 
2dx

rx x
dt

   for r<0 and r>0. 

Sketch a draft bifurcation diagram.  

5) Assume an input matrix 

1 2

1 3
B

 
  
   and four state matrices: 

1 2 3 4

2 0 2 0 2 3 2 3
, , ,

0 3 0 3 3 2 3 2
A A A A

          
          

        
 

i. Find the equilibrium points of each system. 
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ii. Find the eigenvalues and hence describe the response of each system starting from 

a)
 0 0

T
x

 and b) from the equilibrium point.  

iii. Create the Simulink model for the above systems and hence crosscheck your 

previous answers.  

6) For a given function
   cosf x x

 

i. Find the 1st, 2nd, 3rd and 4th order TS expansion around x=0.  

ii. Using Matlab crosscheck that the fourth order is indeed a better approximation that 

the 1st order one. 

7) A nonlinear system is given by 
2 2,x x y x xy y x y        

i. Find the equilibrium points. 

ii. Determine the stability of each point.  

iii. Create a draft sketch of the state space. 

iv. Create the Simulink model of system and hence crosscheck your answers. 

v. For each EP, simulate the linearized approximation of the nonlinear system and 

compare the responses. 

8) For the system 
2x r x   : 

i. Describe its response based on the values of r. 

ii. Create a Simulink model that will crosscheck your answer.  

9) Repeat question 8 for 
2 ,x a x y y     

 

8. Matlab Based Exercises for EEE8086 

Crosscheck your analysis in section 7 using Matlab. This must include mfiles 

and Simulink models.  
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