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SUMMARY

There are many applications in power electronics that demand high step-up conversion ratio between the
source and the load. A simple way of achieving such a high voltage ratio is by cascading DC–DC boost con-
verters in a few stages. The individual converters in such a cascaded system are usually designed separately
applying classical design criteria. This paper investigates the stability of the overall system of a cascade con-
nection of two boost converters under current mode control. We first demonstrate the bifurcation behavior of
the system, and it is shown that the desired periodic orbit can undergo fast-scale period doubling bifurcation
leading to subharmonic oscillations and chaotic regimes under parameter variation. The value of the inter-
mediate capacitor is taken as a design parameter, and we determine the minimum ramp slope in the first
stage required to maintain stability. It is shown that smaller capacitance values give rise to wider stability
range. We explain the bifurcation phenomena using a full-order model. Then, in order to simplify the anal-
ysis and to obtain a closed-form expression to explain the previous observation, we develop a reduced-order
model by treating the second stage as a current sink. This allows us to obtain design-oriented stability
boundaries in the parameter space by taking into account slope interactions between the state variables in
the two stages. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Power electronic systems are used in many applications where there is a need to convert one form of
electrical energy into another. Examples include power supplies in consumer electronics, industrial
electric motor drives, electro-heating, lighting, and energy-efficient interfaces between renewable
energy resources and the distribution grid. One of the most used topologies in energy conversion is
the boost converter, which steps up a source voltage to a higher voltage level [1].

In some applications, the required step-up conversion ratio is quite high. Such necessities arise in
uninterrupted power supplies, automobile high-intensity discharge headlamps, in several medical
equipments, among others. This is also the case of renewable energy applications such as distributed
photovoltaic generation systems [2,3], fuel cell energy conversion systems, and modern electric vehicles.
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In these high-step-up-ratio applications, although a single boost converter can be used, there are
many inconveniences with its use mainly related to increased stress on the components and the poor
system efficiency due to the large conduction losses. Moreover, a high step-up conversion ratio
requires a large duty cycle, which makes the system prone to subharmonic instability and
consequently large current ripples. As a remedy, the conventional boost converter may be
substituted by a number of boost converters connected in cascade, where each could operate with
relatively low values of duty ratio [4–7].

The design of such integrated systems would require a comprehensive knowledge about suitable
ways of modeling such systems, analysis of stability, the instabilities that can occur, and finally
some design guidelines. This paper takes the first step in achieving these objectives.

The desired behavior of any power electronic system is a periodic orbit with the same period as the
external clock signal. This orbit is often called period-1 orbit. However, because of the presence of
switching nonlinearities, it is possible that the system behaves with a period-k orbit, k=2, 3, 4…,
with a period equal to an integer multiple of the external clock period. The system can even enter
quasi-periodic or chaotic regimes through different bifurcation scenarios. During the last couple of
decades, much effort has been devoted to the study of complex nonlinear phenomena in switching
converters [8–10]. These phenomena can have harmful effects on the system operation and may
cause system failure, malfunctioning due to large ripple, and poor efficiency or even damages
caused by the increase of the stress on the switching components. Therefore, their study and
prediction are important both from theoretical and practical points of view.

The study of these nonlinear phenomena is mostly based on accurate modeling approaches coping
with switching action such as discrete-time mappings [11] or the Floquet theory combined with
Filippov’s method [12,13] to obtain the Jacobian of the Poincaré map or the monodromy matrix. In
this paper, we investigate the dynamics and stability issues in a system comprising two cascaded
boost converters connected to a constant voltage source, which can model a DC bus or a backup
battery. Both the converters are controlled by current-mode controllers.

The rest of this work is organized as follows. Section 2 deals with the description of the system
under study. In Section 3, some instability problems taking place in the system are shown and
then explained in Section 4 in terms of Floquet multipliers corresponding to period-1 orbits.
Design-oriented modeling of the system is addressed in Section 4. From a reduced-order model,
simplified stability boundaries in parameter space are obtained in Section 5. Design-oriented
stability conditions are obtained in the same section. Finally, some conclusions are drawn in the
last section.
2. CURRENT MODE-CONTROLLED CASCADED BOOST–BOOST CONVERTERS

2.1. System description

The two-stage DC–DC converter considered in this study is shown in Figure 1. It consists of a cascade
connection of two boost converters. The switches are considered ideal, and the equivalent series
resistances of inductors and capacitors are included in the model of the circuit. The aim of the
controllers is as follows: First, the intermediate voltage must be regulated to a desired reference
voltage Vref1. Because boost converters are non-minimum phase systems, if the feedback variable is
the output voltage [1], a current mode control is mandatory. In this case, the external voltage
regulator provides the reference for the inner current controller, which is a simple (but adequate for
this task) peak current controller. The second stage is controlled with the aim to provide the proper
current to the load, and therefore, a tight average current controller is used.

More, specifically, the system is controlled by comparing the inductor currents of the first and
the second stages iL1 and iL2 with their reference values iref1 and iref2. The intermediate voltage
vo1 is controlled to a desired value by using a peak Current Mode Control (CMC) in the first
stage with a closed intermediate voltage loop and an artificial periodic ramp compensator ia1(t)
with slope ma1. The second stage must provide a regulated average current to the output,
which could be a DC bus or a battery.
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:1127–1141
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Figure 1. Schematic circuit diagram of a boost switching converter loaded by another boost switching con-
verter. The first stage is under a peak CMC with its output voltage loop closed. The average input current in

the second stage is tightly regulated by a PI compensator.
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2.2. Power stage modeling

By applying Kirchhoff’s current and voltage laws to the circuit depicted in Figure 1, the following set
of differential equations are obtained:

diL1
dt

¼ V low

L1
� rL1iL1

L1
� vC1 þ rC1 iL1 � iL2ð Þ

L1
1� δ1ð Þ (1)

diL2
dt

¼ vC1 þ rC1 iL1 1� δ1ð Þ � iL2ð Þ
L2

� rL2iL2
L2

� Vhigh

L2
1� δ2ð Þ (2)

dvC1
dt

¼ iL1
C1

1� δ1ð Þ � iL2
C1

(3)

where for the first stage (resp. second stage), δ1 = 1 (resp. δ2 = 1) when the switch S1 (resp. S2) is
closed and δ1 = 0 (resp. δ2 = 0) when the switch S1 (resp. S2) is open. The switches S1 and S2 are
driven complementarily to S1 and S2, respectively. The variables δ1 and δ2 are the binary command
signals used to drive the switches S1 and S2, respectively.

2.3. Controllers modeling

With the aim to regulate the intermediate voltage to its desired value, the inductor current reference in
the first stage is generated from an outer voltage loop PI controller whose input is the intermediate
voltage error ev1 =Vref1� vo1, vo1 = vC1 + rC1C1dvC1/dt, and whose output is iref1 given by

iref1 ¼ Wv ev1 þ ωzvx4ð Þ (4)

where x4 = ∫ev1(t)dt is the integral of intermediate voltage error. To regulate the inductor current iL2 in
the second stage to its desired value, the error iref2� iL2 is processed by a PI compensator whose output
is given by

vcon2 ¼ Wi ei2 þ ωzix5ð Þ (5)

where x5 = ∫ei2(t)dt is the integral of the current error.
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:1127–1141
DOI: 10.1002/cta



1130 A. EL AROUDI ET AL.
So, the extra state equations for these two integral state variables are
dx4
dt

¼ V ref1 � vC1 � rC1 iL1 1� δ1ð Þ � iL2ð Þ (6)

dx5
dt

¼ iref2 � iL2 (7)
2.4. Operating modes and piecewise linear state equations

Different types of period-1 cycles are possible for the system depending on the parameters of the first
and the second stages. These different period-1 orbits define different operating modes for the system
depending on the relationship between the duty cycles of the driving signals. It can be shown that there
are basically three operating modes that can be summarized as follows (Figure 2).

Within a clock period T, four different configurations C1, C2, C3, and C4 are possible corresponding
to the pair states (ON, ON), (OFF, ON), (OFF, OFF), or (ON, OFF) of the switches S1 and S2, respectively.
However, during a switching period, the system can switch among only three of them as either the
configuration C2:=(OFF, ON) or C4:=(ON, OFF) is skipped depending on whether D1<D2 or D2<D1,
where D1 and D2 are the duty cycles of the first stage and the second stage, respectively.

For each state of the switch pair (S1, S2), the system can be described by a set of linear differential
equations that can be written as follows:

_x ¼ Aijxþ Bij; i; jð Þ∈ 0; 1f g2

The vector of the state variables of the system is x= (iL1, iL2, vC1, x4, x5)
⊤ ∈ℝ5. Obtaining Aij and Bij

from (1)–(3) and (6), (7) is straightforward. The matrices and vectors corresponding to each
configuration are given in the following.

• Configuration C1 corresponding to the switch state pair (ON, ON)

A11 ¼

�rL1
L1

0 0 0 0

0 �rL2 þ rC1
L2

1
L2

0 0

0 � 1
C1

0 0 0

0 rC1 �1 0 0

0 �1 0 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;B11 ¼

V low

L1
0

0

V ref1

iref2

0
BBBBBBBB@

1
CCCCCCCCA

(8)
Figure 2. Possible operating modes for the system.
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• Configuration C4 corresponding to the switch pair state (ON, OFF)

A10 ¼ A11;B10 ¼ V low

L1
; �Vhigh

L2
; 0; V ref1; iref2

� �⊤

(9)

• Configuration C3 corresponding to the switch pair state (OFF, OFF)

A00 ¼

�rL1 þ rC1
L1

�rC1
L1

� 1
L1

0 0

�rC1
L2

�rC1 þ rL2 þ rC1
L2

1
L2

0 0

1
C1

� 1
C1

0 0 0

�rC1 rC1 �1 0 0

0 �1 0 0 0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

;

B00 ¼ B01

(10)

• Configuration C2 corresponding to the switch pair state (OFF, ON)

A01 ¼ A00;B01 ¼ B11 (11)

It is worth noting also that the system is linear for each switch pair state, and the nonlinearities arise
in this kind of systems basically from interaction between feedback and switching processes that make
the dynamics of the system highly nonlinear.

At the beginning of each switching cycle in the first stage, the switch S1 is turned ON. The controlled
current iL1 increases until it reaches the signal iref1�ma1(t mod T); the switch S1 is then turned OFF

and remains OFF until the next cycle begins. The switch S2 is switched ON at the beginning of each
switching period and is switched OFF whenever vcon2 crosses vr2.

Therefore, the switch S1 in the first stage is closed periodically at each clock period, and it is turned
OFF whenever the following switching function

σ1 x; tð Þ :¼ iL1 � ir1 : ¼ F1x tð Þ �WvV ref1 þ ma1 tmod Tð Þ (12)

is equal to zero, where ir1 = iref1�ma1(t mod T) and F1 = (1,�WvrC1,Wv,�Wvωzv, 0). In the second
stage, the switching decision is taken by comparing the control signal vcon2(t) with a periodic ramp
modulator vr2(t). The switching instants are therefore solutions of the equation

σ2 x; tð Þ :¼ vcon2 tð Þ � vr2 tð Þ :¼ F2x tð Þ þWiiref2 � ma2 tmod Tð Þ ¼ 0; (13)

where F2 = (0,�Wi, 0, 0,Wiωzi). Note that F1 and F2 are also the normal vectors to the switching
manifolds defined by (12) and (13), respectively.
3. SYSTEM BEHAVIOR FROM NUMERICAL SIMULATIONS

The fixed circuit parameter values used in this study are shown in Table I, and they are selected as
practical values for connecting a photovoltaic panel or a storage battery with a low voltage
Vlow = 50V interfaced through a two-stage boost converter with a DC bus whose voltage is
Vhigh = 320V [14]. The switching frequency for both the stages is fs=100kHz. The intermediate
voltage vo1 is regulated to approximately 200V in order to make the first stage to work with a duty
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:1127–1141
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Table I. The used parameter values.

L1 rL1 rC1 Vref1 Wv, ωzv L2 rL2 Wi iref2 ωzi

420μH, 100mΩ 50mΩ 200V 1, 1 krad/s 2mH, 100mΩ 1Ω 1A 10 krad/s
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cycle D1 = 0.75%. With this value of the duty cycle (D1>0.5%), a ramp compensator is necessary in
this stage to avoid subharmonic oscillation according to [1]. The duty cycle in the second stage is
D2 = 0.375, and according to the classical design criterion in [1], no ramp compensation is needed.
In the classical design, the minimum ramp needed to avoid subharmonic oscillations in a boost
converter with duty cycle D, inductance L, and output voltage vo is given by the expression [1]

vo
L

D� 1
2

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

ma;cri Dð Þ

< ma (14)

where ma is the slope of the T-periodic artificial ramp compensator, D is the duty cycle, vo is the output
voltage, and L is the inductance value. In our example, we have for the first stage ma,cri,1(D1) =
vo1(D1� 1/2)/L1, where D1 = 0.75, that is, ma,cri,1≈ 119kA/s. Because the switching frequency is fs=
100kHz, the minimum ramp amplitude must be IM1 = 1.19A. Therefore, with a ramp amplitude less
than 1.19A, the system should be unstable according to (14). However, we will see that this is not
always the case, and in particular, we will show that the stability boundary also depends on other
parameters not appearing in (14). For the second stage, the duty cycle is D2 = 0.375<0.5, and a
priori, the system can be stable even without a ramp compensator. In our study, a constant ramp
slope ma=m2 = (Vhigh� vo1)/L2 is used guaranteeing a deadbeat response with a zero discrete time
eigenvalue in the second stage according to the conventional approach [1]. Therefore, in our
interconnected scheme, a ramp voltage whose amplitude is VM2 = 0.6V has been used in the second
stage to obtain this kind of response.

In order to investigate the possible nonlinear phenomena that the system can exhibit, a bifurcation
diagram is computed by taking the normalized ramp slope ma1 ¼ ma1= V low=L1ð Þ as a bifurcation
parameter, which is varied between 0.4 and 1.2 for two different values of the output capacitances
C1 = 20 and 400μF. The results are shown in Figure 3. It shows that as the ramp slope is reduced, at
a specific parameter value, the converter loses stability and goes into a period-2 subharmonic
oscillation, and as the slope is reduced further, there is a border-collision bifurcation leading to
chaotic behavior. For example, Figure 4(a) shows the period-2 waveforms before and after the
border collision at C1 = 20μF. At the border-collision bifurcation point, an infinite number of
unstable orbits are created, two of which (period 2 and period 4) are shown in the figure. All the
unstable orbits in Figure 3 are drawn using the method given in [12,15].

The most remarkable observation is that the slope required for stabilization for a capacitance
C1 = 20μF is smaller than that required for 400μF. In general, it can be claimed that within a
Figure 3. Bifurcation diagram by taking ma1 as a bifurcation parameter for two different values of the inter-
mediate capacitance C1. The required ramp slope for C1 = 400μF is larger than the one for C1 = 20μF.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:1127–1141
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(a) (b)

Figure 4. (a) Period-2 waveforms before (stable at ma1 ¼ 0:5368) and after (unstable at ma1 ¼ 0:5367) the
border-collision bifurcation for C1 = 20μF (Table III). (b) Boundary between stable and unstable regions in

the parameter space C1; ma1ð Þ.
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certain practical range of capacitance values, the larger the capacitance C1, the larger the ramp slope
required for stabilization. This is confirmed in Figure 4(b) where the stability boundary is plotted in
the parameter space (C1; ma1). Two main remarks can be carried out from the results of this figure:

• The stability boundary shows a significant dependence on the capacitance values. Note that the
design based on the conventional approach in (14) does not show any dependence of the stability
limits on the capacitance C1.

• Because higher capacitance values will imply lower ripples in the voltage, it is broadly believed
by the power electronics community that the larger values of the capacitance makes the system
more stable. Surprisingly, the system with a lower capacitance value has a wider stability region.
Note however, that general constraints on the maximum allowed ripple must be met in such a way
that the value of the intermediate capacitance must be selected according to a compromise
between stability requirement and allowed ripple.

To check the results shown in Figure 4, we obtain a plot of the system waveforms for different
values of capacitance C1 and normalized ramp slope ma1 . Figure 5 shows the steady-state response
of the system for C1 = 400μF with ma1 ¼ 1:008 and ma1 ¼ 0:9584 . It can be observed that the
steady-state cycle-by-cycle behavior of the first stage exhibits fast-scale subharmonic oscillation for
ma1 ¼ 0:9584 . Note that the second stage maintains negligibly small subharmonic oscillation
because the slope of the ramp is selected to be equal to m2 = (Vhigh� vo1)/L2, guaranteeing deadbeat
response. That is why subharmonic oscillation is not appreciable in the second stage.

Figure 6 shows the steady-state response of the system for C1 = 20μF. From this figure, it can
be observed that the system is stable even with much smaller ramp slope than in the previous
case, which is in good agreement with the results in Figure 4. In particular, this parameter was
decreased to IM1 = 0.2A for Figure 6(a). By numerical simulation, it was found that the new
critical value of the ramp slope ma1 is close to 0.19A and if the ramp slope ma1 is selected
less than this value, the system will exhibit subharmonic oscillation (Figure 6(b)), and this is
also in perfect agreement with the stability boundary shown in Figure 4. Notice that like
before, the second stage is maintained stable, and subharmonic oscillation is exhibited only in
the first stage.
4. STABILITY ANALYSIS USING FLOQUET THEORY AND THE MONODROMY MATRIX

Nonlinear dynamical systems can present many types of steady-state behaviors such as period-k orbits
(k=1, 2,…), quasi-periodic motions and chaotic regimes. The stability of periodic motions can be
determined by the Floquet multipliers, which are the eigenvalues of the fundamental solution matrix
or the monodromy matrix. This matrix is the Jacobian of the linearized system along the
periodic orbit and can be obtained from the product of the state transition matrices
corresponding to each subcycle and the corresponding saltation matrices [12,13]. Suppose a
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:1127–1141
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Figure 5. Waveforms of the state variables and the control signals in the two stages for two different values
of ma1 and for C1 = 400μF.
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trajectory starts at time instant ti and as described by the vector field fi(x) intersects the switching
boundary described by the equation σi,i + 1(x(t), t) = 0 at ti and switches to the vector field fi + 1(x).
It has been shown, using the Filippov method [12,13], that when there is a transversal
intersection, the state transition matrix across the switching boundary, also called the saltation
matrix Si,i + 1, is given by

Si;iþ1 ¼ Iþ f iþ1 x tið Þð Þ � f i x tið Þð Þð ÞKi;iþ1

Ki;iþ1f i xð Þ þ ∂σi
∂t t¼tij (15)

where I is an identity matrix with appropriate size and Ki,i + 1 is the gradient of the surface
∑i,i + 1 := {(x, t) = σi,i + 1(x(t), t) = 0}. Then, the monodromy matrix M for a switched system with Nc

different configurations can be composed during a complete cycle as follows:

M x 0ð Þð Þ ¼ SNc;Nc�1ΦNcSNc�1;Nc…Φ2S1;2Φ1 (16)

For switched linear systems, fi=Aix+Bi, and thereforeΦi ¼ Φi ti � ti�1ð Þ ¼ eAi ti�ti�1ð Þ, i=1…Nc, is
the state transition matrix corresponding to the interval (ti� 1, ti) within which the vector field fi is
taking place, x(0) is the value of the periodic orbit at the beginning of the its period which can
obtained by enforcing periodicity during one cycle. It is worth noting that this approach can be
applied to different periodic orbits (stable and unstable) of any period.

In this paper, we have used this approach for studying the stability of period-1, period-2, and period-
4 orbits of the cascaded system for an operating mode characterized by Nc=3, Nc=6 (or Nc=5), and
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:1127–1141
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Figure 6. Waveforms of the state variables and the control signals in the two stages for two different values
of ma1 for C1 = 20μF.
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Nc=11, respectively. The branches corresponding to these periodic orbits are shown in Figure 3. Their
corresponding eigenvalues are shown in Tables II and III for C1 = 400 and C1 = 20μF, respectively,
where the switching sequences are also indicated. The results from the stability analysis using the
monodromy matrix are in perfect agreement with the brute force bifurcation diagrams presented in
the previous section. In particular, the critical values of the normalized slope ma1 for the period-1
orbit to lose its stability arema1 ¼ 0:9618 andma1 ¼ 0:5658 for C1 = 400 and C1 = 20μF, respectively.
5. MODEL REDUCTION AND SIMPLIFIED STABILITY LIMITS IN THE PARAMETER
SPACE

5.1. Model reduction

Although a full-order model can be used to obtain numerically the critical value of the parameters as it was
performed in the previous section, it is more useful to have a simplified reduced-order model to derive from
it explicit analytical expressions for the stability boundaries or to speed-up the simulation [16].
Table II. Eigenvalues of the fixed point with variation of the normalized slope ma1 for C1 = 400μF.

ma1 Periodic orbit Subsystem sequence Eigenvalues

1.200 Stable period 1 [1-2-3] �0.7833, 0.9968 ± 0.0072j, 0.8998, 0.0123
0.09617 Stable period 1 [1-2-3] �0.9999, 0.9968 ± 0.0072j, 0.8998, 0.0123
0.9618 Unstable period 1 [1-2-3] �1.0007, 0.9968 ± 0.0072j, 0.8998, 0.0123
0.9618 Stable period 2 [1-2-3 – 1-2-3] 0.9969, 0.9950 ± 0.0157j, 0.8097, 0.0002
0.9609 Stable period 2 [1-2-3 – 1-2-3] 0.9956, 0.9957 ± 0.0165j, 0.8097, 0.0002
0.9610 Unstable period 2 [1-2 – 1-2-3] –1.0049, 0.9936 ± 0.0144j, 0.8097, 0.0002
0.9610 Unstable period 4 [1-2-3 – 1-2-3 –1-2 – 1-2-3] �1.0083, 0.9869 ± 0.0287j, 0.6557, 0.016 × 10�6

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:1127–1141
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Table III. Eigenvalues of the fixed point with variation of the normalized slope ma1 for C1 = 20μF.

ma1 Periodic orbit Subsystem sequence Eigenvalues

1.200 Stable period 1 [1-2-3] �0.2131, 0.9894, 0.9020, 0.7839, 0.0123
0.5659 Stable period 1 [1-2-3] �0.9998, 0.9894, 0.9021, 0.7983, 0.0123
0.5658 Unstable period 1 [1-2-3] �1.0000, 0.9894, 0.9021, 0.983, 0.0123
0.5658 Stable period 2 [1-2-3 – 1-2-3] 0.9838, 0.9765, 0.8140, 0.6449, 0.0002
0.5368 Stable period 2 [1-2-3 – 1-2-3] 0.9799, 0.7664 ± 0.1975j, 0.8101, 0.0001
0.5367 Unstable period 2 [1-2 – 1-2-3] �1.2771, 0.9791, 0.8132, 0.6131, 0.0001
0.5367 Unstable period 4 [1-2-3 – 1-2-3 – 1-2-3 –1-2] �1.2496, 0.9586, 0.6614, 0.3913, 0.0290 × 10�6
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The inductor current iL2 in the second stage is programmed to track perfectly in average its
reference current iref2 by using a PI controller. Of course, this current controller may fail in
carrying out this task, and the second stage may exhibit fast-scale subharmonic oscillation or
slow-scale low-frequency oscillation. Both instabilities can be avoided by selecting appropriately
the ramp slope or amplitude according to a traditional design because the output voltage in the
second stage is constant. For instance, a deadbeat design will guarantee the recovery of the steady
state in this stage after only one switching cycle in the presence of any disturbance. It should be
noted here that because of using a PI compensator for controlling the average value instead of the
peak value, the response does not strictly correspond to a deadbeat response unless the additional
eigenvalue due to the integrator is also placed in the origin. In this case, the system will
theoretically recover its steady state in two switching cycles instead of only one. However, it can
be demonstrated that the discrete-time eigenvalue corresponding to the integrator is practically
equal to 1, and as far as the dynamics of the inductor current is concerned, we can still say that
this variable recovers its steady state in one switching cycle. Figure 7 shows the response of the
second stage due to a 20% step change in the reference current iref2. Note that the system steady
state is recovered in one cycle.

Under these conditions, the output port of the first stage can be substituted by a current sink with a current
intensity iL2≈ iref2 without losing accuracy [16]. Therefore, the cascaded system can be approximated by the
simplified scheme depicted in Figure 8. The averaged output current in the second stage will be iref2/M2(D2).
The first stage can therefore be seen as a boost converter loaded by a current sink whose dynamic behavior
and output voltage controller design have been recently addressed using the state-space averaging technique
[14]. However, to the authors’ knowledge, nonlinear analysis and the subharmonic oscillation phenomena
have not been reported yet. The simplified system can be mathematically described by the following set
of differential equations representing the reduced-order model:

diL1
dt

¼ vg
L1

� rL1iL1
L1

� vC1 þ rC1 iL1 � iref2ð Þ
L1

1� δ1ð Þ (17)
Figure 7. Response of the second stage due a 20% step change in the reference current iref2.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:1127–1141
DOI: 10.1002/cta



Figure 8. Schematic diagram of the simplified system.
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dvC1
dt

¼ iL1
C1

1� δ1ð Þ � iref2
C1

(18)

dx3
dt

¼ V ref1 � vC1 � rC1iL1 1� δ1ð Þ þ rC1iref2 (19)

To validate this model, two bifurcation diagrams are obtained from it for the same parameter values
considered for the full-order model. The results are shown in Figure 9. It can be observed that, apart
from a slight shift of the critical value of ma1 , a good agreement is obtained between the full-order
model and the reduced-order model.

5.2. Simplified stability boundaries in the parameter space

The reduced-order model can be written in matrix form as follows:

_x ¼ A1x þ B1w for S1 ON (20)

_x ¼ A2x þ B2w for S1 OFF (21)
Figure 9. Bifurcation diagram by taking ma1 as a bifurcation parameter for different values of C1 using the
reduced-order model.
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where

A1 ¼

�rL1
L1

0 0

0 0 0

0 �1 0

0
BB@

1
CCA;B1 ¼

1
L1

0 0

0 � 1
C1

0

0 rC1 1

0
BBBB@

1
CCCCA; (22)

A2 ¼

� rL1 þ rC1ð Þ
L1

� 1
L1

0

1
C1

0 0

�rC1 �1 0

0
BBBB@

1
CCCCA;B2 ¼

1
L1

0 0

0 � 1
C1

0

0 rC1 1

0
BBBB@

1
CCCCA (23)

x ¼
iL1

vC1

x4

0
B@

1
CA;w ¼

V low

iref2

V ref1

0
B@

1
CAF1 ¼ 1;Wv;�Wvωzvð Þ (24)

Let D1 =D for simplicity of notation. Let us define the following matrix and vector duty cycle-
dependent functions:

Φ1 ¼ exp A1DTð Þ; Φ2 ¼ exp A2 1� Dð ÞTð Þ; Φ ¼ Φ2Φ1 (25)

In [17,18], it has been shown that at the onset of subharmonic oscillation boundary, the following
condition is fulfilled:

�F1 Iþ Φð Þ�1Φ1 f1 x 0ð Þð Þ þ f2 x 0ð Þð Þð Þ ¼ ma1 (26)

where f1(x(0)) =A1x(0) +B1w and f2(x(0)) =A2x(0) +B2w. For the boost converter, B1 =B2 =B, and
hence, (26) becomes

�F1 Iþ Φð Þ�1
h i

Φ1 A1 þ A2ð Þx 0ð Þ þ 2Bwð Þ: ¼ ma1ð (27)

Although the previous equation is a closed-form expression for the stability boundary, which can be
plotted as function of any parameter of the system, its use for design-oriented analysis is not easy. To
overcome this problem, the following section provides an approximate closed-form expression of the
stability boundaries in the parameter space that can be used for design purposes.

5.3. Design-oriented stability conditions

In order to obtain a design-oriented stability condition, we will perform a slope analysis as it is
performed traditionally in many textbooks [1]. However, we will take into consideration the slope
contributed by the output voltage, which is fed back through iref1. When iref is constant, the stability
condition is (14). When iref is given by the voltage feedback loop, it contains switching ripple that
alter the previous stability condition, which becomes

vo1 Dð Þ
L1

D� 1
2

� �
< ma þ mref1;ON (28)

where mref1,ON is the slope of the current reference iref1 during the ON phase to be determined in the
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following. From (29), the inductor current reference iref1 in the first stage is given by

iref1 ¼ WvðV ref1 � vo1 þ ωzv ∫ V ref1 � vo1ð ÞdtÞ (29)

Performing a piecewise linear approximation of the state variables and differentiating with respect to
time, the steady-state slope mref1,on of iref1 during the conducting time is given by

mref1;ON ¼ Wv �mo1;ON þ ωzv V ref1 � vo1ð ÞÞ≈�Wvmo1;ON
�

(30)

where mo1,ON is the slope of the output voltage of the first stage. In (33), it has been considered that
vo1≈Vref1. According to (19), the slopes of the intermediate capacitor voltage during the ON phase
(δ1 = 1) is given by the equation

mC;ON ¼ � iref2
C1

(31)

Accordingly and because vo1 = vC1 + rC1C1dvC1/dt, the slope of the output voltage of the first stage is
given by

mo1;ON ¼ � iref2
C1

� rC1
diref2
dt

(32)

Hence, the slope contributed by the current reference iref1 can be expressed by

mref1≈Wv
iref2
C1

þ rC1
diref2
dt

� �
(33)

Therefore, (28) becomes

vo1 Dð Þ
L1

D� 1
2

� �
< ma þWv

iref2
C1

þ rC1
diref2
dt

� �
(34)

The new expression for the minimum ramp needed to avoid subharmonic oscillations in a current
mode-controlled dual-stage cascaded boost converter is given by the expression

vo1 Dð Þ
L1

D� 1
2

� �
�Wv

iref2
C1

þ rC1
diref2
dt

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ma;cri;new Dð Þ

< ma1 (35)

Although it is possible to simplify the expression by considering iref2 constant, it is still possible to
use the slope of the inductor current iL2 instead. This slope depends on the value of the inductance L2
and the output voltage vo1 and can be expressed as mon,2≈ vo1/L2, and (34) finally becomes

vo1 Dð Þ
L1

D� 1
2

� �
�Wv

iref2
C1

þ rC1
vo1
L2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ma;cri;new Dð Þ

< ma1 (36)

Figure 10 shows the boundary between stable and unstable regions in the parameter space C1;ma1ð Þ
obtained from different expressions. In Figure 10(a), this boundary is obtained from stability analysis
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Figure 10. Boundary between stable and unstable regions in the parameter space C1; ma1ð Þ, (a) using the
monodromy matrix corresponding to the reduced-order system and (b) from the design-oriented approach.

1140 A. EL AROUDI ET AL.
using the monodromy matrix corresponding to the reduced-order system. In Figure 10(b), we show the
results from the conventional expression (14), from the matrix-form expression (27), from the design-
oriented expression (36), and from numerical simulations using the full-order model. Firstly, it can be
observed from the presented results that the new critical value in (36) is smaller than the one obtained
from the traditionally used expression (14). Therefore, a classical design procedure can predict
subharmonic oscillation while the system is still stable. The new design-oriented expression is more
accurate than the traditional expression. Secondly, it should be also noted that according to the
results in Figure 10, (36) is more accurate than the exact stability boundary expression (27). The
reason is that (36) takes into account the time-varying effect of iref2, which is not taken into account
in (27). If iref2 is considered constant in (36), the effects of rC1 and L2 disappear from this equation,
and the curves obtained from both expressions are almost coincident. Finally, it can be observed
from (36) that the intermediate bus voltage contributes in the process of slope compensation. If C1

decreases, the contributed slope increases because of the larger ripple involved, and therefore, the
use of a smaller capacitance C1 will require a smaller compensating slope ma1.
6. CONCLUSIONS

Converters with high step-up conversion ratio are required for a variety of applications including DC
distribution systems with photovoltaic electrical energy generation. Cascaded boost converter
configuration is a preferred choice in achieving this requirement, because a desired output
voltage/current can be obtained with higher efficiency than in single-stage systems and a specified
variation in output voltage can be realized faster and more precisely. The penalty is the added
complexity that follows from using a larger number of components and the possible interaction
between the different stages.

In this paper, we have investigated the dynamical behavior of a cascade connection of current mode-
controlled boost converters with a high conversion ratio. Floquet theory and Filippov method have
been used to obtain the monodromy matrix for different periodic orbits together with their Floquet
multipliers to explain the observed subharmonic oscillations and to obtain the stability boundary in
the parameter space. We have reported the counter-intuitive observation that a smaller intermediate
capacitance increases the stability of the system.

To obtain designer guidelines, a reduced-order model has been developed that has enabled us to
obtain analytical expressions for the stability boundaries. By approximating the exact critical
conditions under practical and realistic conditions, simple design-oriented expressions have been
obtained for predicting subharmonic instability in the system.

The analysis of design-oriented expression reveals with relative ease the effect of each parameter
upon the stability boundary, and its applicability has been demonstrated by means of numerical
simulations from the full-order switched model. The paper finally formulates the stability condition
in terms of the minimum ramp slope needed for removing fast-scale instability.
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