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Abstract—In distributed power generation systems a pivotal role
is played byDC-DCpower converters that are employed to connect
local loads to local power sources. These converters are used either
in combinations of series/parallel connections or as stand-alone de-
vices. A lot of work has taken place in the stability analysis of these
converters and several methods have been used/proposed with dif-
ferent properties, strengths and weaknesses. Describing all existing
methods is probably a never ending task and therefore in this tuto-
rial paper four different methods will be presented by pointing out
their main properties and explaining briefly how they can be used
in applications that involve power converters. More specifically,
the chosen methods are based on 1) the Poincaré map, 2) Salta-
tion matrix, 3) trajectory sensitivity, and 4) steady-state-response
analysis of the discrete-time model. Simple case studies from pre-
vious publications are collected and presented in order to further
explain these methodologies. Finally, this paper intents to describe
some of the future challenges that exist in the area of stability anal-
ysis of power converters especially when these are employed in dis-
tributed generation applications.

Index Terms—DC-DC converters, distributed power systems,
Poincaré map, Saltation matrix, stability analysis, steady state
analysis, trajectory sensitivity.

I. INTRODUCTION

A. Distributed Generation Systems

D ISTRIBUTEDPower Generation (DPG) systems are con-
sidered one of the key aspects of tomorrow's power grids.

Their main characteristic is the ability to locally produce and
distribute energy with high efficiency. Furthermore, by using
Renewable Energy Sources (RESs) it is possible to offer a more
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environmental friendly approach and to greatly reduce the emis-
sions of harmful gasses into the atmosphere [1]. Finally, due to
the local nature of such systems it is possible to avoid using AC
transmission and to employ DC operation. Another advantage
that is associated with DPG systems is the ability to use mi-
crogrids, i.e., to combine several local energy storage facilities
(like batteries and hydrogen tanks), a number of power sources
(like photovoltaic panels and fuel cells) and a set of local loads
without the necessary requirement to connect to the main power
grid. Hence, apart from the improved efficiency that the DPG
systems offer, a microgrid provides better control, monitoring,
fault detection/isolation and power quality. When the micro-
grid concept is applied to residential electrical systems, at the
low power level (10–100 kW), it is called a nanogrid [2]. Com-
bining net-metering, communications, and remote control such
nanogrids could become building blocks of the so called smart-
grid [3].
All DPG topologies require specific power electronics mod-

ules to convert the generated power into a regulated one that
can be directly interconnected with the utility grid and/or can
be used to supply the consumer loads [4]. In order to exploit
the power that is locally produced and to satisfy the demand of
various local loads, it is necessary to use several DC-DC con-
verters at various power levels. The quality and efficiency of
the overall system is therefore tightly connected to the opera-
tion of these power converters. The main requirements for the
satisfactory performance of power converters are 1) operation
at the desired voltage/current level, 2) minimization of any AC
components in the system (ideally only a single DC component
should be present), 3) the minimization of the current/voltage
ripple that can greatly decrease the efficiency/life time of the
converter and 4) fast response in the presence of load/source
changes and other external disturbances.

B. Nonlinear Phenomena in Switching Converters
Switching mode power converters employ electronic

switches (such as diodes, IJBTs, MOSFET, and others) to
deliver a regulated current/voltage. When these switches are
required to be controlled, an external clock is used and therefore
the only acceptable nominal operation of any DC-DC converter
is a periodic oscillation around the desired level, i.e., apart from
a DC component, there always exists an AC component at the
frequency of the clock. This nominal behavior is also called
period-1 operation and the resulting vector field that describes
the converter is nonsmooth due to the switching action. When
the stability of this periodic operation is lost the converter
either operates at a different undesired voltage/current level or
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extra frequency components are present or we have a dramatic
increase of the current ripple [5], [6]. Therefore, the stable
behavior of the nominal periodic motion is of paramount im-
portance for the proper operation of the converter and hence of
the overall system. The transition from a stable to an unstable
operation is called a bifurcation and it is possible to have three
different types in relation to the aforementioned criteria.1
• Neimark-Sacker (NS) bifurcation that creates extra high
amplitude low frequency AC components.

• Saddle Node (SN) bifurcation that may force the converter
to operate at undesirable voltage/current level.

• Period Doubling (PD) bifurcation and the associated sub-
harmonic oscillation that leads to an increase in the current
ripple.

The occurrence of any of the above phenomena can have a
damaging affect on the converter and the devices that it intercon-
nects. Therefore, the stability analysis of the converter's nominal
periodic motion is crucial for the overall operation of the system
and a lot of work has taken place on producing tools that will
allow a power electronics engineer to predict when these bifur-
cations will occur, what is the underline mechanism for their
creation and also how they can be avoided. In the next subsec-
tion, some of these methods will be briefly described and then
better analyzed in Section II.

C. Literature Review and Brief Presentation of the Main
Stability Analysis Methods
The stability analysis of switched mode power converters

was originally tackled by using their averaged models [7], [8]
where the periodic operation of the converter is ignored and
the resulting nonlinear model is linearized around the operating
point. More specifically, a great effort has been made in the last
three decades on obtaining design-oriented averaged models
for switched converters and many types of these models exist
in the relevant literature. Even though these averaged models
can describe the low frequency or slow scale dynamics of
switching converters, unfortunately they cannot predict all the
nonlinear phenomena that can be observed in such systems
since they ignore the main source of nonlinearity, namely, the
switching action and the associated induced ripple in the state
variables. Therefore, since the pioneering works of Middle-
brook andČuk [8] in the seventies, there have been proposed
many improvements in order to take into account these peculiar
phenomena that cannot be predicted by conventional averaged
models. More specifically, to include the effect of the switching
action, “enhanced” averaged models have been suggested [10],
[11] that can predict the stable operating area. Also, in [12]
a zero order hold transfer function is included to take into
account the sampling effect of the modulator while [13] uses
a general modelling method based on the Krylov–Bogoli-
ubov–Mitropolsky ripple estimation technique. Unfortunately
all these modelling approaches greatly depend on the converter
topology and the controller that is being used [13], [14] and
therefore they cannot be generalized and used in all cases.
Apart from predicting the stability boundaries, averaged models

1Another type of bifurcation is also possible here, the so-called border colli-
sion or discontinuity induced bifurcation. However this will not be presented in
this review.

have also been used to design controllers mainly after a local
linearization and by applying linear design techniques such as
Bode, Nyquist, and root-locus plots or by directly using modern
state-space (both linear and nonlinear) methods [15]. Finally,
more advanced control algorithms such as robust and optimal
control techniques have also been developed based on these
models [16]–[18]. For interconnected switching converters
Middlebrook andČuk [19] suggested, in the 1970s, the Minor
Loop Gain (MLG), namely the ratio of the output impedance
of the source converter to the input impedance of the load
downstream converter as simple tool for stability analysis. A
review of the stability criteria using the previous approach can
be found in [9]. Unfortunately this approach cannot unfold all
the internal fast-scale nonlinear dynamics of the system and
the associated complex interaction between the source and the
load converters.
On the other hand, instabilities at the fast switching time scale

(i.e., PD bifurcations) that produce subharmonic oscillations,
have been reported in the early seventies in studies dealing with
the analysis of efficient switched mode power supplies under
PWM operation [20]. Realizing that PD bifurcations and the
associated subharmonic oscillation cannot be completely pre-
dicted by the aforementioned standard stability analysis tools,
discrete-time models were employed. The discrete-time models
are obtained by sampling the exact system state-space repre-
sentation at the switching period. This is equivalent to placing
a surface in the state space in such a way that the continuous
orbit is represented by a map (that is called the Poincaré map)
on that surface. Then the eigenvalues of the Jacobian matrix of
the Poincaré map evaluated at that fixed point determine the sta-
bility of the periodic orbit [21]. This matrix of the Poincaré map
is also called Monodromy matrix and its eigenvalues are called
Floquet multipliers. The discrete-time models attracted a lot of
interest initially by Prajoux et al. [22] then continued by Lee
and Yu [23] and later by Verghese et al. [24].
By the end of the 1980d, Hamill and Deane extended the

study of the fundamental periodic orbit and analyzed various
bifurcation and chaotic phenomena [25], [26] that are present in
switched mode power converters. Since then a lot of work has
taken place (see [5], [6], [27]–[29] and the references therein)
and the Poincaré map was derived for numerous power con-
verter topologies with multiple configuration structures [32] and
various exotic nonlinear behaviours were studied.
In general, discrete-time models or maps are widely used

to study bifurcations in DC-DC converters and for their dig-
ital control design [30], [31]. They have been successfully
applied in voltage-mode controlled buck converters [33] and
current-mode controlled boost converters [37]. Furthermore,
PD and other bifurcations causing the formation of solutions
in the high-frequency range can be studied through appropriate
discrete-time models not only for converters with a reduced
number of configurations [26], [29], [34] but also those charac-
terized by multiple number of configurations such as paralleled
[35], cascaded [36] and multi-cell converters [32]. An extensive
literature repository already exists with methods of analysis
and classification of standard bifurcations like PD and Hopf
(or Neimark-Sacker) bifurcations [21]. Finally, through the
usage of the discrete time models it is possible to predict and
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hence avoid these instabilities that can greatly downgrade the
performances.
While the Poincaré map, as it was originally proposed, can

theoretically be derived for any power converter and operating
mode (even if not in closed form), it becomes cumbersome
when used in complicated cases that involve several switching
topologies (like parallelly connected, interleaved, resonant or
multi-cell converters). This is mainly because the switching ac-
tion depends on the original perturbation that is placed on the
map in order to produce its Jacobian matrix. Another approach
is to effectively ignore this dependance and to include in the
derivation of the Jacobian, a “correction” map. Even though
this may seem more complicated for simple DC-DC converters,
it greatly simplifies the overall analysis and more importantly
through this simplification the resulting model can be used for
design purposes as it will be better explained later in the paper.
The structure of this correction map depends on the smooth-
ness and continuity of the vector fields. Filippov [38] in 1988
suggested the Saltation matrix for systems that have nonsmooth
but continuous vector fields while Nordmark and Dankowicz
[39] in 1999 proposed the Discontinuity Map for systems that
involve jumps in the state space2. These two methods were first
applied in mechanical systems and a more detailed analysis can
be found in [28], [40], [41]. In electrical systems it is not pos-
sible to have jumps in the state space and therefore the Salta-
tion matrix was used in 2008 [42] to study the nonlinear be-
havior of a voltage controlled buck converter. Furthermore, be-
cause in DC-DC converters the vector fields before and after
each switching are linear, this approach allowed a more system-
atic representation of the Jacobian matrix and hence the study
of more complicated converter topologies [43]–[49].
Trajectory sensitivities provide an alternative view of the

perturbation analysis underpinning Floquet theory and Salta-
tion matrix concepts. In particular, trajectory sensitivities are
motivated by truncating the Taylor series expansion of the
flow (or orbit) and describe the change in a trajectory resulting
from perturbations in initial conditions and parameters. It is
shown in [50] that trajectory sensitivities are well defined for
hybrid dynamical systems where the flow is determined by
differential-algebraic equations, and discrete events incorpo-
rate arbitrarily complicated switching conditions and state
reset (jump) actions. Trajectory sensitivities are described by
variational equations along smooth sections of an orbit, and
can be computed as a by-product of numerical integration
if an implicit integration technique is used to generate the
flow. Their evaluation at switching events is described by the
Saltation matrix. Evaluating trajectory sensitivities over a limit
cycle gives the Monodromy matrix that describes the stability
properties of the limit cycle. Trajectory sensitivities provide
gradient information required by shooting methods for solving
boundary value problems such as locating limit cycles.
All the previous techniques can be classified as dynamical

approaches and lead to the same expression of the Jacobian ma-
trix of the switched system in the discrete-time domain. After

2Obviously if the vector fields are continuous but nonsmooth both methods
result in the same correction map.

obtaining this matrix, critical boundary conditions for singular-
ities like SN bifurcation or PD can be obtained by imposing in
the characteristic equation that one of the eigenvalues is equal
to or , respectively [51].
Another approach used for the first time in [51] for locating

PD bifurcations in a buck converter is by using a Fourier series
expansion of the steady-state feedback signal and then to im-
pose specific conditions that occur when a PD takes place. The
frequency-domain expression that was first derived in [51] has
been recently re-considered in [52] and [53] arriving to closed
form expressions for the boundary of subharmonic oscillation in
the time domain. In [52] and [53], the transformation from the
Fourier frequency-domain to the time-domain is based on using
the transfer function of switching converters with linear plants.
However, most of the switching converters are bilinear and this
transfer function cannot be directly defined without averaging.
Based on that approach another methodology was proposed in
[54] where now the steady-state feedback signal is directly an-
alyzed in the time domain and easy-to-use critical instability
boundary expressions corresponding to SN and PD bifurcations
for the general case of bilinear DC-DC converters have been
obtained.
In this paper the previously mentioned techniques for pre-

dicting instabilities in switching converters are presented. It has
to be stated here that other methods have also been proposed
with various advantages and disadvantages. For example in [34]
a similar expression as the monodromymatrix was derived from
discrete-time analysis while two very powerful methods have
been proposed in [55], [56]. However, due to space limitations
only the dour aforementioned methods will be described.
The rest of the paper is organized as follows. Section II briefly

presents the mathematical switched model of power electronics
circuits. The discrete-time model in the form of a Poincaré map
is presented in Section III. In Section IV, the Floquet theory
and the Saltation matrix as applied to DC-DC converters are
explained. The trajectory sensitivity approach is detailed in
Section V. An approach based in steady-state analysis in the
time domain is presented in Section VI. Some examples of
power electronics converters are used in Section VII to illus-
trate the use for the previous techniques for stability analysis
and for prediction of the instability boundaries in the parameter
space. Finally some concluding remarks and future challenges
are discussed in the last section.

II. MATHEMATICAL MODEL OF A DC-DC CONVERTER

As it has been previously stated, DC-DC converters employ
switches that periodically change their configurations resulting
in a switched system. Due to the presence of switches, the dy-
namical model of the system is given by a piecewise function
that depends on the location of the system's trajectory in the state
space. Suppose the switching converter under study toggles be-
tween circuit topologies. In one switching cycle, it spends a
fraction of time in each particular topology. Let be the state
vector, be the fraction of the period in which the circuit stays
in the th topology, and be the period of one switching cycle.
Obviously, we have . The general non-
smooth dynamical model of the converter is
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for
for

...
for

(1)

where are different regions of the state space,
separated by ( ) dimensional surfaces given by algebraic
equations of the form , called
“switching manifolds”. When the circuit configurations used by
the converter are linear, we can write down the following state
equations for each clock cycle:

if
if

if

(2)

where and are the system matrices for the th topology
and is the vector of external input parameters. It should be
noted that usually practical switching converters involve a rela-
tively small .

III. POINCARÉ MAP

This section presents one of the most commonly used mod-
elling approaches for bifurcation analysis, i.e., the discrete-time
iterative-map approach. The derivation of iterative maps is rela-
tively complicated but the resulting models offer a complete in-
formation on the dynamical behavior of the system under inves-
tigation. This approach is able to predict low frequency (slow-
scale) and high-frequency (fast-scale) nonlinear phenomena [5].
Basically, the aim is to derive an iterative function that

expresses the state variables at one sampling instant in terms
of those at an earlier sampling instant. To illustrate the idea,
we consider maps obtained by uniform sampling of the system
states at time instants multiple of the period , i.e., ,
for . As the vector fields between the switching
events are linear (2) we can use the fundamental theorem of
calculus to express the value of the state vector at the end of the
subinterval corresponding to the th topology in terms of its
value at the beginning of that subinterval, Fig. 1. For brevity,
let be the time instant at the beginning of the th subinterval,
i.e., the time instant that corresponds to the circuit switching
from the ( )th to the th configuration. Moreover, letting

be the duty ratio corresponding to the subinterval beginning
at , i.e., , we have

(3)

where and . By com-
posing together equations for all subintervals within a switching
period, we obtain the following iterative map:

(4)

where is the vector of functions defining the
switching manifolds, denotes the state vector at ,

Fig. 1. Partitioning the state space into different regions. In each region the
system is described by a distinctive flow.

denotes the set of duty ratios for the cycle beginning at ,
i.e., [32]

(5a)

(5b)

Once the discrete-time map has been derived, and its fixed
point that corresponds to the original periodic motion found, it
is possible to calculate its Jacobian by [7], [32]

(6)

Then the stability of the fixed point is determined by calculating
the eigenvalues of the Jacobian through

(7)

The eigenvalues of the Jacobian matrix determine not only
the stability of the periodic orbit but also the three aforemen-
tioned bifurcation scenarios, Fig. 2. In Fig. 2(a) a stable (node)
and an unstable (saddle) limit cycle (shown in the bifurcation
diagram as fixed points) collide and are annihilated. Prior to the
bifurcation the stable fixed point has one real eigenvalue smaller
than 1, while the saddle has one real eigenvalue just greater than
1. As we approach the bifurcation point, these two eigenvalues
approach each other and at the bifurcation boundary they both
become 1. A different scenario is observed in Fig. 2(b) where a
stable period 1 orbit losses stability (but it continues to exist as
unstable) and a period 2 orbit is created with much bigger size
(i.e., when it occurs in a DC-DC converter we have a sudden
increase of the current ripple). In this case the stable period 1
orbit has one real eigenvalue that becomes at the bifurcation
point and when the period 2 is born it has one eigenvalue at 1.
Finally, in Fig. 2(c) the stable period 1 orbit loses stability (as in
case b) but now a quasi-periodic orbit (i.e., a torus) is created.
Now, we have two complex eigenvalues with magnitude greater
than 1 [21].
Many analytical results and solution approaches can be found

in standard texts on nonlinear dynamical systems that can be
modelled by iterative maps [21], [28], [55].

IV. SALTATION MATRIX

Another tool for accurate stability analysis of switching
converters without going through discrete-time modelling is
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Fig. 2. On the left: Bifurcation scenarios showing the three basic instabilities
that can occur in a periodic orbit. The solid trace denote stable and the dashed
unstable orbits. On the right: The unit circle and the location of the eigenvalues
of the period 1 orbit in each case at the onset of instability.

by using Floquet theory and Filippov's method. In this section
we will present the idea behind this approach and how this
can be used for stability analysis of the nominal operation of
the periodic orbits that appear in power converters. Prior to
that, we have to see the basic concepts of stability theory for
smooth dynamical systems and what are the main problems
when applied to switched systems.

A. Smooth Orbits
The stability of a general orbit of a nonlinear non

autonomous system is checked by placing a small
perturbation at and by observing how ”close” the new
orbit will be regarding to . In order to do that, we
quantify the difference which can
be expressed by using a Taylor series expansion on the perturbed
orbit, as follows:

Hence, the crucial quantity that will allow us to determine
the effect of the perturbation is the square matrix

which is the state transition matrix and effec-
tively describes how the perturbations will evolve with respect
to time. For linear time invariant systems ( ),

, while if the system is linear non-au-
tonomous ( ), then this matrix can be
found numerically [40] by solving the following initial value
problem:

If the vector field is nonlinear then using the fundamental
theorem of calculus we have

(8)

Then by taking the partial derivative with respect to the initial
condition we get to

(9)

with

(10)

Finally, by differentiating (9) with respect to time we get the
following differential equation:

(11)

which can be solved numerically. In the case where the orbit
under study is periodic (like in a DC-DC converter), the state
transition matrix evaluated at is called the mon-
odromy matrix with the following property:

Hence, using eigendecomposition of the monodromy matrix we
can state that if all the eigenvalues of the monodromy matrix
have magnitude less than 1 then the perturbations

will converge to zero and therefore the periodic
orbit under study is stable. The expression of the monodromy
matrix obtained by this procedure coincides with the Jacobian
matrix of the iterated mapping.

B. Nonsmooth Orbits
When the periodic orbit crosses the switching manifolds the

vector field becomes nonsmooth and therefore we cannot use the
aforementioned approach to determine its stability. In order to
better understand that, let's assume that we have the nonsmooth
orbit shown in Fig. 33 with the point where a perturbation
is placed, is the instant when the orbit under study hits the
switching manifold and when the perturbed orbit crosses the
manifold. As, there is a problem in describing the per-
turbation vectors during the interval . Filippov [38] sug-
gested a matrix called Saltation matrix or jump matrix that maps

3The perturbation is intentionally displayed so large in order to improve the
quality of the figure.
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Fig. 3. The original orbit and the perturbed orbit close to the switching
point. To improve the visibility the perturbation vectors

are written as .

the perturbation vector to These two vectors are de-
fined as follows:

(12)

Using a Taylor series expansion in the perturbed and initial or-
bits with respect to at it can be found that

(13)
(14)

were . By combining (13), and (14) we have

(15)

which implies that

(16)

Also using (13) and (14), one gets

(17)

Now, using a Taylor series expansion on at
and by denoting as , i.e., the gradient of
the function or equivalently the vector normal
to the switching manifolds and taking into account that

we have

(18)

By evaluating this expression at we have
which implies that

(19)

Using (17) in (14) we have

(20)

This defines the time required between the and

(21)

By inserting (21) into (16) we have

(22)
Note that if the trajectory encounters the switching surface
tangentially then the term in the denominator of (21) will
be zero. Consequently, if the switching function is time in-
variant then the trajectory must encounter the switching surface
transversally, otherwise will be infinitely large. Finally, as at
we have that (i.e., there are no jumps in the

state space)

(23)

The matrix in (23) is the Saltation matrix and in the next
section will be used in order to determine the stability of the
desired periodic orbit of a DC-DC converter.

C. Stability Analysis of Nonsmooth Periodic Orbits
Now it is possible to calculate the monodromy matrix of a

nonsmooth dynamical system such as a DC-DC converter4. As-
sume that we have an orbit in the state space with one switching
manifold that splits the state space into two compartments

and . The orbit starts at in , and then it hits
the switching manifold when , at it hits
again and returns to the original point after seconds.
In this case from until we have a smooth orbit and the
perturbation vectors can be described by a state transition
matrix ; similarly for the intervals and

with and
respectively. If the vector fields in (1) are linear then these
state transition matrices can easily be computed using the
exponential matrix, while if they are nonlinear then (11) will
have to be solved numerically. Finally, the perturbation vectors
near the switching points can be represented by two Saltation
matrices and and therefore the overall monodromy
matrix is

(24)

This matrix coincides with the Jacobian of the iterated map and
can be used for accurate stability analysis of the converter.

D. Use of the Saltation Matrix to Avoid Instabilities
Once the monodromy matrix is derived it is possible to be

used not only for the stability analysis but also to ensure a stable
response. One way to do that is to calculate for a range of pa-
rameter variables (e.g., the supply voltage, output load, induc-
tance and capacitance) all the Floquet multipliers and choose
the proper values of the parameters that offer a stable response.
While this may be possible in some cases, it cannot be gener-
alized. For example, the supply voltage of a power converter

4As it has been briefly previously stated, in electrical systems we do not have
jumps in the state space and therefore the generic nonsmooth limit cycle will
be nonsmooth but continuous. In the case where a jump takes place in the state
space then probably the most suitable methods of analysis are the Discontinuity
Map [28] and trajectory sensitivities [50].
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that is fed by a PV greatly changes from full power during the
day to zero during the night, similarly the load may consid-
erably fluctuate. Furthermore, the inductance and capacitance
are usually designed based on the desired current/voltage ripple
and hence they cannot be altered. The control structure is also
designed based on the requirements for transient response and
steady-state error. Therefore, it is highly possible to be in a case
where the stable operating region is very limited or as it is most
commonly the case, the designer to have to use larger values
for the inductance and capacitance with a direct result on the
size and cost of the converter. This problem is conventionally
addressed in current mode control by using a ramp compen-
sator, but this approach introduces a steady state error and more
importantly it slows down the system's response [59]. In [42]
the structure of the Saltation matrix was used to address this
problem without making any invasive changes to either the con-
verter or the controller. Looking again at the expression of (22),
we see that the Saltation matrix and hence the Floquet multi-
pliers depend on the vector fields before and after the switching
(i.e., the converter/controller structure and parameters) and on
the switching manifold. A key observation is the dependence on
the switching manifold is on its partial derivative with respect to
the states and time. Therefore in [42] it was suggested to inject
a small amplitude-high frequency signal in the controller that
will have negligible effect on the slow scale dynamics of the
converter but due to the partial derivative with respect to time
will have a major effect on the Floquet multipliers. Therefore it
is possible to widen the stability region.

V. TRAJECTORY SENSITIVITY
Trajectory sensitivities describe the change in a trajectory re-

sulting from perturbations in initial conditions5. Consider a non-
linear, non-autonomous system of the form

(25)

Dynamic behavior can be expressed analytically by the flow

(26)

A Taylor series expansion of (26) gives

(27)
where is referred to as the
sensitivity transition matrix or simply trajectory sensitivities.
As previously discussed, trajectory sensitivities evolve along
smooth sections of an orbit according to the variational equa-
tions

(28)

where is the appropriately sized identity matrix. When a
switching condition is encountered, the trajectory

5Sensitivity to perturbations in parameters can also be captured by model-
ling parameters as “states” through the introduction of trivial differential equa-
tions .

sensitivities undergo a jump according to (22). These concepts
are extended to hybrid dynamical systems in [50], where the
model has a differential-algebraic structure, allows arbitrarily
complicated switching conditions and incorporates state reset
(jump) actions. Trajectory sensitivities can be computed ef-
ficiently if an implicit numerical integration technique, such
as trapezoidal integration, is used to establish the nominal
trajectory. Such techniques invoke Newton's method at each
step along the integration path therefore require Jacobian infor-
mation. Trajectory sensitivities can be obtained as a by-product
of that solution process. Full details are provided in [50]. Points

on the orbit of a nonautonomous limit cycle with period
satisfy

(29)

Computing this orbit yields, for very little extra computational
cost, the trajectory sensitivities . But note that
this is exactly the monodromy matrix . Consequently, sta-
bility information can be obtained as a by-product of simulation,
with switched systems introducing no extra complications.
The availability of trajectory sensitivities makes locating

limit cycles a straightforward process. Rearranging (29) gives

(30)

which can be solved using Newton's method

(31)

where denotes the iteration number, and

Evaluating involves numerical integration to obtain the
flow . The sensitivities that are
required for are available from the computation of the flow.
Solution processes such as (31) that require simulation as part
of Newton's method are referred to as shooting methods [57].
Even though most power converters employ an external clock,
there are some topologies (like when a hysteresis controller is
used) that result in autonomous systems [58]. In this case these
ideas can naturally extend to autonomous systems [62]. The ex-
tension to continuation processes, for producing bifurcation dia-
grams, is also straightforward [62]. Limit cycles associated with
border collisions can be obtained by augmenting (30) with equa-
tions that describe a tangential encounter between the orbit and
a switching surface [62].

VI. STEADY-STATE ANALYSIS

Although the methods presented previously can be used to
obtain numerically the critical value of the parameters at the
onset of instability, it would be more useful to have explicit
expressions for the stability boundaries. For instance, in many
applications, the feedback coefficients, poles and zeroes of the
controllers are design parameters that should be adjusted ac-
cordingly to the power stage to be controlled. Our purpose in
this section is to present analytical expressions at the onset of
SN and PD singularities. Unfortunately, this is not a universal
procedure to obtain the boundary curves but it will always work
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for systems switching between two configurations. More specif-
ically, let us consider a power converter that can be modeled by
the following piecewise linear state equation:

if
if (32)

which can be conveniently written in the following form:

(33)

Note that in the special case where , the converter
power stage is linear and therefore a linear transfer function de-
scribes the relationship between the driving signal and the
control signal . In such cases, in [52] a Fourier series expan-
sion was applied to derive closed form expressions for the sta-
bility boundaries. However in the general case which
will result in a bilinear model as it can be observed from (33).
In such cases a different approach can be taken. The key point
here is that independently on whether or not, for each
switching subinterval, the system equations (for most switching
converters) are linear and time-invariant and hence closed form
solutions can be found (3). For convenience of notation, let us
express the switching condition as

which results from the comparison of the ramp
signal and the control signal, with being a suitable refer-
ence vector, the feedback gain which is also the gradient of
the switching function and is the vector of the
state variables including the power stage and the controller.
Note that the switching condition can also be written as

, where . As
a case study, let us focus on converters under Trailing Edge
Modulation (TEM) strategies during steady-state in which is
the steady-state duty cycle and the state of the switch is ON for

6. According to (3) we have that
and , and

. Let us also denote with
the state vector when the steady-state is reached, i.e., is
the state vector at the beginning of the clock period and
the state vector at .
During steady-state operation, at the switch is set to

ON and the converter is being described by [see (1)] while
it becomes OFF when (Fig. 4) with

being the vector field during . By enforcing
–periodicity and evaluating the resulting expressions at

and (or ) we obtain

(34)
(35)

where

6The results can easily be adapted for Leading Edge Modulation (LEM)
strategies by just replacing with and a simple sign inversion in the
feedback coefficients.

Fig. 4. Waveforms of the –periodic external signal and the feedback
signal at –periodic regime.

Fig. 5. SN bifurcation scenario in a switching converter.

Obviously for (34) and (35) to hold the matrices and
must be non-singular and two kinds of singularities may

appear here due to the structure of the matrices and . The
first one is a nonstructural singularity and can be avoided by just
adding parasitic resistances in the state matrix. The second one
is a structural singularity due to the presence of an integrator in
the feedback loop that adds a pole in the origin. In that case the
expression in (34) excludes the state variable corresponding to
the integral action. Finally, it is possible to express the switching
manifold using (34) as

(36)

A. SN Bifurcation Boundary
Using (36) it is possible to determine the onset of a Saddle-

Node bifurcation. To do that, notice that the number of solu-
tions of (36) equals to the number of period 1 orbits that exist
for a specific set of parameters. One way to locate the bifurca-
tion point is to numerically solve (36), find the duty cycles for
each point and then use (35) to locate the fixed points. When
two fixed points coincide then we have SN bifurcation. Unfor-
tunately this is not a simple task as the numerical solution may
be inaccurate, the expression for (36) may be very complicated
and also we need to use several initial conditions to make sure
that we locate all the fixed points. An alternative is to notice
that at a SN bifurcation boundary there is a tangency between

and the -axis in such a way that two solutions of (36)
coalesce and disappear (Fig. 5)

(37)

Let be the slope of the external –periodic signal .
Therefore (37) becomes
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(38)

By calculating the partial derivative in (38) using the expression
of in (34), the expression of the critical slope of the
ramp signal at a SN bifurcation boundary is as follows:

(39)
More calculation details can be found in [54]. It has to be men-
tioned here that in [52], the same condition has been derived,
but expressed in a different form, imposing an eigenvalue equal
to +1 in the characteristic equation of the Jacobian matrix.

B. Steady-State Response to Subharmonic Excitation

In switching converters with two configurations, during
the switching cycle of duration , the system has two phases
defined by the system matrices and respec-
tively. During the switching cycle of duration , the system
has four phases defined by the system matrices ,

, and respectively. During two
consecutive switching periods in the interval ,
let the crossing between the signals and occur at

and at , (see
Fig. 6). The parameter is a small quantity that vanishes at the
boundary between period 1 and period 2 behavior. At this point,
the period 1 solution and the period 2 solution coincide. By
obtaining the expression of the period 2 steady-state solutions
at the switching instants, setting the corresponding constraints
imposed by the feedback and equating these solutions at the
critical point ( ), a condition for predicting PD bifur-
cation is obtained. Exhibiting a period 2 regime, the sampled
value of the steady-state variables at the switching instants

and can be obtained by using the exact
solution of the trajectory in the time domain and forcing period
2 regime. In doing so, they can be expressed as follows:

(40a)
(40b)

where

(41a)
(41b)
(41c)

and

(42a)

(42b)

(42c)

(42d)

Fig. 6. Waveforms before and after the bifurcation takes place by sweeping a
parameter. Waveforms of the periodic external signal and the control signal

at -periodic regime.

C. PD Bifurcation Boundary
From the switching conditions imposed by the PWM process

at time instants and , the following
equalities hold (see Fig. 6):

(43a)
(43b)

Subtracting (43a) from (43b) and taking the limit when
, using (40a) and (40b), the following expression for the critical
slope at a PD bifurcation boundary is obtained:

(44)

More calculation details can be found in [54]. It is worth men-
tioning here that in [52], a slightly differently expressed con-
dition has been obtained using a different approach based on
solving the eigenvalue problem of the characteristic equation
or equivalently the time-domain Jacobian matrix, for the same
boundary condition. Although they are expressed differently,
the critical ramp slope for PD bifurcation given in (44) and the
one derived in [52] coincide.

VII. PRACTICAL EXAMPLES

A. Stability Analysis Using Floquet Theory Combined by
Filippov Method and the Saltation Matrix
In the previous sections we have seen the definition of sta-

bility applied in a general orbit, how this is materialized in a
closed orbit and finally how to use the Saltation matrix in order
to map the perturbation vectors from just before to just after a
switching takes place in the state space. We have also seen how
the state transition matrices combined with Saltation matrices
can create the overall monodromy matrix.
1) Example 1: Now, we will apply this method to a classical

example of voltage controlled buck converter, as first reported
in [26]7. The material in this subsection is mainly taken from

7The parameters according to [26] are: , ,
, , , , , and
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Fig. 7. Buck converter under a PI VMC scheme.

Fig. 8. Eigenvalues loci for . Squares indicate unstable
system, solid circles stable system.

Fig. 9. Subharmonic oscillation curve in terms of the input voltage and the
load resistance for a buck converter under a VMC scheme.

[42] which was the first paper in the area of power converters
that utilized the concept of the Saltation matrix. The schematic
circuit diagram are shown in Fig. 7. In the voltage mode con-
trolled buck converter the error signal between the demanded
voltage and the actual output voltage is fed to a propor-
tional controller (with gain ) and the resulted control signal
is compared with a ramp signal ; the result of this compar-
ison determines the state of the switch. By defining
and (the inductor current), the state equations of
the buck converter may be written as follows:

(45)

where, and

The equation defining the switching hypersurface is given by

(46)
(47)

where is the modulator
ramp. This will result into

where is the slope of the ramp modulator. The gradient of
the switching function can be calculated as follows:

(48)
Hence the saltation matrix (23) is expressed by

(49)

The nominal operation of the converter is an oscillatory mo-
tion around the desired value with a frequency that equals that
of the external clock. Notice here that there will be 2 switching
events in one clock cycle, one at (where is the
duty cycle) and one at and therefore it may be wrongly
assumed that we need to use the Saltation matrix twice. While
this is true, at there is a forced commutation and therefore
the nominal and the perturbed orbit will hit the switching mani-
fold at the same instant. This implies that the Saltation matrix at

is the identity matrix. Another way to state this, is that at
the ramp signal is discontinuous and hence the derivative

of with respect to time is infinite resulting in the Saltation ma-
trix being the identity matrix. Now we need the state transition
matrices for the two subsystems. The state transition matrices
are given by and , as
the subsystems are linear time invariant. The eigenvalues of this
matrix (also called Floquet multipliers) are shown in Fig. 8 in-
dicating that a PD bifurcation occurs at approximately 24.5 V
which agrees with the numerical simulations shown in [42]. The
same results can be obtained from a discrete-time map.

B. Stability Boundaries Using Steady-State Analysis
1) Example 2: Consider the same example as before with

the same parameter values except the load resistance which is
considered as a secondary bifurcation parameter. Fig. 9 shows
the boundary in terms of the load resistance and the input
voltage obtained from (44) for the system. It can be observed
that when for instance , the critical value of for
subharmonic oscillation occurrence is very close to 24.5 V in a
perfect agreement with the previous analysis based on Floquet
theory and Poincaré map modelling. It should be noted that this
example uses an LEM strategy and a change of variable

must be done in (44) together with a sign inversion in
the voltage feedback gain.
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Fig. 10. Schematic circuit diagram of a buck converter under a current mode
control feeding a boost converter also under current mode control.

Fig. 11. Schematic circuit diagram of a buck converter under a current mode
control feeding a constant current source as a load representing another con-
verter under current mode control.

2) Example 3: In distributed DC power systems applica-
tions, often, a source converter regulated a dc bus from an
energy source while at the same time loaded by a downstream
converter. This kind of interconnected topologies appear in
many applications such as electric vehicle, aircraft among
others [9]. The system that will be considered in this example
is a buck converter driving another DC-DC converter, Fig. 10.
Both converters are under current mode control (CMC). The
second converter can be approximated by a constant current
sink as it shown in Fig. 11. Previous studies has shown that
saddle-node bifurcation in this interconnected scheme results
in complex interaction that cannot be predicted by averaged
models [63]. It should be noted that if instead of the current,
the voltage of the load converter is regulated, the output of
the source converter can be approximated by a constant power
sink [64], [65]. In that case the system configurations for each
switch state will be nonlinear and closed form solution is not
available. However, if we are concerned with the fast-scale
instability analysis, current sink output approximation can still
be used and the current output is given by , where
is the power and is the output voltage. It should also be noted
that the previous arguments also apply in the case if many loads
are connected to the source converter and all of them can be
represented by a constant power sink or constant power source
as it is the case of a micro or a nano grid. The system matrices
and vectors are as follows:

The parameter values used are the same in [63] and are as
follows: , , , ,

, , . The switching frequency used is
. Fig. 12 shows which gives the

possible operating steady-state duty cycles for different values
of just below and just above the critical point. This figure
also shows the stabilitymap of the system in the parameter space

. For , the system has only one solution. For
, three different regions can be identified. The first

one is where the system presents no solution.
The second one is where the system
presents one stable solution and one saddle. The last one where

and the system presents one stable solution. For
this particular example it turns out that the boundary of the SN
bifurcation in the parameter space is approximately a
straight line whose slope is and passing from
and its maximum value is for . Therefore, by
choosing will guarantee that the system to
have only one solution independently on the value of the duty
cycle.

VIII. CONCLUDING REMARKS AND FUTURE CHALLENGES
A core component of distributed power generation systems

is a power converter that interconnects local power sources to
local loads. Therefore, the efficiency and proper operation of
these converters are of paramount importance for the whole
power grid. One of the main requirements in order to achieve
this proper operation is to guarantee that the power converter's
nominal periodic motion is stable despite any internal or ex-
ternal parameter changes. In this review/tutorial paper, four dif-
ferent methods were presented that address exactly this point,
i.e., the stability of the nominal periodic orbit. The basic idea be-
hind each of these methods is briefly described and simple case
studies confirm their validity. Each method has its own advan-
tages and shortcomings and one of the main goal of this paper
was to highlight them in order for the user to choose the most
appropriate one for his/her application.
The Poincaré map was presented that has the ability to pre-

dict all the nonlinear phenomena that are present in power con-
verters but it can be cumbersome in complicated topologies.
The Saltation matrix was also presented that greatly simplifies
the analysis and results in the same matrix as the Jacobian of
the Poincaré map. The trajectory sensitivity approach using a
discrete-algebraic-differential model was also presented and fi-
nally a method based on the time-domain steady state-response
of the converter was used in order to predict period doubling
and saddle-node bifurcations.
While a lot of work has taken place in the area of stability

analysis of power converters, there are still many challenges
that need to be addressed. Apart from the purely theoretical in-
terest that these systems impose, there are many practical prob-
lems that have to be resolved. The main issue that requires at-
tention by the scientific community is the study of more com-
plicated power converter topologies that are necessary in dis-
tributed power generation systems especially when the oper-
ating conditions greatly vary. For example in an isolated mi-
crogrid with RES, battery and a local load, the power converter
must be able to handle multiple power sources with great vari-
ability in their outputs (e.g., the solar irradiation) and at the same
time feed the local unpredictable load and/or charge the battery
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Fig. 12. Steady-state switching function showing the disappearance of two solutions near a SN bifurcation (a) and the stability map in terms of the duty cycle
and the normalized slope of the signal .

(when this is required) with high efficiency and overall perfor-
mance. Another interesting topic is the combination of multiple
power converters in distributed power generation systems and
how stability problems that appear in one converter can be iso-
lated and not to propagate to the rest of the system. This is the
case for instance of emerging fields such as in grid-to-vehicle
and vehicle-to-grid interconnection using others switching con-
verters. In these kind of interconnected schemes, the problem
of accurate stability analysis using nonlinear tools tools is chal-
lenging. The analysis method can be also extended to micro and
nano grids where many converters are interconnected. From a
theoretical point of view a major challenge is the modifications
of these methods in order to be used by power electronics practi-
tioners for the proper design of DC-DC converters. Hence, apart
from being able to predict when these instabilities will occur, the
presented methodologies must be able to offer simple tools that
will guarantee the stable operation of the converter and to offer
easy-to-use indexes for accurately predicting the onset of insta-
bility [66], [67]. While some work has taken place on this issue
(mainly on simple DC-DC converters), more work is further re-
quired.
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