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Artificial Neural Networks 
 

Introduction 
Artificial Neural Networks (ANN) are a branch of the field known as "Artificial 

Intelligence" (AI) which may also consists of Fuzzy logic (FL) and Genetic Algorithms 

(GA). ANN are based on the basic model of the human brain with capability of 

generalization and learning. The purpose of this simulation to the simple model of human 

neural cell is to acquire the intelligent features of these cells. The term "artificial" means 

that neural nets are implemented in computer programs that are able to handle the large 

number of necessary calculations during the learning process.  

ANN have gain a lot of interest over the last few years as a powerful technique to 

solve many real world problems. Compared to conventional programming, they own the 

capability of solving problems that do not have algorithmic solution and are therefore 

found suitable to tackle problems that people are good to solve such as pattern 

recognition. They have been therefore successfully applied in various application areas 

such as finance, medicine (clinical diagnosis and image analysis), engineering and 

physics. Moreover, ANN have been introduced in solving a lot of problems related to 

prediction, classification, control and identification. This is due to their high ability to 

learn from experience in order to improve their performance and to adapt themselves to 

changes in the environment in addition to their ability to deal with incomplete 

information or noisy data and can be very effective especially in situations where it is not 

possible to define the rules or steps that lead to the solution of a problem.  

The basic computing element in the biological system is the neuron which receives 

electrochemical signals from different sources and generates electric impulses to be 

transmitted to other neurons. The human nervous system consists of about 1010 to 1012 

neurons which are capable of storing numerous bits of information. Each neural cell 

works like a simple processor and only the massive interaction between all cells and their 

parallel processing makes the brain's abilities possible. About 10% of the neurons are 

input and output whereas the remaining are interconnected with other neurons performing 

storage of information and transformation of the signals being propagated through the 
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network. As shown in Fig. 1 a neuron is composed of a nucleus, a cell body, numerous 

dendritic links which provide input connections from other neurons through synapses and 

an axon trunk which carries the output action to other neurons through synapses and 

terminal links. The connections between the neurons are adaptive, what means that the 

connection structure is changing dynamically. It is commonly acknowledged that the 

learning ability of the human brain is based on this adaptation.  

 
Fig.1 Structure of a neural cell in the human brain  

Stimulated by the structure of the brain, an ANN consists of a set of highly 

interconnected processing units, called nodes or units. Each unit is designed to mimic its 

biological counterpart, the neuron. Each accepts a weighted set of inputs and responds 

with an output. ANN resembles the biological neuron in acquiring knowledge by learning 

from examples and storing these informations within inter-neuron connection strengths 

called weights.   

 
Application areas of Artificial Neural Networks 

Application areas of ANN can be technically divided into the following categories:   

Classification and diagnostic: ANN have been applied in the field of diagnosis in 

medicine, engineering and manufacturing by correct association between input patterns 

representing some forms of abnormal behaviour with the corresponding disease or fault 

type. An example is fault diagnosis of electrical motors  
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Pattern recognition: ANN have been successfully applied in recognition of complex 

patterns such as: speech recognition, handwritten character recognition and a lot of other 

application in the area of image processing.  
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Modelling:  A neural network is a powerful data modelling tool that is able to capture 

and represent complex input/output relationships. The true power and advantage of neural 

networks lies in their ability to represent both linear and non-linear relationships and in 

their ability to learn these relationships directly from the data being modelled. The 

purpose of the neural network is to create a model that correctly maps the input to the 

output using historical data so that the model can then be used to produce the output 

when the desired output is unknown.  

Forecasting and prediction:  ANN have shown high efficiency as predictive tool by 

looking at the present informations and predict what is going to happen.   

Estimation and Control: ANN have been powerfully applied in the field of automatic 

control in system identification, adaptive control, parameter estimation and optimization 

and a lot of other applications in this field.   

 

Structure of Artificial Neural Networks 

Similar to the biological neural cell, the unit of structure of ANN is the neuron 

which consists basically of a summer and an activation function as shown in Fig. 2.  

Σ f(net)
net y
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function
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1

b

 
 Fig. 2 Structure of the artificial neuron 

where x1 ,x2,x3,…,xn are the inputs to the neuron with corresponding weights w1 

,w2,w3,…,wn which model the synaptic neural connections in biological nets and act in 

such a way as to increase or decrease the input signals to the neuron. Sometimes a 

threshold term b is added to the inputs. Generally, inputs, weights, thresholds and neuron 
Industrial Automation Lecture Notes – SDL – ANN  4
By Shady Gadoue, Module Leader: Dr. Damian Giaouris  
 



Newcastle University  
School of Electrical, Electronic & Computing Engineering 

output could be real value or binary or bipolar. All inputs are multiplied by their 

corresponding weights and added together to form the net input to the neuron called net. 

The mathematical expression for net can be simply written as: 

bxwxwxwxwbxwnet nn
n

i
ii +++++=+= ∑

=
.......332211

1
 

The neuron behaves as an activation or mapping function f(net) to produce an output y 

which can be expressed as: 

  ( ) ⎟⎟
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where f is called the neuron activation function or the neuron transfer function. Some 

examples of the neuron activation functions are: 

(1) Linear activation function  

In this case f =1, the neuron transfer function is shown in Fig.3 where: 

( ) netbxwnetfy
n

i
ii =+== ∑

=1

  
Fig.3 Linear transfer function 

 

 

 

(2) Threshold activation function: 
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In this case, the output is hard limited to two values +1 and -1 (sometimes 0) depending 

on the sign of net as shown in Fig.4. The expression of the output y in this case can be 

written as:  

⎩
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>+

=
01
01

netif
netif

y  

  
Fig.4 Threshold transfer function 

(3) Sigmoid function: 

In this case the net neuron input is mapped into values between +1 and 0.The neuron 

transfer function is shown in Fig.5 and is given by: 

⎟
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where T is a constant   
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Fig.5 Log-Sigmoid transfer function 

(4) Tansigmoid function: 

In this case the net neuron input is mapped into values between +1 and -1. The neuron 

transfer function is shown in Fig.6 and is given by: 

( ) ( )
( )net

netnety
−+
−−

==
exp1
exp1tanh     

  
Fig.6 Tan-Sigmoid transfer function 

  Since ANN are frequently used as nonlinear function approximators, the activation 

function f is usually a nonlinear function. The most common type of ANN is the multi 

layer feedforward neural network which consists of group of interconnected neurons 
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organised in layers: input layer, hidden layer and output layer where each layer consists 

of a group of neurons as shown in Fig.7. It is feedforward because signals propagate only 

in a forward direction from the input nodes to the output nodes and no signals are allowed 

to be fed-back among the neurons. The number of hidden layers, number of neurons in 

each layer totally depends on the complexity of the problem being solved by the network. 

This structure is commonly used in system identification and nonlinear function 

approximation applications. The shown network has 3 inputs x, 4 outputs from the hidden 

layer o and 3 outputs y at the output layer that can be written as: 

[ ] [ ] [ ] TTT yyyandooooxxx 3214321321 , === yox   

In the first layer, the weight and the bias matrices can be written as: 
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where the superscript 1 assigns for 1st layer. The output of the hidden layer o can be 

written in matrix form as: 

[ ]{ }11 bxwo += 1f  

where f1 is the activation function of the first layer. The output of the last layer (the 

network output) can be also calculated in similar way. For example the first output of the 

hidden layer o1 and the first output from the output layer (first network output) y1 could 

be calculated as:  

( )1
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1
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2
143

2
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2
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2
11

2
1 bowowowowfy ++++=  

where f2 is the activation function of the output layer. 

Another architecture of ANN commonly used in control applications is the recurrent 

neural networks (RNN) which differs from the feedforward structure by having feedback 

connections which propagate the outputs of some neurons back to the inputs of other 

neurons in order to perform repeated computations on the signal as shown in Fig.8. 
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 Fig.7 Architecture of multilayer feedforward neural network 

 

Fig.8 Structure of recurrent neural network 
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Classification of ANN  

As discussed before, ANN resemble the human brain in learning through training 

and data storage. Based on learning strategy three main categories of ANN can be 

described: Supervised, reinforcement or unsupervised learning. Supervised and 

unsupervised will be considered here due to their popularity. However, all interest will be 

given to the supervised type of learning since it is frequently used in the majority of ANN 

applications. 

Supervised Learning: In this type of learning a teacher is present during the learning 

process and the ANN is trained through a given input/ target data training pattern which 

includes input pattern associated with the corresponding target or desired pattern This 

training pattern will form a pool of examples used to train the ANN in order to learn a 

specific behaviour and the presence of desired output(s) for each input in the training 

pattern makes this type of learning supervised. During the learning process, the neural 

network output is compared with the target value and a network weight correction via a 

learning algorithm is performed in such a way to minimize an error function between the 

two values. This is an optimization problem in which the learning algorithm is searching 

for the optimal weights that can represent the solution to the approximation problem.  

A commonly used error function is the mean-squared error (MSE) which tries to 

minimize the average error between the network's output and the target value over all the 

example pairs and a commonly used weight correction algorithm is a gradient descent 

algorithm called Back Propagation. This algorithm is used frequently to train multi layer 

feedforward ANN either online or off-line.  

Unsupervised Learning: In this type of learning, no desired or target is available to the 

network and only the input pattern is present, i.e. there is no teacher to learn the network. 

The system must learn by discovering and adapting to structured features in the input 

pattern. This is done by adapting to statistical regularities or clustering of patterns from 

the input training samples.    

Back propagation training of ANN  
As discussed before, supervised learning is frequently used to train multi layer 

feedforward ANN in a lot of applications. Usually, back propagation learning algorithm 
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is used to update the network weights during training in order to improve the network 

performance. The block diagram of the training process is shown in Fig.9. 

 

 
Fig.9 Block diagram of training neural network as function approximator 

using supervised learning  

Back propagation (BP) is one of the gradient descent algorithms used to reduce the 

performance function E through updating the neural network weights by moving them 

along the negative of the gradient of the performance function. The term 

backpropagation refers to the manner in which the gradient is computed for nonlinear 

multilayer networks. This method requires that activation functions f are differentiable as 

the weight update rule is based on the gradient of the error function which is defined in 

terms of the weights and activation functions. The general rule used to update the weight 

can be written as: 

ij
ij w

Ew
∂
∂

−=Δ η   

where wij is the weight on the connection between node i and j and η is the learning rate 

which is multiplied by the negative of the gradient to determine the changes to the 

weights and biases. The larger the learning rate, the bigger the step. If the learning rate is 

made too large, the algorithm becomes unstable. If the learning rate is set too small, the 

algorithm takes a long time to converge. Therefore careful choice of η is vital to increase 
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the convergence time without affecting algorithm stability. It is not practical to determine 

the optimal setting for the learning rate before training, and, in fact, the optimal learning 

rate changes during the training process, as the algorithm moves across the performance 

surface. 

The new weight can be updated as follow:  

( ) ( ) )(1 kwkwkw ijijij Δ+−=  

In order to accelerate the convergence of the network, some algorithms may introduce the 

previous weight change into the updating equation as: 

( ) ( ) )1()(1 −Δ+Δ+−= kwkwkwkw ijijijij α  

where α is called the momentum rate which can be any number between 0 and 1. When 

the momentum constant is 0, a weight change is based only on the gradient. When the 

momentum constant is 1, the new weight change is set to equal the last weight change 

and the gradient is simply ignored. 

 To train an ANN using BP to solve a specific problem there are generally four main 

steps in the training process: 

1- Assemble the suitable training data 

2- Create the network object 

3- Train the network  

4- Simulate the network response to new inputs  

Using Matlab to simulate neural networks 
* Create a neural network (newff): 

After collecting the suitable training data, a network is to be created. In Matlab, the 

command newff is used to create a multilayer feedforward ANN called net. It requires 

four inputs: The first input is an R by 2 matrix of min and max values for R input 

elements, the second input is an array containing the size of each layer starting from the 

second one, the third input is a cell array describing the activation functions used for each 

layer and the final input contains the name of the training function to be used.  

Example 1:  Typing the command:  

net= newff ([-4 3; -5 5], [4,1], {‘tansig’,’purelin’},’trainlm’ ) 
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Creates a 3 layer feedforward ANN: input, hidden and output layers. The program 

identifies the number of input nodes from the defined ranges. The input vector contains 2 

elements (2 nodes) where the first input values range from -4 to 3 and the second input 

ones range from -5 to 5. The 2nd layer (hidden layer) consists of 4 neurons while the 

output layer consists of only one neuron (one output). The activation functions used in the 

second layer is tansig (Tansigmoid transfer function) and for the output layer is purelin 

(Linear transfer function). Finally, the training function is trainlm.  The structure of the 

created ANN is shown in Fig. 10. 

 

Fig. 10 Schematic of example 1 ANN 

Using the command newff not only creates the neural network object but also randomly 

initializes all weights and biases for the network which make the created ANN ready for 

training. If anyone would like to reinitialize them, the command init can be used on the 

form net= init(net);  

 

* Network training (train): 

After the network has been created and all weights and biases have been randomly 

initialized, the network becomes ready to be trained using the pre-collected training data 

(set of examples of the proper network performance). During the training, the weights 
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and biases of the network are iteratively updated to minimize an error function between 

the desired (target) output(s) and the network output(s). This error function is defined in 

Matlab as net.performFcn. The default one is the mean square error MSE which 

represents the average squared error between the network outputs and the target values. 

Several high performance training algorithms providing faster training than the 

conventional back propagation algorithm are already defined in Matlab based on variable 

learning rate (traingda, traingdx) or other numerical optimization techniques such as 

quasi Newton methods (trainbfg) and Levenberg-Marquardt (trainlm). All these training 

algorithms work in the batch mode where the weights and biases of the network are 

updated only after the entire training set has been applied to the network (one iteration). 

The gradients calculated at each training example are added together to determine the 

change in the weights and biases. Some other training algorithms work in the incremental 

mode where the gradient is computed and the weights are updated after each input is 

applied to the network (one iteration).  

The most common training functions used in Matlab are: 

traingd, traingdm, traingda, traingdx, trainlm 

Training parameters:  

net.trainParam.show = 100; % the training result is shown after every 100 iterations 

(epochs) 

net.trainParam.lr = 0.05; %Defining the network learning rate 

net.trainParam.epochs = 1000;   % Defining the max number of iterations 

net.trainParam.goal = 1e-4; % Defining the training stopping criterion  

After defining the training function, the training parameters, the training pattern (p,t) 

where p is the input and t is the target, the network is ready to be trained. Then using the 

Matlab command train will start training the network. [net,tr]=train(net,p,t)  

 

* Network simulation (sim): 

After the network has been trained, a simulation stage is performed to check the 

network output y corresponding to a given input p1 using the Matlab command sim. 

knowing the target values t1 corresponding to the input p1 the error between the ANN 

output and the true output can be calculated. This error should be very small if the 
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training was successfully performed. The general form of the sim command can be 

written as: y1=sim(net,p1) 

Example 2: Function approximation 

In this example ANN will be used as a nonlinear function approximator. Consider the 

function: 

( ) 562.003.0 23 ++−== xxxxfy  

Our task is to design a ANN to model this function where x= [0, 20]. 

Step 1: Generate the training data 

>> x=0:0.25:20 

>> y=(0.03*x.^3)-(0.2*x.^2)+(6*x)+5 

>> p=x; 

>> t=y; 

Now we have a training pattern (p,t) that will be used to train the ANN 

 

Step 2: Creating the neural network 

>> net=newff(minmax(p),[10,1],{'tansig','purelin'},'trainlm'); 

>> net.trainParam.goal=1e-5; 

>> net.trainParam.epochs=500; 

 

Step 3: Training the neural network net  

>> [net,tr]=train(net,p,t); 

TRAINLM, Epoch 0/500, MSE 16119.4/1e-005, Gradient 21303.2/1e-010 

TRAINLM, Epoch 25/500, MSE 6.2698/1e-005, Gradient 4619.86/1e-010 

TRAINLM, Epoch 50/500, MSE 0.868411/1e-005, Gradient 32923.3/1e-010 

TRAINLM, Epoch 75/500, MSE 0.0333011/1e-005, Gradient 42.0376/1e-010 

TRAINLM, Epoch 100/500, MSE 0.0152236/1e-005, Gradient 9.68433/1e-010 

TRAINLM, Epoch 125/500, MSE 0.0103669/1e-005, Gradient 4.12834/1e-010 

TRAINLM, Epoch 150/500, MSE 0.00515693/1e-005, Gradient 382.348/1e-010 

TRAINLM, Epoch 175/500, MSE 0.00253803/1e-005, Gradient 109.02/1e-010 

TRAINLM, Epoch 200/500, MSE 0.00071966/1e-005, Gradient 133.928/1e-010 
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TRAINLM, Epoch 250/500, MSE 0.000540297/1e-005, Gradient 4.93452/1e-010 

TRAINLM, Epoch 275/500, MSE 0.000383632/1e-005, Gradient 31.178/1e-010 

TRAINLM, Epoch 300/500, MSE 0.00015986/1e-005, Gradient 55.3771/1e-010 

TRAINLM, Epoch 325/500, MSE 9.98549e-005/1e-005, Gradient 15.7561/1e-010 

TRAINLM, Epoch 350/500, MSE 4.29489e-005/1e-005, Gradient 195.24/1e-010 

TRAINLM, Epoch 375/500, MSE 2.2137e-005/1e-005, Gradient 33.7242/1e-010 

TRAINLM, Epoch 400/500, MSE 1.59442e-005/1e-005, Gradient 13.9289/1e-010 

TRAINLM, Epoch 425/500, MSE 1.27898e-005/1e-005, Gradient 7.69581/1e-010 

TRAINLM, Epoch 450/500, MSE 1.08291e-005/1e-005, Gradient 4.9221/1e-010 

TRAINLM, Epoch 465/500, MSE 9.96279e-006/1e-005, Gradient 3.936/1e-010 

TRAINLM, Performance goal met. 

During the training, the following Figure appears. It represents the network performance 

(in blue) versus the number of epochs. The network performance starts by a large value at 

the first epochs and due to training the weights are adjusted to minimize this function 

which makes it decreasing. Moreover, a black constant line is plotted representing the 

training goal (after which value of the network performance we can stop training). The 

training stops when the blue line (network performance) intersects with the black line 

(training goal). The performance function of the network is shown in Fig.11. 
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Fig.11 Performance function of the network during training 

 Step 4: Simulate the trained ANN 

Let’s simulate the ANN with the input vector p=x and then compare the network output a 

with the correct output y. 

>> a=sim(net,p) 

To compare a and y let’s plot both on the same graph: 
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ANN Model

y=f(x)

 

Fig.12 Real function and NN model 

It is clear that the ANN model can approximate the function y=f(x) with very good 

accuracy as shown in Fig.12. 

 Example 3: 

Assuming that you have the following training set (p,t) where p is the input vector and t is 

the target vector: p=[x1,x2] in table 1. 

 

Table 1 

Training data 

x1 x2 t 

-1 0 -1 
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-1 5 -1 

2 0 1 

2 5 1 

 

 Create a multilayer feedforward ANN to learn the relation between p and t and then 

calculate the error in the approximation for the training data. 

The training data could be written as: 

 

>> p=[-1 -1 2 2;0 5 0 5] 

 

p = 

 

    -1    -1     2     2 

     0     5     0     5 

 

>> t=[-1 -1 1 1] 

 

t = 

 

    -1    -1     1     1 

Let’s start by creating a new network and let’s choose the structure as 2-3-1 (3 layer 

network with 2 neurons in the input layer, 3 neurons in the hidden layer and 1 neuron in 

the output) and choosing the activation functions in both layer to be tansigmoid and linear 

and the training function to be traingd. 

Note: Usually the selection of the number of hidden layers, number of neurons in each 

hidden layer, type of activation functions and the training algorithm is done by trial error 

technique and no general guide lines are assigned to choose the network parameters.  

>> net=newff(minmax(p),[3,1],{'tansig','purelin'},'traingd'); 

>> 

To find out the training parameters set by default for the training type: 

>> net.trainParam 

Industrial Automation Lecture Notes – SDL – ANN  18
By Shady Gadoue, Module Leader: Dr. Damian Giaouris  
 



Newcastle University  
School of Electrical, Electronic & Computing Engineering 

 

ans =  

 

       epochs: 100 

         goal: 0 

     max_fail: 5 

    mem_reduc: 1 

     min_grad: 1.0000e-010 

           mu: 1.0000e-003 

       mu_dec: 0.1000 

       mu_inc: 10 

       mu_max: 1.0000e+010 

         show: 25 

         time: Inf 

>> net.performFcn 

 

ans = 

 

mse 

 

To modify the default training parameters type: 

>> net.trainParam.epochs=300; 

>> net.trainParam.goal=1e-5; 

>> net.trainParam.show=50 ;  

>> net.trainParam.lr=0.05; 

To train the network net we use the command train: 

[net,tr]=train(net,p,t); 

TRAINGD, Epoch 0/300, MSE 3.6913/1e-005, Gradient 4.54729/1e-010 

TRAINGD, Epoch 50/300, MSE 0.00437253/1e-005, Gradient 0.0907065/1e-010 

TRAINGD, Epoch 100/300, MSE 3.93547e-005/1e-005, Gradient 0.00848131/1e-010 

TRAINGD, Epoch 115/300, MSE 9.67565e-006/1e-005, Gradient 0.00420503/1e-010 
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TRAINGD, Performance goal met. 

 

The network performance (in blue) versus the number of epochs appears during 

training. In our example, the training goal is set to 1e-5, the performance function 

(defined as MSE) starts from 3.6913. After 115 epochs, the training goal was met and the 

training stops. Note that you can stop the training anytime using “stop training” button 

appearing on the down left of the Fig. 13.   

 

Network 
Performance (Blue) 

Training Goal  
(Black) 

Fig.13 Convergence characteristics of the network during training 

After the network has been trained, it can be simulated to check its response using the 

command sim. Let’s check the network output corresponding to the training input vector 

p.  

>> a=sim(net,p) 

a = 

   -1.0025   -0.9952    0.9970    0.9999 

Note that the correct outputs corresponding to p are the target values t: 

t = 

    -1    -1     1     1 
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Comparing the outputs obtained from this well-trained network (let’s call it network1) 

and the desired (correct) outputs we can notice that the network output a is very near to 

the correct answer. 

Sometimes when you type the train command after trying all epochs the performance is 

still greater than the training goal.  

[net,tr]=train(net,p,t); 

TRAINGD, Epoch 0/300, MSE 0.711565/1e-005, Gradient 1.7024/1e-010 

TRAINGD, Epoch 50/300, MSE 0.00944188/1e-005, Gradient 0.0936902/1e-010 

TRAINGD, Epoch 100/300, MSE 0.00186081/1e-005, Gradient 0.0290989/1e-010 

TRAINGD, Epoch 150/300, MSE 0.000726989/1e-005, Gradient 0.015155/1e-010 

TRAINGD, Epoch 200/300, MSE 0.000355603/1e-005, Gradient 0.00962905/1e-010 

TRAINGD, Epoch 250/300, MSE 0.000191929/1e-005, Gradient 0.00669697/1e-010 

TRAINGD, Epoch 300/300, MSE 0.000109026/1e-005, Gradient 0.0048828/1e-010 

TRAINGD, Maximum epoch reached, performance goal was not met. 

At that time, the convergence figure will appear as shown in Fig. 14.  

 

Fig.14 Performance function of the network during training 
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 Note that every time you try to build the same network again use the same commands 

you may get different training results. This is normal because newff randomly initializes 

the network weights each time that makes its performance difference.  

Now let’s simulate this not well-trained network (let’s call it Network2) using the training 

inputs p. 

 

>> a=sim(net,p) 

 

a = 

 

   -1.0047   -0.9961    0.9852    1.0135  

t = 

 

    -1    -1     1     1 

Note that the approximation accuracy is still Ok but is less accurate than network1 as 

shown in Table 2. 

Table 2 

Desired and output values 

x1 x2 t Output 

Network1 

Output 

Network2 

-1 0 -1 -1.0025 -1.0047 

-1 5 -1 -0.9952 -0.9961 

2 0 1 0.9970 0.9852 

2 5 1 0.999 1.0135 

 

Exercise: Try to repeat the above example for different number of neurons in the hidden 

layer, with different activation functions and with different training functions and note the 

difference in the obtained results. 

Example 4: Plant identification using neural networks: 

This example illustrates a very relevant application of neural networks in control. It 

is the problem of system identification. Fig.15 shows a control system which consists of a 
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controller to control a plant. In some applications, the plant model is not available. Neural 

networks can be trained to learn the unknown model of the plant using input/output data 

obtain experimentally from the plant. In this example we assume the plant model is 

known and is expressed as: 

( )
10

5
+

=
s

sG   

Output

Scope1

5

s+10

Plant

error u

PI Controller
Input

 

Fig.15 Control system architecture 

Step 1: Generating the training data 

This will be done by subjecting the plant to a sequence of input p and obtaining the 

corresponding output t. The simulink model is shown in Fig.16. Adjust the simulation 

parameters as in Fig.17 and adjust the ZOH sampling time to 1e-3. The training input is 

Band-limited white noise which is chosen because it generates normally distributed 

random input. Adjust power to 0.1, sampling time to 0.1 and seed to 23341 as shown in 

Fig.18 Use the block To workspace to save the training data in array format. Name the 

input p and the output t. Set the simulation time to 10 and start simulation. After the end 

of simulation, if you look at the workspace you should find the arrays representing p and t 

or you can open the scopes representing the input and output as shown in Fig.19.  
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Fig.16 Simulink model used to generate training data 
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 Fig.17 Simulation parameters configuration 

 

 

Fig.18 Input block parameters 
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Input 

 
Output 

Fig.19 Input/output training pattern 
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Step 2: Creating and training the neural network 

After generating the training data, go to Matlab command window and start typing 

commands to create and train the neural network as follow: 

 

>> net=newff(minmax(p'),[30,1],{'tansig','purelin'},'trainlm'); 

>> net.trainParam.epochs=1000; 

>> [net,tr]=train(net,p',t'); 

TRAINLM, Epoch 0/1000, MSE 2.85796/0, Gradient 30464.9/1e-010 

TRAINLM, Epoch 25/1000, MSE 0.0384398/0, Gradient 31.4321/1e-010 

TRAINLM, Epoch 50/1000, MSE 0.0345469/0, Gradient 24.9989/1e-010 

TRAINLM, Epoch 75/1000, MSE 0.0322424/0, Gradient 133.248/1e-010 

TRAINLM, Epoch 100/1000, MSE 0.0279006/0, Gradient 9.16506/1e-010 

TRAINLM, Epoch 125/1000, MSE 0.0267224/0, Gradient 43.5687/1e-010 

TRAINLM, Epoch 150/1000, MSE 0.0250702/0, Gradient 3.73641/1e-010 

TRAINLM, Epoch 175/1000, MSE 0.025039/0, Gradient 1.54462/1e-010 

TRAINLM, Epoch 200/1000, MSE 0.0250024/0, Gradient 1.79969/1e-010 

TRAINLM, Epoch 225/1000, MSE 0.0249883/0, Gradient 8.63699/1e-010 

TRAINLM, Epoch 250/1000, MSE 0.0249872/0, Gradient 0.152471/1e-010 

TRAINLM, Epoch 275/1000, MSE 0.024987/0, Gradient 0.00954264/1e-010 

TRAINLM, Epoch 300/1000, MSE 0.024987/0, Gradient 0.0324412/1e-010 

TRAINLM, Epoch 325/1000, MSE 0.024987/0, Gradient 0.0860265/1e-010 

TRAINLM, Epoch 350/1000, MSE 0.0249869/0, Gradient 0.0895968/1e-010 

TRAINLM, Epoch 375/1000, MSE 0.0249869/0, Gradient 0.0292589/1e-010 

TRAINLM, Epoch 400/1000, MSE 0.0249868/0, Gradient 1.25556/1e-010 

TRAINLM, Epoch 425/1000, MSE 0.0249865/0, Gradient 1.01611/1e-010 

TRAINLM, Epoch 450/1000, MSE 0.0249862/0, Gradient 0.994071/1e-010 

TRAINLM, Epoch 475/1000, MSE 0.024986/0, Gradient 1.49094/1e-010 

TRAINLM, Epoch 500/1000, MSE 0.0249858/0, Gradient 5.64823/1e-010 

TRAINLM, Epoch 525/1000, MSE 0.0249854/0, Gradient 8.91029/1e-010 

TRAINLM, Epoch 550/1000, MSE 0.0249851/0, Gradient 3.24994/1e-010 

TRAINLM, Epoch 575/1000, MSE 0.0249848/0, Gradient 1.1172/1e-010 
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TRAINLM, Epoch 600/1000, MSE 0.0249846/0, Gradient 0.409848/1e-010 

TRAINLM, Epoch 625/1000, MSE 0.0249844/0, Gradient 0.163045/1e-010 

TRAINLM, Epoch 650/1000, MSE 0.0249838/0, Gradient 0.266647/1e-010 

TRAINLM, Epoch 675/1000, MSE 0.0249837/0, Gradient 0.475013/1e-010 

TRAINLM, Epoch 700/1000, MSE 0.0249836/0, Gradient 0.60567/1e-010 

TRAINLM, Epoch 725/1000, MSE 0.0249835/0, Gradient 0.3998/1e-010 

TRAINLM, Epoch 750/1000, MSE 0.0249833/0, Gradient 0.486509/1e-010 

TRAINLM, Epoch 775/1000, MSE 0.024983/0, Gradient 2.04466/1e-010 

TRAINLM, Epoch 800/1000, MSE 0.0249827/0, Gradient 1.41733/1e-010 

TRAINLM, Epoch 825/1000, MSE 0.0249825/0, Gradient 0.378752/1e-010 

TRAINLM, Epoch 850/1000, MSE 0.0249824/0, Gradient 1.17317/1e-010 

TRAINLM, Epoch 875/1000, MSE 0.0249823/0, Gradient 0.859761/1e-010 

TRAINLM, Epoch 900/1000, MSE 0.0249822/0, Gradient 0.0968464/1e-010 

TRAINLM, Epoch 925/1000, MSE 0.024982/0, Gradient 10.6725/1e-010 

TRAINLM, Epoch 950/1000, MSE 0.0249819/0, Gradient 0.036869/1e-010 

TRAINLM, Epoch 975/1000, MSE 0.0249818/0, Gradient 2.52703/1e-010 

TRAINLM, Epoch 1000/1000, MSE 0.0249818/0, Gradient 3.94388/1e-010 

TRAINLM, Maximum epoch reached, performance goal was not met. 

 

During training the network performance will be shown as in Fig.20.  
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Fig.20 Network performance function during training 

To generate a simulink model of the trained neural network, use the command gensim 

which is written as gensim(network name, sampling time), choose a sample time of 1e-3 

for good accuracy as follow: 

>> gensim(net,1e-3) 

You will get the following Fig.21. Copy and paste the blue NN model into a new 

simulink model to test it as a third step. 

y{1}

Input 1 

p{1}

p{1} y {1}

Neural Network
 

Fig.21 Generating simulink model of ANN 
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Step 3: Testing the trained neural network 

In this step, the trained neural network will be tested using a testing input. Build a new 

Simulink model consisting of both plant model and NN model subjected to the same 

input as shown in Fig.22. You can use the training input as the test input or you can 

change its parameters. In this example, we will use the first option. Observe the plant 

output and the NN model output on the same scope. If your training is good enough you 

should find the two outputs very similar as shown in Fig.23. 

 
Fig.22 Simulink model of NN model testing 
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Fig.23 Actual plant and NN model outputs 

Now, let’s operate the plant with its normal inputs (usually step inputs) in presence of the 

controller. In this case we assume that the controller is already designed but normally 

controller design stage starts after obtaining the accurate NN model of the plant and it 

will be designed based on certain response specifications. Build another simulink model 

as shown in Fig.24. The model consists of 2 identical control systems one controls the 

actual plant and the other controls the plant NN model. Set the PI controller gains to: kp= 

10; ki=50 in both schemes. Now subject both control systems to a bi-directional step input 

which starts with 0 and steps to 1 after 1sec then steps to -1 after 2 sec. The input will be 

a repeating sequence stair block. You should configure the simulation parameters as in 

the beginning of the example and change the simulation time to 3sec. The block 

parameters of the input and the PI controller are shown in Figs.25-26. After you run your 

simulation open the scope with three inputs: input, real system output, NN model system 

output and as expected the two outputs are quite similar as shown in Fig.27. Better 

accuracy can be obtained by fitting a more accurate NN model depending on the choice 

of number of hidden layers, number of neurons in each hidden layer, type of activation 

function. The network with the least performance function after the end of training will 

be the best choice.  
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Fig.24 Simulink model of control system 

 

Fig.25 Input block parameters 
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Fig.26 PI controller Simulink model 

 
Fig.27 Actual plant and NN model response to step input 
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