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Chapter 4 EEE8086-EEE8115
Nonlinear Dynamics

1. Linear Combination

Until now we have seen only linear (autonomous) systems which
unfortunately can only fully describe a small class of real systems. In general

a nonlinear system is given by:
X(t)=f(x(t)u(t)) o)
with x e R"*,ue R, f e R™

The main property of a linear system (as we have seen) is that if you have 2

solutions x; and X, then also their linear combination is a solution.

For example, if we have: X(t)=-3x and x =e™ and x,=7e™ then

X, =10x, —2x, =10e™* —14e™* is also a solution as:
d(10e ™ —14e™*)

dt
—3(1Oe‘3‘ _14e™ ) — 30 +42e ¥ =12¢

=-30e* +42¢ ¥ =12

However this is not the case in nonlinear systems: x(t) =—x” and a solution:

1 , 1 , 1 Y 1
X=—— as X=-— and X =—|—=<| =— but

X —3—1 i i
AT C is not a solution:
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oo 3 d_xz:_(_j:_ 9 , 3 _
(t+cy & t+C (t+Cy  (t+C)

2. Equilibrium points

Before we see more differences between linear and nonlinear systems it is
important to understand the concept of the equilibrium or rest or singular point

which is defined as the point where

X(t)=0 (2)
For first order linear systems we have that

X(1)=0< A(t)Xg (1) + B(t)u(t) =0 X (1) =—A™ (1) B(t)u(t) 3)

For autonomous systems: x.,(t)=0 and for that reason in Chapter 3 all the

state spaces were drawn with respect to the origin:

PN
N NS

v

Stable node Unstable node Saddle

Unstable Proper Node/Star Stable Proper Node/Star

D ()
NN

Stable Focus Unstable Focus Centre
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One of the biggest differences between linear and nonlinear systems is that a

nonlinear system may have more than one EPs.

' —X
Example 1.1: Find the EPs of % X12 :
X, =X +X;, -2

The EPs are:

x| X=X |0 =% X =%
X" =0< 2 2 _o| 1.2 2 < 2
) X, + X, —2 0 X, +X =2 2%, =2

So we have 2 Eps at (1,1) and at (-1,-1). m!

"= XX, +3%X, —10X
Example 1.2: Find the EPs of TN TN 2

le = X12X2 _4X1
The EPs are:

X X, +3%X, —10X, =0
X% —4% =0

From the 2" expression we have that x, =0 or x, =4

From the 1% expression we have for x, =0 x, =0 i.e. (x,,X,)=(0,0) and for
XX, =4 we have that either x, =0 which implies that x, =0 (as before) or

x2 +3x,—10=0 which is a 2" order polynomial and can easily be solved as:

Lsyms x1 x2, f1=x1-x2, f2=x1"2+x2"2-2, [x1s x2s]=solve(f1,f2)
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_ =-5=(x,X)=(-54
A— 495 x, — 3i7:{><11 (%%)=(-5.4)

2

So the system has the following EPs:

(X1’X2):(O’O)’(Xbxz):(_5'4)’()(1’)(2):(2'4) m’

In linear systems we were using the term stable/unstable system but
effectively we will referring to the equilibrium point. Now that we have
multiple equilibriums we need to determine the stability of each EP. It has to
be stated here that for nonlinear systems it does not make sense to talk about
stable/unstable systems, but for stable/unstable EPs as it is possible to have
systems with multiple EPs and some of them to be stable and other to be
unstable. Also, the stability of linear systems was determined by the
eigenvalues of the state matrix. Hence, now we need a state matrix for each

fixed point.
3. Linearisation

In order to determine if each of the EPs of a nonlinear system is stable or not
we have to take a “local” picture of each EP. This local picture is called a
linearization. I.e. we will describe each EP in a neighbourhood around it. The
main tool for that is the Taylor series. Remember that the Taylor series around

a point Xo is defined as:

0= 1) 20 %) PO o) 2T 00) (o)

OX 1! OX? 21 ox® 3!

X=Xg X=Xg X=Xo

2 Notice how the command solve returns the results.
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Example 1.3: Approximate the function y=sin(x) with respect to x around
x=0, using several expansion orders.
The TS of sin(x) around x=0 is:

- x* x> x X
Sln(x)zx_§+a—ﬁ+a+0(xn)

Now let’s try to approximate sin(X):

5 T 5 T T T T T
4r // 4r y=x-x3/6 /
3f 3f /
2r 2r
1r 1F
/

of of
al al /
2 2f

/ /
af / af /

y=sin(x) y=sin(x)
4+ / 4+
y=x y=x
5 L 5 . L .
-8 6 4 2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 8

5 5
4 41
3r 3r
2r 2r
1r 1r
or or
- -
-2 -2
-3r -3r
-4 -4
-5 -5
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+x2/3628

y=x-x>/6+x2/120-x" 15040

.3
So by increasing the order of the Taylor Series we get a better approximation.

But let’s get back to the first term y=Xx, obviously it is not a good

approximation but if we focus close to the origin then:

05

y=sin(x)

-0.5

-1.5

3 x=-2*pi:0.01:2*pi; plot(x,sin(x)), hold on, plot(x,x), plot(x,x-x."3/6), plot(x,x-x."3/6+x.25/120), plot(x,x-
X.3/6+x.75/120-x.77/5040), plot(x,x-x.*3/6+x."5/120-x."7/5040+x."9/362880)
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So we see that close to the origin effectively the two traces coincide, i.e. our
approximation is good “close” to the point of expansion. This is exactly how
we will study a nonlinear system and the stability of their EPs. By
approximating them locally using a Taylor series expansion and by keeping

only the linear term:

(%] | f(x)
Assume that we have a nonlinear system x(t) = ).(2 = :ngi =f(x)anda
X5 (X

EP at x=xgp, then the TS expansion is:

ot (x(t)

X(t)=f (Xep )+ (1) (X(t)—Xgp )+ HOT

X=Xgp

By keeping only the linear term we have:

(X(t)_XEP) (4)

X=Xgp

dx

Obviously we also have that: d—?’ =0 and hence:
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We can define now a new variable: x(t)=x(t)—xg and we have that:

dx _ of (x(t))
dt  ox(t)

X=Xgp

Lo (x(1) e (x(t) e (x(t)]
ox(t)  x(t) ox, (t)
of, (x(t))
Also, ﬁaE()zEt))) T axl.(t) =A (this
of, (x(t)) of, (x())
o, (1) () | .

matrix is called the Jacobian of f) and hence:

dx

22 _Ax 5
gt ()

Which is a linear equation that we know how to solve and how to determine
its stability.

Similarly if x(t)=f (x,u) then:

dx _ of (x(t).u(t)) o A (x(®) u(t)

u
b u 6
it ax(t) A - ©)

X=Xgp U=Ugp

X=Xgp U=Ugp

with 0T =u—ug,
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which will give us: ‘;'I_l‘ _ AX+ B0

which is the form for a linear state space model.
Example 1.4: Find the EPs and determine the stability of its EPs x=—x* +1

For the EPs we set Xx=0=>-X*+1=0=> X, =+1.

_ 2
Now the Jacobian is: A= of (X) = a( X +1) =-2X
OX OX

. —2
And when this is evaluated at the 2 EPs: A:{ )

Hence, the 2 state space models are:
X =—2X for x., =1
X =+2X for x., =—1

This implies that the eigenvalue of the 1% EP is -2 and hence this EP is stable,
while the eigenvalue of the 2" EP is +2 and hence that EP is unstable. So we

expect the following 1D state space:

<4—<—O0—Pp—> 0= - >
-1 +1

It is interesting to note here, that if we start at the left of the EP -1, I will

diverge to -oo. While otherwise | will converge to +1:
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1.5¢

0.5

-0.5

1571

X' =% =%,

Example 1.5: Find the EPs and determine their stability for ,
X, =X +X;, -2

X, )= 1,1
We have seen that the EPs are: {(Xl )= (L)
(%,%,)=(-1-1)
So we have:
- o4=%) (= x%) |
Xl' =X =X 6x1 8)(2 1 1
X, = X2+ X5 — = A= 2, y2 _ 2,2 =
) =X HX, =2 a(x1 + X5 2) a(x1 + X, 2) 2%, 2X,
L 0%, OX, |

Now the Jacobian evaluated at the EPs:

4 hold on, for x0=-1:0.5:1.5, sim('non_1D.slx"), plot(x(:,1),x(:,2)), end
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1 -1 + T
A= L 5 } —eigs = 3—7\/1_7| which implies that (1,1) is an unstable focus.
1 -1 14
A = { ) 2} = eigs = 1_TJ1_7 which implies that (1,1) is a saddle.

Now in order to understand what happens we have to draw the eigenvectors of the saddle
(the eigenvectors of the focus do not give us anything as we have seen). The saddle has 2

eigenvalues at 1.56 and -2.56 with the corresponding eigenvectors being:

1 0.28
e = and e, =
—0.56 1

Hence, the state space is:

25—

.5

5 syms x1 x2, f1=x1-x2, f2=x1"2+x2"2-2, [x1s x2s]=solve(f1,f2), J=jacobian([f1 2], [x1 x2]);
Al=subs(J,{x1,x2},{x1s(1) x2s(1)}), A2=subs(J,{x1,x2},{x1s(2) x2s(2)}), eigsAl=eval(eig(Al))
eigsA2=eval(eig(A2))
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4. Limit cycles

Apart from the previous difference of having multiple equilibria in nonlinear systems,

another feature of these systems is that it is possible to have a persistence periodic motion,
a limit cycle. Assume the Van der Pol system X + (x2 —1))'( + X =0 . The time and the

state space responses are:
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5. Bifurcations

Another difference between linear and nonlinear systems is the phenomenon
of bifurcation, which (very briefly) is the creation (or destruction) of equilibria
by changing some (one in our case) parameters of the system. This can be the
inductance in an RL circuit, the mass of a mass-spring system, the force
applied on a bridge, the temperature in a water tank... So now, we study

systems of the form % = f (x,p), where p is a vector that contains the system’s

parameters that may change and effectively the algebraic equation

f (x, p) =0 has different number of solutions for different parameters in p.

Example 1.6: Assume® the system X=r + x> for various values of r. The

equilibria are: X=r+x* < x> =—r

Pl I
Scope

1 >+ 1III
+ s X | > X

Constant N
Add Integrator
Product

So if r>0 there are no equilibrium points

6 Example taken from https://en.wikipedia.org/wiki/Saddle-node_bifurcation
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0 0.2 0.4 0.6 0.8 1 1.2
time, s

While if r<0:
X=r+Xx < x> =tJ-r

I.e. 2 equilibria which for various values of r are:

4
T
___ I NP
for r=-10:0.1:0 | [T
plot(r,sgrt(-r), 'k.") g vy LT =
plot(r,-sgrt(-r), 'k.") 3 ’ \L i, »L
end Tay v
T T T T
0B 5 e 2 0

The linearised system closed to these 2 points is:

Il
xQ

2J-rx X
p—
“2J-rx| %

X

(t )GZﬁ
%(t,)e 2"

X

The response for r=-1:
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6. Stability

In linear systems we called a system stable if the orbit was not diverging to
infinity (exponentially or with oscillations). In nonlinear systems, we have
multiple equilibria and we must check the stability “locally” around each
equilibrium point. But we need a more general definition that will allow us to
focus on “global” stability. Assume that we have a general nonlinear ODE

and a specific solution x(t). Obviously as this will depend on the initial
conditions we can denote it as ¢(x(t0) ,t). Now we want to test the stability

of the general orbit ¢ (note that the EP can be one such orbit). To do that, we
add a perturbation (say at t=ty) and then we observe the perturbed orbit. If it
stays “close” to the nominal then it is called stable. Effectively this means that

for each required 4 we can always find a suitable 6.
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d(x(t,)+ 5t +1,)

A
¢(x(to>+5,to)k7¢<x<to),t+to>
)

#(x(t) )

As we are focused on equilibria we have the following definition:

An equilibrium point x_is stable if for each R>0 there exists an r>0 such that

% — x(t, )] <7, then [, —x(t)] <R

One of the most important theorems that are used to study the stability of

nonlinear systems is called: Lyapunov Stability Theorem
Let function V of the states X, such as:

o V (X) >0

° V (X) <0

° H|‘i‘mV(X):oo

then the equilibrium point is globally asymptotic stable.

The difficulty here is how to find the function V, so for the purposes of this

module, this function V will be given.

Example 1.7: Determine the stability of the origin of

. . 2
i{ﬂ: XTy= by using V (X, y)=x"+y* as a candidate
dt|y] |-2x-y-x°y

Lyapunov Function and by using local linearization:
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V(xy)=x"+y*>0

V(X,y)=2xx+2yy = 2x(—x+ y—xy2)+ 2y(—2x— y—XZy):
= —2X° +2xy — 2X°y? —4xy —2y® —2X°y°® =

=—2x" = 2xy -2y’ —4X’y? =-2(x+y) —4x’y’ <0
. w2 12 .

F_ X+Y—Xy A 1-vy 1 2x32/ N
_2X_y_)(2y —2—2xy -1—-x

-1 1 —1-r 1
A= —
{—2 —1} ‘ -2 —1-r

—2++/4-12
> —>

0= (-1-r)+2=0

rF+2r+3=0=>r=

complex with negative real part, so stable

"syms X1 x2, f1=-x1+x2-x1*x2/2; f2=-2*x1-x2-x1"2*x2; [x1s x2s]=eval(solve(f1,f2)); J=jacobian([fl 2],
[x1 x2]); Al=subs(J,{x1,x2},{0 0}); eigsAl=eval(eig(Al))
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7. Exercises

1) For the system di[u}:{ u(v-1) :|

tpv 4-u?—v?
i. Find the fixed points and classify them according to their stability.

ii. Make a draft sketch showing the fixed points and a few trajectories.

—X+ Yy —Xxy?

2) For the system %[X} = [ } , prove that the system has a stable equilibrium
y

—2X—y—Xx’y
point at the origin, using:
i V(xy)=x"+y%

ii. Local linearization.

3) For the Lorenz equations:

X:a(y—x), y=bx—y—xz,Z=xy—cz where a,b,c>0 are constants:
i.  Find the equilibrium point(s).
ii. Show that if b<1, then the origin is the only equilibrium point, and that there
three equilibrium points if b >1. Discuss the stability of the origin for b<1 and

for b>1. It is given that for b<1 we have that (1+ a)2 > (1—a)2 +4ab while for

b>1 we have that (1+ a)2 < (1— a)2 +4ab.

4) Determine the stability of the equilibrium points of %: rx—x* for r<0 and r>0.

Sketch a draft bifurcation diagram.

1 2

1 3

5) Assume an input matrix and four state matrices:

S PR L T D T

I.  Find the equilibrium points of each system.
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ii.  Find the eigenvalues and hence describe the response of each system starting from

2 X[0 of

iii.  Create the Simulink model for the above systems and hence crosscheck your

and b) from the equilibrium point.

pI'EViOUS anNSWEers.

6) For a given function f(x)=cos(x)
I.  Find the 1st, 2nd, 3rd and 4th order TS expansion around x=0.
ii.  Using Matlab crosscheck that the fourth order is indeed a better approximation that

the 1st order one.

7) A nonlinear system is given by X=X~ y=X"+xy,y=-X"-y
i.  Find the equilibrium points.
ii.  Determine the stability of each point.
iii.  Create a draft sketch of the state space.
iv.  Create the Simulink model of system and hence crosscheck your answers.
v.  For each EP, simulate the linearized approximation of the nonlinear system and

compare the responses.

8) For the system X=r+X" .
i.  Describe its response based on the values of r.

ii.  Create a Simulink model that will crosscheck your answer.

. 2
9) Repeat question 8 for X=& =X, Y ==Y

8. Matlab Based Exercises for EEE8086

Crosscheck your analysis in section 7 using Matlab. This must include mfiles

and Simulink models.
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