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Section 3 Kinematics 

3.1 Introduction 
The location of an object in a 3D space can be found by using coordinate 
frames and by applying transformations that are fully described by the 
transformation matrix.  The original (world) reference frame can be attached 
on the robot base or on the end effector.  
 
Kinematics is the relationship between the positions, velocities and 
accelerations of the links of a manipulator.  The task here is to define the 
position and orientation of the end effector with respect to the robot base by 
the transformation matrices that were derived in the previous paragraphs.  
The manipulator will be considered to be a series of links that are connected 
with joints.  As before the first link (link 0) is the immobile robot base and the 
last (link n) is the robot hand.  The first joint (joint 1) is the waist and it 
connects link 0 with link 1.  Hence the joint n connects link n-1 with link n.  
The link that is closer to the base, with regard to a joint, is called the proximal 
link and the link that is the most distant is called the distal link (here it is the 
next link since one degree of freedom is assumed).  Finally every link has an 
axis that connects the two joints. 
 

 
Figure 3.1 Prismatic and revolute joints 

It has already been mentioned that there are revolute and prismatic joints, 
Figure 3.1. To simplify the mathematics these joints will be considered to be 
of one degree of freedom.  Hence in a revolute joint only one rotation is 
allowed and one translation for the prismatic joint.  An axis will describe the 
translation and the rotation, the joint axis, Figure 3.3.  Revolute joints can 
rotate around their axis and prismatic axes can slide. 
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Figure 3.2 Prismatic and revolute joints with the axis of rotation and translation 

If the joint axis and the link axis coincide then the joint is called collinear and if 
the joint axis is perpendicular to the proximal link axis then it is termed 
orthogonal, Figure 3.3. A new coordinate frame is now going to be attached to 
each link.  The angles and displacements between the links are named as 
joint coordinates and will define the transformation from the one frame to the 
other, i.e. from the one link to the other.  By combining all these translations 
and rotations it is possible to describe the last link with respect to the base, or 
to describe the orientation and the position of a frame that is attached to the 
last link with respect to the original frame that is attached in the base.   

  
Figure 3.3 Joint and link axes 
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3.2 Denavit and Hartenberg method 
The relationships between the frames can follow many configurations but by 
far the most popular is the one of “Denavit and Hartenberg”.  This method of 
describing the frames in each link is straightforward and it can greatly simplify 
the mathematics. The whole idea of this method is to assign reference 
frames on each link (including the robot base) and to compute the 
relative transformation(s) between them.   
 
The first frame {0} will describe the robot base (link 0) and frame {1} will 
describe the torso (link 1). So we have to define a transformation matrix from 
{0} to {1}. Thus, we have to properly assign the reference frames of {0} and {1} 
or in the general case {n-1} and {1} which are connected through the joint n.  
 
The first thing that must be established is the relation between two joints, n-1 
and n: 

  
Figure 3.4 A single link with the two joints 

As it has been said every joint has 1 degree of freedom and this is described 
by the joint axis: 

  
Figure 3.5 Joint axes 
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Two parameters now can fully define the location of the joint axis n with 
respect to the n-1.  First of all the link length, l, which is the distance 
between the two skew lines: 

  
Figure 3.6 Link length 

Secondly if a line parallel to the joint axis n is created at the intersection of the 
joint axis n-1 and the common normal then a new angle, a, will define the 
link twist; 

  
Figure 3.7 Link twist 
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If there are three joints then two link lengths and two link twists will be defined: 
 

 
 Figure 3.8  Link twists and lengths 

The task now is to describe the link n with respect to n-1. To do this two more 
parameters have to be defined.  The first one is the link offset, d, which is 
the distance between the points A and B: 

 

n-1
n
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n
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an

A
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dn

 
Figure 3.9 Link twists, lengths and offset 
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It is very important now to notice that if the joint n was prismatic then the link 
offset would have been variable: 

  
Figure 3.10 Variable link offset 

The last parameter now that has to be defined is the link angle, θ.  To do this, 
create a parallel to the link length ln at the intersection of the common normal 
of joints n-1 and n and the link axis n: 
 

  
Figure 3.11 Link twists, lengths and joint angle 
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Notice that if joint n is revolute then the angle θn is variable. The link length, 
twist, offset and angle between the first link (robot base) and the second link 
(1) are assumed to be zero. 
The axis that describes the translation or rotation of a joint is the z-axis.   
Hence, the z-axis of the frame {n} will coincide with the joint axis n: 
 

  
Figure 3.12 z-axes allocation 

The origin now of the frame {n-1} is located at the intersection of the line ln-1 
and the joint axis n-1.  The direction of the x-axis will coincide with the line 
ln-1 and it will point towards joint n.   
 
The y axis will be found from the right hand rule: 
 

  
Figure 3.13 Frame allocation 
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Special Cases 
In the case where there is an intersection between the two skew lines the 
common normal has zero length and the origin has to be placed at the 
intersection of the two skew lines.   
If the two joint axes are parallel there is an infinite number of common 
normal(s) and hence there can be an arbitrary selection of origins.  The most 
common choice is to select the origin in such location that will make the dn-1 
zero or the x-axis will have the direction of the previous common normal. 
 
First and last frame 
The location of the zero frame can be located anywhere.  But is usually 
chosen to be in such a way that it will coincide with frame {1} when the joint 
variable is zero. 
 
For the purposes of this module usually all x-axes will remain parallel 
when the joint variable is zero.  
 
Having assigned the DH link parameters, it is common to see the link 
parameters summarised in a table 
 
Link Number ln-1 an-1 dn θn 

1, 0T1 l0 a0 d1 θ1 

2, 1T2 l1 a1 d2 θ2 

….. …… …… …… …… 

n-1, n-2Tn-1 ln-2 an-2 dn-1 θn-1 

n, n-1Tn ln-1 an-1 dn θn 

 
By using all the above parameters the transformation from the frame {n-1} to 
{n} is given by:   
 

),0,0(),()0,0,(),( 11
1

nnnnn
n dTranszRotlTransaxRotT θ−−
− =  

 
Finally to find the total transformation matrix, multiply all the above matrices:   
 

H
n

H
R TTTTT 1

3
2

2
1

1
0 −= L  

 
So for example to go from the robot base to the frame that describes the first 
link: ),0,0(),()0,0,(),( 1100

1 dTranszRotlTransaxRotTn
n θ=−  
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3.2.1 Example 1 

Find the transformation matrix:  n
n T1−
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3.2.2 Example 2 

 
Figure 3.14 RP Robot 

 
I have two joints and three links (0=Robot base, 1=Torso, 2=Upper arm): 
 

 
Figure 3.15 Link assignment 

Since I have 3 links I have to define 3 reference frames {0}, {1}, {2}. 
 

 So, joint 1 connects link 0 with link 1 or {0} with {1}. This implies that I 
have to create a matrix 1

0 T . Also since this joint is revolute I will have a 
joint variable θ . 

 But, remember that ( ) ( ) ( ) (nnnn
n zdzlxax θ,,,, 11

1 RotTransTransRotT −−
− = )n .  

 In that case n-1=0 and n=1 the joint variable nθ  is 1θ . 
 Similarly, joint 2 connects link 1 with link 2. So I have to create a matrix 

2
1T . 

 ( ) ( ) ( ) ( )nnnnn
n zdzlxax θ,,,, 11

1 RotTransTransRotT −−
− = . 

 In that case n-1=1 and n=2 the joint variable nd  is 2d . 
 
Create the joint axes: 
These two axes will give me the direction of z1 and z2 axes. 

Industrial Automation Lecture Notes 
Module Leader: Dr. Damian Giaouris  11/25 



Newcastle University 
School of Electrical, Electronic & Computer Engineering 

 
Figure 3.16 Link axes 

Let’s focus on {1} (since there is not link -1): 
 

 The origin of {1} is located at the intersection of the two joint axes. 
 Since z1 intersects z2 then the x1 axis will be perpendicular to the plane 

created by z1, z2. 

1z

1x
1y

 
Figure 3.17 First ref frame 

Since the joint 1 is revolute: 
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1z

1x
1y

1θ

 
Figure 3.18 Joint variable 

First reference frame, i.e. {0}: The frames {1} and {0} must coincide when the 
joint variable is zero, hence when 01 =θ , so: 

1,0z

1,0x
1,0y

1θ

 
Figure 3.19 Robot base frame 

 
Last reference frame: 
This is the last reference frame {2} can be attached anywhere we want!!! So 
let’s attach it at the end of link 2, so that it will also describe the end effector. 
Also According to the DH rules x3 must be chosen so that 2θ  is zero, i.e. x2 
and x3 are parallel. Hence I must rotate with respect to xn-1 for +90o. 
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1,0z

1,0x
1,0y

1θ
2z

2x

2y

 
Figure 3.20 Final assignment 

So the link table is: 
 

Link, T 1−na  1−nl  1d  nθ  

1, 0T1 00 =a  00 =l  01 =d  1θ  

2, 1T2 901 =a  01 =l  2d  02 =θ  

 
( ) ( ) ( ) ( ) ( )111001

0 ,,,,, θθ zzdzlxax RotRotTransTransRotT ==  
( ) ( ) ( ) ( ) ( ) ( )222112

1 ,90,,,,, dzxzdzlxax TransRotRotTransTransRotT == θ  
( ) ( ) ( )212

1
1

0
2

0 ,90,, dzxz TransRotRotTTT θ==   
 
 

3.2.3  Example 3 
 

 
Figure 3.21 

 
Joint 1 prismatic: So  1d
Joint 2 revolute: So 2θ  
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1z

1x

1y

 
Figure 3.22 

Error! Not a valid link. 
 
 

1z

1x

1y

1d

1z

1x

1y

1d

0z

0x
0y

 
Figure 3.23 

 
 

12 // xx ,  must be on the joint axis 2 and 2z 02 =d : 
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1z

2,1x

1y

1d
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0x
0y

2y

2z

2θ

 
Figure 3.24 

So the link table is: 
 

Link, T 1−na  1−nl  1d  nθ  

1, 0T1 00 =a  00 =l  1d  01 =θ  

2, 1T2 901 =a  01 =l  02 =d  2θ  

 
( ) ( ) ( ) ( ) ( )111001

0 ,,,,, dzzdzlxax TransRotTransTransRotT == θ  
( ) ( ) ( ) ( ) ( ) ( )222112

1 ,90,,,,, θθ zxzdzlxax RotRotRotTransTransRotT ==  
( ) ( ) ( )212

1
1

0
2

0 ,90,, θzxdz RotRotTransTTT ==  
 
What should you do if you wanted to describe the end effector? 
 

3.2.4 Example 4 
 

Link 0

Link 1

Link 2

0z

2z

 
Figure 3.25 

I arbitrary choose the origin of {1} and {0} as: 
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0z

2z

 
Figure 3.26 

Hence the common normal is: 

0z

2z

 
Figure 3.27 

So: 

1,0z

2z

1,0x

1,0y

1,0z

2z

1,0x

1,0y

2y

2x

 
Figure 3.28 
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1,0z

2z

1,0x

1,0y

2y

2x

1l

1θ

2θ

 
Figure 3.29 

So the link table is: 
 

Link, T 1−na  1−nl  1d  nθ  

1, 0T1 00 =a  00 =l  01 =d  1θ  

2, 1T2 01 =a  1l  02 =d  2θ  

 
( ) ( ) ( ) ( ) ( )111001

0 ,,,,, θθ zzdzlxax RotRotTransTransRotT ==  
( ) ( ) ( ) ( ) ( ) ( )2122112

1 ,,,,,, θθ zlxzdzlxax RotTransRotTransTransRotT ==  
( ) ( ) ( )2112

1
1

0
2

0 ,,, θθ zlxz RotTransRotTTT ==  
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3.3 Arm Orientation   
The final step in the solution of the forward kinematics is to find the orientation 
of the end effector.  The orientation matrix is given by: 

=
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By equating the two matrices it can be found that: 
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These three equations describe the orientation of the end effector with respect 
to the base.  
 

3.3.1 Example 1 
For the robot manipulator of Fig.3.30 find the general transformation matrix.  
Assuming that l1=l2=0.5m and θ1=60ο, θ2=-35ο find the orientation of the end 
effector: 

z1

y1

x1

z2

y2

x2

y3

l1

l2

x3

z3

1θ

2θ

3θ

 
Figure 3.30 
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The transformation matrix is where: 
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⎥
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graphically proved: 
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x0

y2

x2

y3

x3

1θ 2θ
y1

x1

 
Figure 3.31 
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1θ

2θ
21 θθ +

21 θθ +

 
Figure 3.32 

 
3.3.2 Example 2 

For the robot manipulator of Fig.3.33 find the general transformation matrix.  
Assuming that d1=d2=0.5m and θ1=60ο, find the orientation of the end effector: 

z1

x1

y1z2

x2

y2

d2

d1

z0

y0

x0

 
Figure 3.33 
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The transformation matrix is , where: 
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3.3.3 Example 3 

For the robot manipulator of Fig.1.96 find the general transformation matrix.  
Assuming that l2=0.5m and θ2=60ο, find the orientation of the end effector: 

 
Figure 3.34 

The transformation matrix is:  and hence: 
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3.3.4 Robust Orientation 
In the previous paragraph the end effector orientation was calculated by using 
Roll – Pitch – Yaw angles.  The algorithm that was found is based on the use 

of ( )θcos  and ( )θsin .  The angle ψ was calculated as ( )⎟⎟⎠
⎞

⎜⎜
⎝

⎛
= −

θ
ψ

cos
sin 1 zy .  But 

this algorithm, even though it is very efficient, is not robust when the angle φ 
is +/-90o.  To overcome this problem a new function has to be used to 
calculate the angles.  This method uses the function atan2: 
function phi=atan2(y,x) 
 
% phi belongs to [-pi, pi] 
 
if x==0 & y>0 
    phi=pi/2; 
elseif x==0 & y<0 
    phi=-pi/2; 
end 
 
if y==0 & x>0 
    phi=0; 
elseif y==0 & x<0 
    phi=-pi; 
end 
 
if x==0 & y==0 
    phi=0; 
end 
 
if y~=0 & x~=0 
    phi=atan(y/x); 
end 
 
To use the atan2 function; the transformation matrix must be further 
manipulated to: 
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By equating the two matrices: 
( )xy x,xatan20 =⇒=− φφφ sxcx xy  
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⎭
⎬
⎫

−=

=+
,2atan  

  ( )zz
z

z zy
ccz
scy

,2atan=⇒
⎭
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3.4 Inverse kinematics 
Until now the question that had to be answered was to find the location of the 
end effector by knowing the joint and link variables.  Also in paragraphs 1.10.1 
& 1.10.3 the overall orientation was calculated by knowing the joint and link 
variables by using Roll – Pitch –Yaw angles.  The inverse problem is to know 
the general orientation and position of the end effector and to try to calculate 
the appropriate joint variables.   
 
Generally speaking this problem is much more difficult and complicated than 
the forward one.  Usually it requires the solution of 12 nonlinear equations.  
The solution of these nonlinear equations is called the arm solution and 
every robot has its own solution, which may not be unique.  This means that 
the desired orientation and position may be achieved with more than one 
configuration.  This phenomenon is called redundancy.   
 
On the other hand, usually, there are some restrictions that may only allow 
one solution to be considered.  For example the angles of revolute joints 
cannot be more than 360o or maybe there is an obstacle that makes a specific 
solution impossible in practice.  Hence a solution is not always possible and 
there are orientations and positions that a robot may not be able to achieve.   
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Solvability attempts to formally define if a solution is possible, and requires 
knowledge of the robot workspace which is roughly the space or locus that the 
robot end effector may reach.  
 
The third important component of the inverse kinematics problem, going with 
solvability and redundancy, is the method of solution.  There are mainly two 
methods to solve any equation, a closed form and a numerical (or iterative) 
method.  The later is not preferred since it requires much processing power 
and, depending on the numerical method, may not find all the possible 
configurations.  Finally the closed form solutions may be classified as 
geometric and algebraic solutions.   
 
The biggest problem of finding the solution of a manipulator arm is the fact 
that every robot has its own configuration (link lengths and angles) and hence 
there is no a clear method of how to achieve an acceptable closed form 
solution. 
 
The steps that have to be followed can be arbitrary and with no clear 
reasoning.  McKerrow in “Introduction to Robotics”, chapter 4 tries to give a 
general guideline but this is not very clear. 
 
The only thing that can be said when the solution is investigated is to use the 
4th column of the transformation matrix, which is the translation. The 
elements that describe the orientation are usually coupled and they require 
complex solutions. 
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