

EEE 8005 – Student Directed Learning (SDL) EEE 8005 – Student Directed Learning (SDL)

Industrial Automation – Artificial Neural networks Industrial Automation – Artificial Neural networks
Written by: Shady Gadoue Written by: Shady Gadoue

y 1

x 2

x 3

x 1

y 2

y 3

+ 1 + 1
T h r e s h o ld T h r e s h o ld

b 1
1

b 1
2

w 1 1
1

w 1 1
2

w 4 3
1 w 3 4

2

In p u t
L a y e r

O u tp u t
L a y e r

H id d e n
L a y e r

o 1

o 2

o 3

o 4

 o

 o

 o

4

Module Leader: Dr. Damian Giaouris Module Leader: Dr. Damian Giaouris

Damian.Giaouris@ncl.ac.uk

y 1

x 2

x 3

x 1

y 2

y 3

+ 1 + 1
T h r e s h o ld T h r e s h o ld

b 1
1

b 1
2

w 1 1
1

w 1 1
2

w 4 3
1 w 3 4

2

In p u t
L a y e r

O u tp u t
L a y e r

H id e n
L a e r

1

2

3

o

d
y

Damian.Giaouris@ncl.ac.uk

mailto:Damian.Giaouris@ncl.ac.uk

Newcastle University
School of Electrical, Electronic & Computing Engineering

Artificial Neural Networks

Introduction
Artificial Neural Networks (ANN) are a branch of the field known as "Artificial

Intelligence" (AI) which may also consists of Fuzzy logic (FL) and Genetic Algorithms

(GA). ANN are based on the basic model of the human brain with capability of

generalization and learning. The purpose of this simulation to the simple model of human

neural cell is to acquire the intelligent features of these cells. The term "artificial" means

that neural nets are implemented in computer programs that are able to handle the large

number of necessary calculations during the learning process.

ANN have gain a lot of interest over the last few years as a powerful technique to

solve many real world problems. Compared to conventional programming, they own the

capability of solving problems that do not have algorithmic solution and are therefore

found suitable to tackle problems that people are good to solve such as pattern

recognition. They have been therefore successfully applied in various application areas

such as finance, medicine (clinical diagnosis and image analysis), engineering and

physics. Moreover, ANN have been introduced in solving a lot of problems related to

prediction, classification, control and identification. This is due to their high ability to

learn from experience in order to improve their performance and to adapt themselves to

changes in the environment in addition to their ability to deal with incomplete

information or noisy data and can be very effective especially in situations where it is not

possible to define the rules or steps that lead to the solution of a problem.

The basic computing element in the biological system is the neuron which receives

electrochemical signals from different sources and generates electric impulses to be

transmitted to other neurons. The human nervous system consists of about 1010 to 1012

neurons which are capable of storing numerous bits of information. Each neural cell

works like a simple processor and only the massive interaction between all cells and their

parallel processing makes the brain's abilities possible. About 10% of the neurons are

input and output whereas the remaining are interconnected with other neurons performing

storage of information and transformation of the signals being propagated through the

Industrial Automation Lecture Notes – SDL – ANN 2
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

network. As shown in Fig. 1 a neuron is composed of a nucleus, a cell body, numerous

dendritic links which provide input connections from other neurons through synapses and

an axon trunk which carries the output action to other neurons through synapses and

terminal links. The connections between the neurons are adaptive, what means that the

connection structure is changing dynamically. It is commonly acknowledged that the

learning ability of the human brain is based on this adaptation.

Fig.1 Structure of a neural cell in the human brain

Stimulated by the structure of the brain, an ANN consists of a set of highly

interconnected processing units, called nodes or units. Each unit is designed to mimic its

biological counterpart, the neuron. Each accepts a weighted set of inputs and responds

with an output. ANN resembles the biological neuron in acquiring knowledge by learning

from examples and storing these informations within inter-neuron connection strengths

called weights.

Application areas of Artificial Neural Networks

Application areas of ANN can be technically divided into the following categories:

Classification and diagnostic: ANN have been applied in the field of diagnosis in

medicine, engineering and manufacturing by correct association between input patterns

representing some forms of abnormal behaviour with the corresponding disease or fault

type. An example is fault diagnosis of electrical motors

Industrial Automation Lecture Notes – SDL – ANN 3

Pattern recognition: ANN have been successfully applied in recognition of complex

patterns such as: speech recognition, handwritten character recognition and a lot of other

application in the area of image processing.

By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

Modelling: A neural network is a powerful data modelling tool that is able to capture

and represent complex input/output relationships. The true power and advantage of neural

networks lies in their ability to represent both linear and non-linear relationships and in

their ability to learn these relationships directly from the data being modelled. The

purpose of the neural network is to create a model that correctly maps the input to the

output using historical data so that the model can then be used to produce the output

when the desired output is unknown.

Forecasting and prediction: ANN have shown high efficiency as predictive tool by

looking at the present informations and predict what is going to happen.

Estimation and Control: ANN have been powerfully applied in the field of automatic

control in system identification, adaptive control, parameter estimation and optimization

and a lot of other applications in this field.

Structure of Artificial Neural Networks

Similar to the biological neural cell, the unit of structure of ANN is the neuron

which consists basically of a summer and an activation function as shown in Fig. 2.

Σ f(net)
net y

w
1

w2

w3

wn

x1

x2

x3

xn

Activation
function

Inputs

1

b

 Fig. 2 Structure of the artificial neuron

where x1 ,x2,x3,…,xn are the inputs to the neuron with corresponding weights w1

,w2,w3,…,wn which model the synaptic neural connections in biological nets and act in

such a way as to increase or decrease the input signals to the neuron. Sometimes a

threshold term b is added to the inputs. Generally, inputs, weights, thresholds and neuron
Industrial Automation Lecture Notes – SDL – ANN 4
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

output could be real value or binary or bipolar. All inputs are multiplied by their

corresponding weights and added together to form the net input to the neuron called net.

The mathematical expression for net can be simply written as:

bxwxwxwxwbxwnet nn
n

i
ii +++++=+= ∑

=
.......332211

1

The neuron behaves as an activation or mapping function f(net) to produce an output y

which can be expressed as:

 () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+== ∑

=
bxwfnetfy

n

i
ii

1

where f is called the neuron activation function or the neuron transfer function. Some

examples of the neuron activation functions are:

(1) Linear activation function

In this case f =1, the neuron transfer function is shown in Fig.3 where:

() netbxwnetfy
n

i
ii =+== ∑

=1

Fig.3 Linear transfer function

(2) Threshold activation function:

Industrial Automation Lecture Notes – SDL – ANN 5
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

In this case, the output is hard limited to two values +1 and -1 (sometimes 0) depending

on the sign of net as shown in Fig.4. The expression of the output y in this case can be

written as:

⎩
⎨
⎧

<−
>+

=
01
01

netif
netif

y

Fig.4 Threshold transfer function

(3) Sigmoid function:

In this case the net neuron input is mapped into values between +1 and 0.The neuron

transfer function is shown in Fig.5 and is given by:

⎟
⎠
⎞

⎜
⎝
⎛−+

=

T
net

y
exp1

1

where T is a constant

Industrial Automation Lecture Notes – SDL – ANN 6
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

Fig.5 Log-Sigmoid transfer function

(4) Tansigmoid function:

In this case the net neuron input is mapped into values between +1 and -1. The neuron

transfer function is shown in Fig.6 and is given by:

() ()
()net

netnety
−+
−−

==
exp1
exp1tanh

Fig.6 Tan-Sigmoid transfer function

 Since ANN are frequently used as nonlinear function approximators, the activation

function f is usually a nonlinear function. The most common type of ANN is the multi

layer feedforward neural network which consists of group of interconnected neurons

Industrial Automation Lecture Notes – SDL – ANN 7
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

organised in layers: input layer, hidden layer and output layer where each layer consists

of a group of neurons as shown in Fig.7. It is feedforward because signals propagate only

in a forward direction from the input nodes to the output nodes and no signals are allowed

to be fed-back among the neurons. The number of hidden layers, number of neurons in

each layer totally depends on the complexity of the problem being solved by the network.

This structure is commonly used in system identification and nonlinear function

approximation applications. The shown network has 3 inputs x, 4 outputs from the hidden

layer o and 3 outputs y at the output layer that can be written as:

[] [] [] TTT yyyandooooxxx 3214321321 , === yox

In the first layer, the weight and the bias matrices can be written as:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1
4

1
3

1
2

1
1

1
43

1
42

1
41

1
33

1
32

1
31

1
23

1
22

1
21

1
13

1
12

1
11

b

b

b

b

www

www

www

www

11 bw

where the superscript 1 assigns for 1st layer. The output of the hidden layer o can be

written in matrix form as:

[]{ }11 bxwo += 1f

where f1 is the activation function of the first layer. The output of the last layer (the

network output) can be also calculated in similar way. For example the first output of the

hidden layer o1 and the first output from the output layer (first network output) y1 could

be calculated as:

()1
13

1
132

1
121

1
11

1
1 bxwxwxwfo +++=

()2
14

2
143

2
132

2
121

2
11

2
1 bowowowowfy ++++=

where f2 is the activation function of the output layer.

Another architecture of ANN commonly used in control applications is the recurrent

neural networks (RNN) which differs from the feedforward structure by having feedback

connections which propagate the outputs of some neurons back to the inputs of other

neurons in order to perform repeated computations on the signal as shown in Fig.8.

Industrial Automation Lecture Notes – SDL – ANN 8
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

 Fig.7 Architecture of multilayer feedforward neural network

Fig.8 Structure of recurrent neural network
Industrial Automation Lecture Notes – SDL – ANN 9
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

Classification of ANN

As discussed before, ANN resemble the human brain in learning through training

and data storage. Based on learning strategy three main categories of ANN can be

described: Supervised, reinforcement or unsupervised learning. Supervised and

unsupervised will be considered here due to their popularity. However, all interest will be

given to the supervised type of learning since it is frequently used in the majority of ANN

applications.

Supervised Learning: In this type of learning a teacher is present during the learning

process and the ANN is trained through a given input/ target data training pattern which

includes input pattern associated with the corresponding target or desired pattern This

training pattern will form a pool of examples used to train the ANN in order to learn a

specific behaviour and the presence of desired output(s) for each input in the training

pattern makes this type of learning supervised. During the learning process, the neural

network output is compared with the target value and a network weight correction via a

learning algorithm is performed in such a way to minimize an error function between the

two values. This is an optimization problem in which the learning algorithm is searching

for the optimal weights that can represent the solution to the approximation problem.

A commonly used error function is the mean-squared error (MSE) which tries to

minimize the average error between the network's output and the target value over all the

example pairs and a commonly used weight correction algorithm is a gradient descent

algorithm called Back Propagation. This algorithm is used frequently to train multi layer

feedforward ANN either online or off-line.

Unsupervised Learning: In this type of learning, no desired or target is available to the

network and only the input pattern is present, i.e. there is no teacher to learn the network.

The system must learn by discovering and adapting to structured features in the input

pattern. This is done by adapting to statistical regularities or clustering of patterns from

the input training samples.

Back propagation training of ANN
As discussed before, supervised learning is frequently used to train multi layer

feedforward ANN in a lot of applications. Usually, back propagation learning algorithm

Industrial Automation Lecture Notes – SDL – ANN 10
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

http://en.wikipedia.org/wiki/Mean-squared_error

Newcastle University
School of Electrical, Electronic & Computing Engineering

is used to update the network weights during training in order to improve the network

performance. The block diagram of the training process is shown in Fig.9.

Fig.9 Block diagram of training neural network as function approximator

using supervised learning

Back propagation (BP) is one of the gradient descent algorithms used to reduce the

performance function E through updating the neural network weights by moving them

along the negative of the gradient of the performance function. The term

backpropagation refers to the manner in which the gradient is computed for nonlinear

multilayer networks. This method requires that activation functions f are differentiable as

the weight update rule is based on the gradient of the error function which is defined in

terms of the weights and activation functions. The general rule used to update the weight

can be written as:

ij
ij w

Ew
∂
∂

−=Δ η

where wij is the weight on the connection between node i and j and η is the learning rate

which is multiplied by the negative of the gradient to determine the changes to the

weights and biases. The larger the learning rate, the bigger the step. If the learning rate is

made too large, the algorithm becomes unstable. If the learning rate is set too small, the

algorithm takes a long time to converge. Therefore careful choice of η is vital to increase

Industrial Automation Lecture Notes – SDL – ANN 11
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

the convergence time without affecting algorithm stability. It is not practical to determine

the optimal setting for the learning rate before training, and, in fact, the optimal learning

rate changes during the training process, as the algorithm moves across the performance

surface.

The new weight can be updated as follow:

() ())(1 kwkwkw ijijij Δ+−=

In order to accelerate the convergence of the network, some algorithms may introduce the

previous weight change into the updating equation as:

() ())1()(1 −Δ+Δ+−= kwkwkwkw ijijijij α

where α is called the momentum rate which can be any number between 0 and 1. When

the momentum constant is 0, a weight change is based only on the gradient. When the

momentum constant is 1, the new weight change is set to equal the last weight change

and the gradient is simply ignored.

 To train an ANN using BP to solve a specific problem there are generally four main

steps in the training process:

1- Assemble the suitable training data

2- Create the network object

3- Train the network

4- Simulate the network response to new inputs

Using Matlab to simulate neural networks
* Create a neural network (newff):

After collecting the suitable training data, a network is to be created. In Matlab, the

command newff is used to create a multilayer feedforward ANN called net. It requires

four inputs: The first input is an R by 2 matrix of min and max values for R input

elements, the second input is an array containing the size of each layer starting from the

second one, the third input is a cell array describing the activation functions used for each

layer and the final input contains the name of the training function to be used.

Example 1: Typing the command:

net= newff ([-4 3; -5 5], [4,1], {‘tansig’,’purelin’},’trainlm’)

Industrial Automation Lecture Notes – SDL – ANN 12
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

Creates a 3 layer feedforward ANN: input, hidden and output layers. The program

identifies the number of input nodes from the defined ranges. The input vector contains 2

elements (2 nodes) where the first input values range from -4 to 3 and the second input

ones range from -5 to 5. The 2nd layer (hidden layer) consists of 4 neurons while the

output layer consists of only one neuron (one output). The activation functions used in the

second layer is tansig (Tansigmoid transfer function) and for the output layer is purelin

(Linear transfer function). Finally, the training function is trainlm. The structure of the

created ANN is shown in Fig. 10.

Fig. 10 Schematic of example 1 ANN

Using the command newff not only creates the neural network object but also randomly

initializes all weights and biases for the network which make the created ANN ready for

training. If anyone would like to reinitialize them, the command init can be used on the

form net= init(net);

* Network training (train):

After the network has been created and all weights and biases have been randomly

initialized, the network becomes ready to be trained using the pre-collected training data

(set of examples of the proper network performance). During the training, the weights

Industrial Automation Lecture Notes – SDL – ANN 13
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

and biases of the network are iteratively updated to minimize an error function between

the desired (target) output(s) and the network output(s). This error function is defined in

Matlab as net.performFcn. The default one is the mean square error MSE which

represents the average squared error between the network outputs and the target values.

Several high performance training algorithms providing faster training than the

conventional back propagation algorithm are already defined in Matlab based on variable

learning rate (traingda, traingdx) or other numerical optimization techniques such as

quasi Newton methods (trainbfg) and Levenberg-Marquardt (trainlm). All these training

algorithms work in the batch mode where the weights and biases of the network are

updated only after the entire training set has been applied to the network (one iteration).

The gradients calculated at each training example are added together to determine the

change in the weights and biases. Some other training algorithms work in the incremental

mode where the gradient is computed and the weights are updated after each input is

applied to the network (one iteration).

The most common training functions used in Matlab are:

traingd, traingdm, traingda, traingdx, trainlm

Training parameters:

net.trainParam.show = 100; % the training result is shown after every 100 iterations

(epochs)

net.trainParam.lr = 0.05; %Defining the network learning rate

net.trainParam.epochs = 1000; % Defining the max number of iterations

net.trainParam.goal = 1e-4; % Defining the training stopping criterion

After defining the training function, the training parameters, the training pattern (p,t)

where p is the input and t is the target, the network is ready to be trained. Then using the

Matlab command train will start training the network. [net,tr]=train(net,p,t)

* Network simulation (sim):

After the network has been trained, a simulation stage is performed to check the

network output y corresponding to a given input p1 using the Matlab command sim.

knowing the target values t1 corresponding to the input p1 the error between the ANN

output and the true output can be calculated. This error should be very small if the

Industrial Automation Lecture Notes – SDL – ANN 14
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

training was successfully performed. The general form of the sim command can be

written as: y1=sim(net,p1)

Example 2: Function approximation

In this example ANN will be used as a nonlinear function approximator. Consider the

function:

() 562.003.0 23 ++−== xxxxfy

Our task is to design a ANN to model this function where x= [0, 20].

Step 1: Generate the training data

>> x=0:0.25:20

>> y=(0.03*x.^3)-(0.2*x.^2)+(6*x)+5

>> p=x;

>> t=y;

Now we have a training pattern (p,t) that will be used to train the ANN

Step 2: Creating the neural network

>> net=newff(minmax(p),[10,1],{'tansig','purelin'},'trainlm');

>> net.trainParam.goal=1e-5;

>> net.trainParam.epochs=500;

Step 3: Training the neural network net

>> [net,tr]=train(net,p,t);

TRAINLM, Epoch 0/500, MSE 16119.4/1e-005, Gradient 21303.2/1e-010

TRAINLM, Epoch 25/500, MSE 6.2698/1e-005, Gradient 4619.86/1e-010

TRAINLM, Epoch 50/500, MSE 0.868411/1e-005, Gradient 32923.3/1e-010

TRAINLM, Epoch 75/500, MSE 0.0333011/1e-005, Gradient 42.0376/1e-010

TRAINLM, Epoch 100/500, MSE 0.0152236/1e-005, Gradient 9.68433/1e-010

TRAINLM, Epoch 125/500, MSE 0.0103669/1e-005, Gradient 4.12834/1e-010

TRAINLM, Epoch 150/500, MSE 0.00515693/1e-005, Gradient 382.348/1e-010

TRAINLM, Epoch 175/500, MSE 0.00253803/1e-005, Gradient 109.02/1e-010

TRAINLM, Epoch 200/500, MSE 0.00071966/1e-005, Gradient 133.928/1e-010

Industrial Automation Lecture Notes – SDL – ANN 15
TRAINLM, Epoch 225/500, MSE 0.000603385/1e-005, Gradient 2.051/1e-010

By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

TRAINLM, Epoch 250/500, MSE 0.000540297/1e-005, Gradient 4.93452/1e-010

TRAINLM, Epoch 275/500, MSE 0.000383632/1e-005, Gradient 31.178/1e-010

TRAINLM, Epoch 300/500, MSE 0.00015986/1e-005, Gradient 55.3771/1e-010

TRAINLM, Epoch 325/500, MSE 9.98549e-005/1e-005, Gradient 15.7561/1e-010

TRAINLM, Epoch 350/500, MSE 4.29489e-005/1e-005, Gradient 195.24/1e-010

TRAINLM, Epoch 375/500, MSE 2.2137e-005/1e-005, Gradient 33.7242/1e-010

TRAINLM, Epoch 400/500, MSE 1.59442e-005/1e-005, Gradient 13.9289/1e-010

TRAINLM, Epoch 425/500, MSE 1.27898e-005/1e-005, Gradient 7.69581/1e-010

TRAINLM, Epoch 450/500, MSE 1.08291e-005/1e-005, Gradient 4.9221/1e-010

TRAINLM, Epoch 465/500, MSE 9.96279e-006/1e-005, Gradient 3.936/1e-010

TRAINLM, Performance goal met.

During the training, the following Figure appears. It represents the network performance

(in blue) versus the number of epochs. The network performance starts by a large value at

the first epochs and due to training the weights are adjusted to minimize this function

which makes it decreasing. Moreover, a black constant line is plotted representing the

training goal (after which value of the network performance we can stop training). The

training stops when the blue line (network performance) intersects with the black line

(training goal). The performance function of the network is shown in Fig.11.

0 50 100 150 200 250 300 350 400 450
10

-6

10
-4

10
-2

10
0

10
2

10
4

465 Epochs

T
ra

in
in

g-
B

lu
e

 G
oa

l-B
la

ck

Performance is 9.96279e-006, Goal is 1e-005

Network
Performance (Blue)

Training Goal
(Black)

Industrial Automation Lecture Notes – SDL – ANN 16
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

Fig.11 Performance function of the network during training

 Step 4: Simulate the trained ANN

Let’s simulate the ANN with the input vector p=x and then compare the network output a

with the correct output y.

>> a=sim(net,p)

To compare a and y let’s plot both on the same graph:

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

ANN Model

y=f(x)

Fig.12 Real function and NN model

It is clear that the ANN model can approximate the function y=f(x) with very good

accuracy as shown in Fig.12.

 Example 3:

Assuming that you have the following training set (p,t) where p is the input vector and t is

the target vector: p=[x1,x2] in table 1.

Table 1

Training data

x1 x2 t

-1 0 -1

Industrial Automation Lecture Notes – SDL – ANN 17
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

-1 5 -1

2 0 1

2 5 1

 Create a multilayer feedforward ANN to learn the relation between p and t and then

calculate the error in the approximation for the training data.

The training data could be written as:

>> p=[-1 -1 2 2;0 5 0 5]

p =

 -1 -1 2 2

 0 5 0 5

>> t=[-1 -1 1 1]

t =

 -1 -1 1 1

Let’s start by creating a new network and let’s choose the structure as 2-3-1 (3 layer

network with 2 neurons in the input layer, 3 neurons in the hidden layer and 1 neuron in

the output) and choosing the activation functions in both layer to be tansigmoid and linear

and the training function to be traingd.

Note: Usually the selection of the number of hidden layers, number of neurons in each

hidden layer, type of activation functions and the training algorithm is done by trial error

technique and no general guide lines are assigned to choose the network parameters.

>> net=newff(minmax(p),[3,1],{'tansig','purelin'},'traingd');

>>

To find out the training parameters set by default for the training type:

>> net.trainParam

Industrial Automation Lecture Notes – SDL – ANN 18
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

ans =

 epochs: 100

 goal: 0

 max_fail: 5

 mem_reduc: 1

 min_grad: 1.0000e-010

 mu: 1.0000e-003

 mu_dec: 0.1000

 mu_inc: 10

 mu_max: 1.0000e+010

 show: 25

 time: Inf

>> net.performFcn

ans =

mse

To modify the default training parameters type:

>> net.trainParam.epochs=300;

>> net.trainParam.goal=1e-5;

>> net.trainParam.show=50 ;

>> net.trainParam.lr=0.05;

To train the network net we use the command train:

[net,tr]=train(net,p,t);

TRAINGD, Epoch 0/300, MSE 3.6913/1e-005, Gradient 4.54729/1e-010

TRAINGD, Epoch 50/300, MSE 0.00437253/1e-005, Gradient 0.0907065/1e-010

TRAINGD, Epoch 100/300, MSE 3.93547e-005/1e-005, Gradient 0.00848131/1e-010

TRAINGD, Epoch 115/300, MSE 9.67565e-006/1e-005, Gradient 0.00420503/1e-010

Industrial Automation Lecture Notes – SDL – ANN 19
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

TRAINGD, Performance goal met.

The network performance (in blue) versus the number of epochs appears during

training. In our example, the training goal is set to 1e-5, the performance function

(defined as MSE) starts from 3.6913. After 115 epochs, the training goal was met and the

training stops. Note that you can stop the training anytime using “stop training” button

appearing on the down left of the Fig. 13.

Network
Performance (Blue)

Training Goal
(Black)

Fig.13 Convergence characteristics of the network during training

After the network has been trained, it can be simulated to check its response using the

command sim. Let’s check the network output corresponding to the training input vector

p.

>> a=sim(net,p)

a =

 -1.0025 -0.9952 0.9970 0.9999

Note that the correct outputs corresponding to p are the target values t:

t =

 -1 -1 1 1

Industrial Automation Lecture Notes – SDL – ANN 20
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

Comparing the outputs obtained from this well-trained network (let’s call it network1)

and the desired (correct) outputs we can notice that the network output a is very near to

the correct answer.

Sometimes when you type the train command after trying all epochs the performance is

still greater than the training goal.

[net,tr]=train(net,p,t);

TRAINGD, Epoch 0/300, MSE 0.711565/1e-005, Gradient 1.7024/1e-010

TRAINGD, Epoch 50/300, MSE 0.00944188/1e-005, Gradient 0.0936902/1e-010

TRAINGD, Epoch 100/300, MSE 0.00186081/1e-005, Gradient 0.0290989/1e-010

TRAINGD, Epoch 150/300, MSE 0.000726989/1e-005, Gradient 0.015155/1e-010

TRAINGD, Epoch 200/300, MSE 0.000355603/1e-005, Gradient 0.00962905/1e-010

TRAINGD, Epoch 250/300, MSE 0.000191929/1e-005, Gradient 0.00669697/1e-010

TRAINGD, Epoch 300/300, MSE 0.000109026/1e-005, Gradient 0.0048828/1e-010

TRAINGD, Maximum epoch reached, performance goal was not met.

At that time, the convergence figure will appear as shown in Fig. 14.

Fig.14 Performance function of the network during training

Industrial Automation Lecture Notes – SDL – ANN 21
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

 Note that every time you try to build the same network again use the same commands

you may get different training results. This is normal because newff randomly initializes

the network weights each time that makes its performance difference.

Now let’s simulate this not well-trained network (let’s call it Network2) using the training

inputs p.

>> a=sim(net,p)

a =

 -1.0047 -0.9961 0.9852 1.0135

t =

 -1 -1 1 1

Note that the approximation accuracy is still Ok but is less accurate than network1 as

shown in Table 2.

Table 2

Desired and output values

x1 x2 t Output

Network1

Output

Network2

-1 0 -1 -1.0025 -1.0047

-1 5 -1 -0.9952 -0.9961

2 0 1 0.9970 0.9852

2 5 1 0.999 1.0135

Exercise: Try to repeat the above example for different number of neurons in the hidden

layer, with different activation functions and with different training functions and note the

difference in the obtained results.

Example 4: Plant identification using neural networks:

This example illustrates a very relevant application of neural networks in control. It

is the problem of system identification. Fig.15 shows a control system which consists of a

Industrial Automation Lecture Notes – SDL – ANN 22
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

controller to control a plant. In some applications, the plant model is not available. Neural

networks can be trained to learn the unknown model of the plant using input/output data

obtain experimentally from the plant. In this example we assume the plant model is

known and is expressed as:

()
10

5
+

=
s

sG

Output

Scope1

5

s+10

Plant

error u

PI Controller
Input

Fig.15 Control system architecture

Step 1: Generating the training data

This will be done by subjecting the plant to a sequence of input p and obtaining the

corresponding output t. The simulink model is shown in Fig.16. Adjust the simulation

parameters as in Fig.17 and adjust the ZOH sampling time to 1e-3. The training input is

Band-limited white noise which is chosen because it generates normally distributed

random input. Adjust power to 0.1, sampling time to 0.1 and seed to 23341 as shown in

Fig.18 Use the block To workspace to save the training data in array format. Name the

input p and the output t. Set the simulation time to 10 and start simulation. After the end

of simulation, if you look at the workspace you should find the arrays representing p and t

or you can open the scopes representing the input and output as shown in Fig.19.

Industrial Automation Lecture Notes – SDL – ANN 23
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

Fig.16 Simulink model used to generate training data

Industrial Automation Lecture Notes – SDL – ANN 24
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

 Fig.17 Simulation parameters configuration

Fig.18 Input block parameters

Industrial Automation Lecture Notes – SDL – ANN 25
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

Input

Output

Fig.19 Input/output training pattern

Industrial Automation Lecture Notes – SDL – ANN 26
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

Step 2: Creating and training the neural network

After generating the training data, go to Matlab command window and start typing

commands to create and train the neural network as follow:

>> net=newff(minmax(p'),[30,1],{'tansig','purelin'},'trainlm');

>> net.trainParam.epochs=1000;

>> [net,tr]=train(net,p',t');

TRAINLM, Epoch 0/1000, MSE 2.85796/0, Gradient 30464.9/1e-010

TRAINLM, Epoch 25/1000, MSE 0.0384398/0, Gradient 31.4321/1e-010

TRAINLM, Epoch 50/1000, MSE 0.0345469/0, Gradient 24.9989/1e-010

TRAINLM, Epoch 75/1000, MSE 0.0322424/0, Gradient 133.248/1e-010

TRAINLM, Epoch 100/1000, MSE 0.0279006/0, Gradient 9.16506/1e-010

TRAINLM, Epoch 125/1000, MSE 0.0267224/0, Gradient 43.5687/1e-010

TRAINLM, Epoch 150/1000, MSE 0.0250702/0, Gradient 3.73641/1e-010

TRAINLM, Epoch 175/1000, MSE 0.025039/0, Gradient 1.54462/1e-010

TRAINLM, Epoch 200/1000, MSE 0.0250024/0, Gradient 1.79969/1e-010

TRAINLM, Epoch 225/1000, MSE 0.0249883/0, Gradient 8.63699/1e-010

TRAINLM, Epoch 250/1000, MSE 0.0249872/0, Gradient 0.152471/1e-010

TRAINLM, Epoch 275/1000, MSE 0.024987/0, Gradient 0.00954264/1e-010

TRAINLM, Epoch 300/1000, MSE 0.024987/0, Gradient 0.0324412/1e-010

TRAINLM, Epoch 325/1000, MSE 0.024987/0, Gradient 0.0860265/1e-010

TRAINLM, Epoch 350/1000, MSE 0.0249869/0, Gradient 0.0895968/1e-010

TRAINLM, Epoch 375/1000, MSE 0.0249869/0, Gradient 0.0292589/1e-010

TRAINLM, Epoch 400/1000, MSE 0.0249868/0, Gradient 1.25556/1e-010

TRAINLM, Epoch 425/1000, MSE 0.0249865/0, Gradient 1.01611/1e-010

TRAINLM, Epoch 450/1000, MSE 0.0249862/0, Gradient 0.994071/1e-010

TRAINLM, Epoch 475/1000, MSE 0.024986/0, Gradient 1.49094/1e-010

TRAINLM, Epoch 500/1000, MSE 0.0249858/0, Gradient 5.64823/1e-010

TRAINLM, Epoch 525/1000, MSE 0.0249854/0, Gradient 8.91029/1e-010

TRAINLM, Epoch 550/1000, MSE 0.0249851/0, Gradient 3.24994/1e-010

TRAINLM, Epoch 575/1000, MSE 0.0249848/0, Gradient 1.1172/1e-010

Industrial Automation Lecture Notes – SDL – ANN 27
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

TRAINLM, Epoch 600/1000, MSE 0.0249846/0, Gradient 0.409848/1e-010

TRAINLM, Epoch 625/1000, MSE 0.0249844/0, Gradient 0.163045/1e-010

TRAINLM, Epoch 650/1000, MSE 0.0249838/0, Gradient 0.266647/1e-010

TRAINLM, Epoch 675/1000, MSE 0.0249837/0, Gradient 0.475013/1e-010

TRAINLM, Epoch 700/1000, MSE 0.0249836/0, Gradient 0.60567/1e-010

TRAINLM, Epoch 725/1000, MSE 0.0249835/0, Gradient 0.3998/1e-010

TRAINLM, Epoch 750/1000, MSE 0.0249833/0, Gradient 0.486509/1e-010

TRAINLM, Epoch 775/1000, MSE 0.024983/0, Gradient 2.04466/1e-010

TRAINLM, Epoch 800/1000, MSE 0.0249827/0, Gradient 1.41733/1e-010

TRAINLM, Epoch 825/1000, MSE 0.0249825/0, Gradient 0.378752/1e-010

TRAINLM, Epoch 850/1000, MSE 0.0249824/0, Gradient 1.17317/1e-010

TRAINLM, Epoch 875/1000, MSE 0.0249823/0, Gradient 0.859761/1e-010

TRAINLM, Epoch 900/1000, MSE 0.0249822/0, Gradient 0.0968464/1e-010

TRAINLM, Epoch 925/1000, MSE 0.024982/0, Gradient 10.6725/1e-010

TRAINLM, Epoch 950/1000, MSE 0.0249819/0, Gradient 0.036869/1e-010

TRAINLM, Epoch 975/1000, MSE 0.0249818/0, Gradient 2.52703/1e-010

TRAINLM, Epoch 1000/1000, MSE 0.0249818/0, Gradient 3.94388/1e-010

TRAINLM, Maximum epoch reached, performance goal was not met.

During training the network performance will be shown as in Fig.20.

Industrial Automation Lecture Notes – SDL – ANN 28
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

0 100 200 300 400 500 600 700 800 900 1000
10

-2

10
-1

10
0

10
1

1000 Epochs

T
ra

in
in

g-
B

lu
e

Performance is 0.0249818, Goal is 0

Fig.20 Network performance function during training

To generate a simulink model of the trained neural network, use the command gensim

which is written as gensim(network name, sampling time), choose a sample time of 1e-3

for good accuracy as follow:

>> gensim(net,1e-3)

You will get the following Fig.21. Copy and paste the blue NN model into a new

simulink model to test it as a third step.

y{1}

Input 1

p{1}

p{1} y {1}

Neural Network

Fig.21 Generating simulink model of ANN

Industrial Automation Lecture Notes – SDL – ANN 29
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

Step 3: Testing the trained neural network

In this step, the trained neural network will be tested using a testing input. Build a new

Simulink model consisting of both plant model and NN model subjected to the same

input as shown in Fig.22. You can use the training input as the test input or you can

change its parameters. In this example, we will use the first option. Observe the plant

output and the NN model output on the same scope. If your training is good enough you

should find the two outputs very similar as shown in Fig.23.

Fig.22 Simulink model of NN model testing

Industrial Automation Lecture Notes – SDL – ANN 30
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

Fig.23 Actual plant and NN model outputs

Now, let’s operate the plant with its normal inputs (usually step inputs) in presence of the

controller. In this case we assume that the controller is already designed but normally

controller design stage starts after obtaining the accurate NN model of the plant and it

will be designed based on certain response specifications. Build another simulink model

as shown in Fig.24. The model consists of 2 identical control systems one controls the

actual plant and the other controls the plant NN model. Set the PI controller gains to: kp=

10; ki=50 in both schemes. Now subject both control systems to a bi-directional step input

which starts with 0 and steps to 1 after 1sec then steps to -1 after 2 sec. The input will be

a repeating sequence stair block. You should configure the simulation parameters as in

the beginning of the example and change the simulation time to 3sec. The block

parameters of the input and the PI controller are shown in Figs.25-26. After you run your

simulation open the scope with three inputs: input, real system output, NN model system

output and as expected the two outputs are quite similar as shown in Fig.27. Better

accuracy can be obtained by fitting a more accurate NN model depending on the choice

of number of hidden layers, number of neurons in each hidden layer, type of activation

function. The network with the least performance function after the end of training will

be the best choice.

Industrial Automation Lecture Notes – SDL – ANN 31
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

Fig.24 Simulink model of control system

Fig.25 Input block parameters

Industrial Automation Lecture Notes – SDL – ANN 32
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

Fig.26 PI controller Simulink model

Fig.27 Actual plant and NN model response to step input

Industrial Automation Lecture Notes – SDL – ANN 33
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

Newcastle University
School of Electrical, Electronic & Computing Engineering

Industrial Automation Lecture Notes – SDL – ANN
By Shady Gadoue, Module Leader: Dr. Damian Giaouris

34

References:

[1] Dan W. Patterson (1995) Artificial Neural networks Theory and Applications.

Singapore; New York: Prentice Hall.

[2] Kishan Mehrotra, Chilukuri K. Mohan, Sanjay Ranka (1997) Elements of artificial

neural networks. Cambridge, Mass.: MIT Press.

[3] The Mathworks Neural Network Toolbox user guide. Available on line on:

http://www.mathworks.com/access/helpdesk/help/pdf_doc/nnet/nnet.pdf

javascript:open_window(%22http://torchy.ncl.ac.uk:80/F/2SXC3UA457LCUEGTRG7N1DANBQ4U75NDN7DIJDTVIEMHLE5GL5-81008?func=service&doc_number=000304802&line_number=0013&service_type=TAG%22);
javascript:open_window(%22http://torchy.ncl.ac.uk:80/F/2SXC3UA457LCUEGTRG7N1DANBQ4U75NDN7DIJDTVIEMHLE5GL5-81009?func=service&doc_number=000304802&line_number=0015&service_type=TAG%22);
http://www.mathworks.com/access/helpdesk/help/pdf_doc/nnet/nnet.pdf

	Damian.Giaouris@ncl.ac.uk

