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ABSTRACT 

Hybrid energy storage systems (HESS) involve synergies between multiple energy storage technologies with 

complementary operating features aimed at enhancing the reliability of intermittent renewable energy sources 

(RES). Nevertheless, coordinating HESS through optimized energy management strategies (EMS) introduces 

complexity. The latter has been previously addressed by the authors through a systems-level graphical EMS via 

Power Pinch Analysis (PoPA). Although of proven efficiency, accounting for uncertainty with PoPA has been an 

issue, due to the assumption of a perfect day ahead (DA) generation and load profiles forecast. This paper proposes 

three adaptive PoPA-based EMS, aimed at negating load demand and RES stochastic variability. Each method 

has its own merits such as; reduced computational complexity and improved accuracy depending on the 

probability density function of uncertainty. The first and simplest adaptive scheme is based on a receding horizon 

model predictive control framework. The second employs a Kalman filter, whereas the third is based on a machine 

learning algorithm. The three methods are assessed on a real isolated HESS microgrid built in Greece. In validating 

the proposed methods against the DA PoPA, the proposed methods all performed better with regards to violation 

of the energy storage operating constraints and plummeting carbon emission footprint. 
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Nomenclature 

 

 𝐴𝐸𝐸𝑁𝐷 Available excess energy for the 

next day 
∆𝑘 

 

Time interval 

𝐵𝐴𝑇 Battery 𝛿 The proportion of flow 𝑗 

𝐶𝑙 The capacity of accumulator 𝑙 η
𝐶𝑉,

η
𝑃𝑉
, 𝜂𝐹𝐶 , 𝜂𝐸𝐿 

 

DC converter, PV panel, 

fuel cell, electrolyser 

efficiency factors 

𝐷𝑆𝐿 Diesel generator 𝜀𝑖 (𝑘) Binary variable for the 

state of the ith 

dispatchable unit 

𝐸𝐿 Electrolyser   𝜌𝑖
𝑖𝑐 The binary variable 

related  to the temporal 

conditions of the 

accumulator  

𝐹𝐶 Fuel cell 

Subscripts/superscripts 

𝐻𝑇 Hydrogen Tank 𝑆𝑂𝐴𝑐𝑐 Accumulator or energy 

storage 

𝐺 

 

A fixed reward  

 

𝐴𝑣𝑙 Availability of resources 

𝒥 Identity matrix ∈ ℜ𝑛𝑥𝑛 𝐺𝑒𝑛 Override logic for PoPA 

energy dispatchable units 

FC and EL 

𝐿𝐷 Load 𝑅𝑒𝑞 Demand for resources 

𝑀𝐴𝐸 Minimum absorbed energy  𝑘  Time step 

𝑀𝑂𝐸𝑆 Minimum outsourced energy 

supply 

𝑖 Index of Converter 

𝑠− Previous state before a transition 

by the agent 

𝑙 Accumulator  

𝑆𝑂𝐴𝑐𝑐𝑙
𝑛 State of accumulator 𝑙  𝑚𝑎𝑥 maximum 

𝑆𝐿𝑜
𝑙  Lower pinch limit or utility  𝑚𝑖𝑛 minimum 

 𝑆𝑈𝑝
𝑙  Upper pinch limit or utility 𝑚 , 𝑛 Model and the plant 

respectively 

𝑃𝑂𝑊 Power flow 𝑖𝑐 A set of controllable 

energy converter elements 

for PoPA targeting  

𝑃𝐺𝐶𝐶 Power grand composite curve → The arrow head indicates 

the direction of flow of 

energy/material from 

source to sink 

ℛ Zero mean Gaussian noise ∈
ℜ𝑛𝑥𝑛 

  

𝒰 Input ∈ 𝑅𝑚𝑥1   

𝑊1 ,𝑊2 Penalty weights which control the 

propagation of the negative 

reward exerted on the agent. 

  

𝑊𝑇 Water tank   
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1. Introduction 

 
    Growing concerns over the impact of greenhouse gas emission on the environment has led to policy initiatives 

to advance the proliferation of renewable energy sources (RES) (such as wind turbines and solar panels), for 

distributed generation (DG). Furthermore, in remote areas without access to an electrical grid, RES are a 

favourable electrification alternative when compared to the cost of deploying high-voltage transmission lines and 

associated power losses [1-3]. The use of RES (particularly in a standalone microgrid (MG)) can reduce the 

reliance on backup diesel generators (DSL) which have a high carbon emission impact on the environment [4, 5]. 

Nevertheless, due to weather stochasticity, some RES can have predictable but variable power output and so, 

incorporating energy storage technology with RES can mitigate this variability. Multiple energy storage 

technologies (e.g. battery and hydrogen) with complementary properties (such as life cycle, seasonality, power 

and energy density etc.) are often combined to further mitigate the RES variability. This is the concept of hybrid 

energy storage systems (HESS) as shown in Figure 1 [6, 7]. This system was designed and built in Xanthi, Greece 

in collaboration with CERTH and SUNLIGHT [8] and it is been used here as a case study. The mathematical 

model of each asset has been previously validated [9] by the authors and real load/weather profiles have been 

used.  

 

Fig. 1. Schematics of the experimental Islanded HESS [7] used as a case study 

In such systems, when supply exceeds demand and a local battery is completely charged, the energy from the RES 

can, for example, be converted to hydrogen (H2) by an electrolyser (EL) for long term storage (as opposed to the 

battery that can be seen as short-term storage option). Then, the hydrogen can be used when demand exceeds 
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supply, by means of a fuel cell (FC) [7, 10]. The HESS thereby can reduce the dumped load in times of excess 

supply, and further reduce the need for backup DSL in times of excess demand [11]. A newer innovative hydrogen 

production approach, which relies on internal rather than external reforming of fuel mixtures into mass production 

of electric and thermal energy carriers, with high efficiency, based on the use of Solid Oxide Fuel Cells (SOFCs) 

have recently been investigated. In [12], an intermediate temperature solid oxide electrolyser stack is fed with 

carbon dioxide (CO2)-steam mixture at the anode. Here the fuel mixture is reformed into CO - H2 mixture while 

at the cathode, oxygen fed into the system is converted into ions. The oxygen ions generate current as they pass 

through the electrolyte towards the anode where they combine with the CO - H2 mixture to produce CO2 and 

water. The work evaluated the thermal equilibrium current at the highest stack operating temperature for hydrogen 

production. Furthermore, authors [13] investigated the use of low weight as well as low cost high temperature 

steam electrolysis (HSTE) stack for durability and performance to highlight current density and steam conversion 

ratio at the temperature of 800oC. The authors were optimistic about the future of HSTE technology concerning 

performance, durability, thermal cyclability, as well as low cost.  Another innovative method for hydrogen 

production is the anion exchange membrane (AEM) FC which is attractive due to its outstanding fast 

electrochemical kinetics, low dependence on non-precious catalyst and water removal mechanisms [14]. The 

concept of anion exchange membrane (AEM) FC whereby, negatively charged oxygen ions travel from the 

cathode (negative side of the FC) to the anode (positive side of the FC) instead of positively charged hydrogen 

ions traversing from the anode to the cathode, as is the case in all other types of FCs is increasingly being applied 

as an innovative method for hydrogen production. The movement of the anions and reactions at the anode 

produces electricity and water as by-products and can be recycled for anion and hydrogen production. In this 

system creating fast electrochemical kinetics and water management are essential for sustainable operation. In 

[15] an analytic model for alkaline anion exchange membrane FC is proposed. The authors in their investigation, 

illustrated more anode humidification improved performance. However, at higher ranges of humidification levels 

this improvement became less significant. Nevertheless, a systems-level analysis approach which can be 

generalised in principle to a broad range of energy systems has been implemented in this work, hence, the impact 

on the HESS as a result of integrating these newer H2 technological innovations which were highlighted will be 

an interesting subject for future investigation.   

    Despite the advantages offered by a HESS, the heterogeneity of the components/devices introduces complexity 

due to the need to account for different forms/characteristics of energy flows between multiple assets and for 

numerous decision parameters in energy management strategies (EMSs) used for HESS control. To address such 

complexity, several studies have proposed the use of if-then-else rules, artificial intelligence (AI) (such as fuzzy 

logic controllers, neural networks, and genetic algorithms), linear and dynamic programming and advanced 

control techniques to realise EMSs for HESS [16-18]. Development of EMSs using if-then-else rules in the form 

of hierarchical diagrams is widely used in published literature due to its computational efficiency [16].  

In [19] a rule-based EMS was proposed for domestic microgrid. Specifically, the predicted load and PV generation 

power, utility cost are utilised in conjunction with the batteries state of charge as the input  of the rule based 

algorithm at each interval. Thus, the rules are such that the load requirement at each time interval is compared 

with the PV power and which only fulfils the load power requirement, whenever the output power of the PV is 

greater and given the battery level, any excess is either used for charging operation or arbitrage. Then again, if the 

load demand exceeds the PV power, given the cost of the battery pack and utility determines and battery level is 
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used by the EMS to decide how to cover the deficit. Thus, the rule based EMS had accurate result and faster 

processing time in comparison with an optimisation based EMS.  However, this approach is largely heuristic and 

limited to very few potential options, omitting numerous alternatives which may improve the HESS performance, 

as illustrated in [7]. In addition, fuzzy logic controller which is classically rule-based has enhanced adaptation and 

robustness in contrast to a conventional rule base controller as depicted in the case of energy management (EM) 

of islanded MG in [20]. 

In [21] fuzzy logic control strategy comprising self-organising fuzzy logic and fuzzy dynamic decision making 

was used to estimate the required output power of a FC based on the driving load requirement and state of charge 

of a BAT in an electric vehicle (EV). Furthermore, in MATLAB®/ Simulink®/State-flow simulation environment, 

the proposed strategy was shown to improve the efficiency of the EV.  In [22], the merits underling the integration 

of hybrid energy systems, specifically; a FC, BAT and supercapacitor in an EV are first analysed. Thereafter, an 

active power flow control technic is proposed based on optimal control theory with the objective of optimising 

BAT life and total energy cost while meeting vehicle loads demand requirements based on the minimisation of a 

square error cost function between the desired and actual parameters. The proposed method was validated against 

existing control technics had better performance in driving cycles while operating the assets in a suitable manner. 

In [23]   an energy calculation tool is proposed and implemented in the MATLAB® and Simulink® environment 

for hybrid polymer electrolyte FC based on a generic users predefined route. The calculator tool accounted for 

electric energy recoverable downhill and in the course of deceleration period.   In [24] an optimal control strategy 

based on a two dimensional Pontryagin’s minimum principle, was proposed for EM of a batteries and super-

capacitor in a plug-in hybrid electric vehicle. The optimisation approach led to improved battery degradation and 

a 21.7% reduction in total economic; fuel, electricity outsourcing and maintenance cost. In [25] a dynamic EMS 

was proposed in response to deviation in dc-link voltage ensuing from dynamic load and RES uncertainty in a 

grid connected HESS microgrid which comprised a battery bank and ultra-capacitor. In [26] a piecewise robust 

optimisation EMS was proposed for combined cooling heating and power microgrid with the objective of 

minimising total cost under the worst case scenario to carter for power uncertainty. In [27] a dual stage robust 

MPC optimisation is proposed, in order to reduce the impact of load demand and RES uncertainty in an islanded 

MG. In the first stage, operational cost under a joint worst case scenario is minimised. Thereafter, with the 

observation of actual data, minimisation of the adjustment cost is performed with an economic dispatch model. 

However, robust optimisation method is considered as a pessimistic approach and can result in over budgeting in 

real world application [28]. More so, stochastic and chance constrained based optimisation which have been 

applied in [29-32] and [33 -35] respectively for Energy management of MGs are not only computationally 

cumbersome and but also intractable. Hence, the use of approximate solutions which largely depend on the 

accuracy of probabilistic distribution or explicit modelling of the underlying uncertainty parameters, which is 

practically limiting in real-world applications as the distribution might be unavailable [26, 34]. Furthermore, in 

[36] MPC strategy with corrective feedback was proposed for energy management of a domestic microgrid was 

shown to achieve better energy savings than the standard rule based control strategy. In [37] MPC combined with 

adaptive-Markov chain prediction was proposed for energy management of a dual hybrid EV. The MPC based 

method achieved better fuel economy over a rule base strategy. In [38] real-time EM optimal control algorithm 

for a dual mode split HEV formulated as a multivariate quadratic optimisation problem solved offline to obtain 

control laws which was thereafter applied in real time in a traditional MPC manner. The proposed strategy had 
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reduced computational cost and fuel economy of 97.46% and 23.3% respectively compared to the traditional 

MPC. 

    On the other hand, AI or mathematical programming approaches are able to investigate a very large number of 

options and to identify optimum solutions. However, they may suffer from increased computational demands due 

to combinatorial complexity or non-linear system models, which makes them inefficient for on-line decision 

making [39, 40]. Furthermore, they only provide one final solution which hinders the opportunity to derive 

insights from intermediate solutions and analyse the HESS operation. To address such shortcomings, the Power 

Pinch Analysis (PoPA) [41, 42] was proposed both as an effective means of graphical EMS analysis and a tool 

which may enhance the computational efficiency of mathematical optimization approaches. PoPA is a process 

integration technique, inspired from the original Pinch Analysis for heat exchange networks [43] and evolved to 

sophisticated tools [44] that allow the analysis of complex energy systems based on the identification of insights 

pointing toward promising design and operating decisions [45]. The PoPA, used as a graphical and/or  numerical 

tool, aids in the identification of deficit or surplus targets for energy recovery by the use of dispatchable resources 

to satisfy a conservative minimum energy target. It considers power demand and supply requirements with respect 

to time in the form of the Power grand composite curves (PGCC) to identify inflection points (called pinches) 

where power demand must be satisfied by external, non-renewable energy sources or excess power availability 

will be dumped, unless exploited internally. The identification of pinch points allows the development of EMS 

which support efficient internal energy recovery so that the use of non-renewable energy or the dumping of 

renewable energy can be avoided [5]. The PoPA, which has mostly been used for optimal sizing, planning of 

energy supply and demand management in hybrid energy systems, has recently grown in use compared with 

mathematical programming techniques [46]. Some of the promising aspects of PoPA are reduced computational 

effort, analytical insights derived through a graphical interface tool, as well as the systematic consideration of the 

assets’ interdependence and intrinsic complexity [5].  

 

1.1. Applications of PoPA for Electric Power systems sizing and design 

    Several researchers have considered PoPA for electric power systems sizing and design. In [41, 46] the grand 

composite curve was realised by integrating the energy demand and supply over time, and then it was used to 

optimally size an isolated power generation system. Additionally, in [47] the PoPA was utilised as a combination 

of both the graphical analysis and numerical approach with the aid of the power cascade analysis and storage 

cascade table for optimal sizing of the hybrid power system.  The extended Power Pinch analysis (EPoPA) in [48] 

was proposed as an enhancement to the PoPA in order to optimally design renewable energy systems integrated 

with battery-hydrogen assets as well as a DSL. The EPoPA was used graphically and algebraically to determine 

the required external electricity to be outsourced, the wasted energy which could not be stored in the battery 

(BAT), but can perhaps be stored in form of hydrogen in a normal operational year. Thereafter, the sizes of the 

hydrogen tank (HT) and DSL were determined by minimising the total annualised cost. These studies on PoPA 

for sizing MG assets with the exclusion of [46] in which chance constrained programming was used to achieve 

technical and economic feasibility, were realised without recourse to uncertainty.  
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1.2. Applications of PoPA for energy management 

    Apart from the use of PoPA in electric power systems sizing and design, it has also been used, by the authors, 

as an EM tool, as first reported in [5, 7, 49]. More specifically, in [7] the power grand composite curve (PGCC) 

was realised within a model predictive control (MPC) framework for the first time with a day ahead (DA) forecast 

to infer and effect (EM) decisions in a HESS stand-alone MG. By shaping the PGCC, a series of optimal control 

decisions for the activation and duration of the HESS operation were determined. Therefore, the EMS was 

contingent on the identification of the energy recovery targets within the prediction horizon. The effectiveness of 

this approach was limited by the assumption of a perfect DA weather and load forecast. 

 

1.3. Generic approaches to uncertainty 

    The pinch analysis despite being a well-established process integration recovery and conservation technique 

for assets such as waste management, water, heat, and carbon emission requires consideration and expansion in 

power systems application [42]. Also, as highlighted, most literature on PoPA have not dealt with uncertainty, as 

these studies have mostly relied on the assumption of perfect (or ideal) weather forecast and load profile with the 

exception of [46] where uncertainty was considered in the sizing of a MG asset. Consequently, the significant 

impact of uncertainty, imposes the need to integrate PoPA tools with a complementary technique, especially when 

consistency is so desired.  The techniques which account for uncertainty in EM can fundamentally be classed as 

either predictive or reactive approach [50]. These predictive or reactive approaches may perhaps be considered in 

PoPA application, whereby, the scheduling of dispatchable units are realised with  or without prior consideration 

for the impact of an impending uncertainty respectively. The reactive approach uses the latest state feedback for 

re-computation, upon model mismatch due to uncertainty, which may be expensive when seeking an optimum 

solution in the event of frequent perturbation. The predictive technique may employ stochastic programming, 

fuzzy programming, robust optimisation, machine learning techniques, in order to infer the optimal control action 

that negates the effect of uncertainty [51-53]. Furthermore, the linear Kalman filter, first presented by Kalman in 

1960 for solving the Wiener problem has since been applied extensively in areas of control system, short-term 

prediction, navigation tracking and for systems state estimation associated with uncertainty [54]. In [55] the 

ensemble Kalman filter was combined with a multiple regression model to enhance forecasting accuracy of 

electricity load. Similarly, in [56] the Kalman filter was used recursively to estimate short-term hourly load 

demand forecast parameters based on the historical load and weather data and the current measurements of the 

time-varying parameters.  Moving away from the well-known prediction methods, the work of [57] on temporal 

difference (TD) learning, a model-free reinforcement learning (RL) algorithm, introduced a prediction method 

which relies on the experience of successive predictions to infer the behaviour of an unknown system. This was a 

paradigm shift to the conventional approach which depended only on the difference between the actual and 

predicted outcome. Hence, RL is a machine learning technique, suitable for solving a Markov decision process 

(MDP) which involves sequential optimal decision making under uncertainty. Thus, many researchers have sought 

to deploy several machine learning algorithms in an MDP. In [58], machine learning algorithms such as policy 

iteration and value iteration Dynamic programming, and RL techniques such as the least squares policy iteration, 

Q-Learning, and SARSA were reviewed for MDPs. Specifically of interest, is the Q-learning, a class of model-



- 8 - | P a g e  
 

free RL, a similar algorithm to Sutton’s (1988) TD learning [56], first introduced by Watkins in 1989, which 

proffers an intelligent agent with the learning ability to act optimally in a MDP based on experience [59]. In Q-

learning, an agent seeks to maximise the sum of expected reward by acting optimally with respect to any given 

circumstance (referred to as a state). Typically, an agent will evaluate a state, and will then undertake an action 

either in an exploitative or exploratory manner thereafter and finally will receive an instant reward, while 

transitioning to a new state. Q-learning has tremendous success in robotics, especially in mobile robot navigation 

and obstacle avoidance [60, 61]. In [62] the Dyna AI architecture was proposed to integrate both learning, and 

experience, based on online planning, as well as reactive execution in a stochastic environment.  

    Furthermore, in [63] a comparative study of MPC and Monte Carlo RL on a non-linear deterministic system 

with known uncertainty dynamics was undertaken. The two methods were compared with respect to three cases; 

linear, uncertain and/or stochastic. The author noted that for linear systems, the MPC performs better than the RL 

as it converges to a convex solution, while the RL suffers from suboptimality while tracking an available 

trajectory. In an uncertain system, the RL is capable of inferring optimal policy from real life or available 

trajectories despite poor information which may abound in such targets, while the MPC may act sub-optimally 

due to open loop. Furthermore, for a stochastic system, the open loop policy of the MPC is sub-optimal, a problem 

due to lack of feedback which RL does not suffer from. However, in both cases, robustness in MPC may be 

improved by the addition of a receding horizon. More recently, [64] harnessed the merits of the MPC and RL 

control strategies to form an adaptive controller for a heat pump thermostat based on the suggestion of [63]. The 

adaptive controller maximised energy savings while tracking a varying temperature set-point for thermal comfort, 

more effectively than the MPC or RL alone. The strategy employed MPC for planning the optimal control action 

corresponding to each state at initialization with the assumption that thereafter, RL is used to update the dynamic 

model online.  

    The application of RL based energy management for HESS has mostly been considered in literature with respect 

to hybrid Electric vehicle while only a few have considered microgrid systems. In [65] energy management based 

on a 2 steps-ahead RL framework was proposed for a grid connected microgrid which comprised consumers load, 

ES, wind turbine. The RL is formulated as a multi-criteria decision making tool, aided by a 2 steps-ahead 

prediction of available wind power via a Markov chain model. This approach allowed the learning agent to 

optimally utilise the WT, independently of the grid to charge the ES.  On the other hand, it maximised the use of 

the ES during peak demands.  Hence, enabling an intelligent consumer to learn a stochastic scenarios while 

incorporating experience based optimal actions. In [66] deep RL EMS which uses a convolution neural net to 

extract relevant time series information, from a large continuous non-handcrafted feature space is proposed to 

address stochastic electricity production in a residential MG. The neural net is validated periodically during 

training on historical features of observation to reduce over fitting and positive bias. The levelized energy cost 

economic criteria with respect to maximizing operation revenue is used to evaluate the performance of the 

algorithm.   In [67] the authors propose an EMS which applies a decentralised cooperative multi-agents enabled 

Fuzzy Q-learning to a standalone MG. The formulation of the continuous input states entails the use of five 

membership functions and the action space comprising a fuzzy set pertaining to each MG asset and rules base in 

conjunction with a reward formulation, shapes the agent’s continuous action policy. In [68] the authors proposed 

a real-time EM algorithm to optimise performance and energy efficiency with power split control for a hybrid 

(battery and ultra-capacitor) tracked vehicle for various road driving conditions. A speedy Q-Learning algorithm 
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is used to accelerate the convergence of a multiple transition probability matrix which is also updated whenever 

the error norm exceeds a set criteria. The proposed method which was compared to a stochastic dynamic 

programming approach and a conventional RL using two driving cycles had an improved fuel economy. In our 

work we have excluded the use of a Markov chain to model a stochastic transition probability matrix (TPM) of 

the MDP, as this not mandatory in the development a RL framework [69]. Though in [70] and [68] Markov chain 

is used to model a stochastic TPM which is updated periodically when a specific criterion is exceeded by the 

magnitude of an induced matrix norm and kull-back divergence respectively. This is in contrast to an earlier 

proposed method in [71] where the authors for the first time applied reinforcement learning technique (specifically 

TD(λ)) to minimise the fuel consumption of a hybrid electric vehicle without the need for prior knowledge or 

stochastic information of the driving cycle, and uses only a partial hybrid electric vehicle model. Nevertheless, 

our proposed RL formulation requires only the (corrected) adaptive Pinch analysis target, strictly for evaluating 

the environment state and scalar reward which the dyna-Q learning agent receives after taking an action in a given 

state. Furthermore, the step wise non-linear optimisation used to derive the optimal control strategy in [70] and 

[68] and a backward-looking optimisation in [71] is replaced with a heuristic graphical based adaptive power 

pinch analysis MPC framework, which we have proposed in our work. Thus, eliminating the computational cost 

associated with building a TPM offline, as well as solving a complex non-convex optimisation EMS for HESS 

(particularly with heterogeneous energy and flow mix as in our case, where we have to deal with the intrinsic 

interaction of power, hydrogen, and water flow between subsystems). Furthermore, we have omitted detailed 

operational considerations with regards to losses associated with device level operation, since the considered EM 

approach is at the systems level.  

    Nevertheless, evaluation and formulation of the scalar reward in aforementioned RL papers excluding [70] 

which applies a backward-looking optimisation, have mostly been implemented subjectively and without recourse 

to a systematic approach which determines the ideal optimal action strategy as in the use of a corrected adaptive 

PoPA. Hence, these rewards are based on a local maximisation which increases the operational cost and incurred 

excess energy losses in contrast with a global maximum insight which the corrected adaptive PoPA offers. 

 

 

1.4. Main Contributions and Novelties 

    It is clear that PoPA has rarely addressed the issue of uncertainty and only in a case of HESS sizing, while the 

PoPA approach has significant advantages (described above) in cases of adaptive EM. To this end, such 

advantages have been previously exploited by the authors within an MPC framework, however under limiting 

assumptions of perfect weather and load forecasting. The focus of this work is therefore on addressing the issue 

of RES/load forecast error which is bound to occur in a realistic scenario, in the context of the PoPA approach.   

Three novel adaptive PoPA schemes are proposed based on an EMS algorithm for an islanded HESS aimed at 

significantly reducing the effect of forecast error while shaping the PGCC. It has to be noted here that the islanded 

HESS that is being used here as a case study, has been designed and built by the authors at CERTH in collaboration 

with SUNLIGHT [8], and the mathematical models of the assets have been previously experimentally validated 

[9]. 
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    More specifically, the main contributions of this work are as follows: 

I. The DA PoPA in [49] for EM of HESS has been adapted for the first time, to realise an ‘Adaptive PoPA’ [72], 

by re-shaping the PGCC in a multi-step, look ahead, receding horizon MPC framework as shown in Figure 2. This 

method offers a simple but effective means to counter the effects of forecast error.  

 

Fig. 2. Schematics of the Adaptive Power Pinch Analysis EMS for HESS [40] 

 

II. A Kalman filter for the first time, has been used in conjunction with the aforementioned Adaptive PoPA [72], 

to predict the State of Charge of the battery (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 ) based on the likelihood estimation of uncertainty. The 

algorithm is more sophisticated than the Adaptive PoPA but nevertheless computationally efficient and offers a 

preventive measure as an improvement. Furthermore, the occurrence of the forecast error is not dependent on the 

corrective action, as in case (I), which may improve the algorithmic performance. 

III. A RL-based adaptive PoPA (RL+Adaptive) method has been proposed for the first time, in the context of the 

dyna Q-learning algorithm. The dyna Q-learning algorithm entails learning a policy by means of rewarding an 

agent based on the next state of the system after inferring a control action given the current state of the system.  

Thus, the agent learns an EMS by solving for the optimal action policy. Additionally, with the action policy, the 

agent decides the de/activation of the dispatchable units in accordance with a corrected PGCC shaped with the 

Adaptive PoPA. This approach does not assume that the underlying uncertainty is normally distributed in the 
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procedure that minimizes the mean squared error in the estimated state-of-charge, as in case (II). This may improve 

the algorithmic performance, hence it is worth investigating.  

   The three approaches are analysed in this paper. Furthermore, a sensitivity analysis with hydrogen uncertainty 

is used to evaluate the proposed methods against the DA PoPA. The rest of the paper is structured as follows: 

Section 2 briefly describes the Power Pinch concept. Section 3 presents the formalisation of the receding adaptive 

MPC-PoPA concept. In section 4 and 5, the proposed Kalman filter state estimator approach with Adaptive PoPA 

and the RL Adaptive PoPA algorithms are presented, respectively. The results are presented in Section 6, and 

Section 7 provides a conclusion. 

 

2. Power Pinch Analysis for Energy Management of Hybrid Energy Storage Systems 

2.1 Generic description 

    In order to understand how Pinch Analysis can be used to determine an EMS in a HESS (as shown in Figure 

1), infer a generic islanded energy system with multiple energy carriers (like electrical and hydrogen), multiple 

storage assets (like a BAT and a HT), generation assets (like photovoltaic panels (PV)), controllable assets that 

can transform an energy from one carrier to another (like a FC and an EL) and a load (possibly for each energy 

carrier). Also, for each storage component we set up operating limits that should not be violated, say SLO and SUP 

which is the minimum and maximum allowed stored energy/material respectively.  

    The first step to apply the PoPA concept is to define the Power Grand Composite Curve (PGCC) for each 

energy carrier, which is the integration of all uncontrolled energy demands and generation in the system for that 

carrier for each instance. When the system is at a specific instant k, we predict the PGCC as shown in Figure (2a) 

by assuming that the controllable assets are not activated and we check if the predicted PGCC violates any of the 

aforementioned limits. The predictive horizon is based on an hourly interval which spans for 24h ∈ [𝑘: 𝑁] , where 

𝑘 is the 𝑖𝑡ℎ hour in a day and 𝑁 indicates the end of the day (or 24th h). The hourly interval ∆𝑘 is expressed as the 

difference between two successive time steps;   ∆𝑘 = [(𝑘 + 1) − 𝑘] where, 𝑘 and 𝑘 + 1 are the current and next 

time step respectively. The interval between the current time step 𝑘 and the end of the horizon 𝑁 is given as (𝑁 −

𝑘)/∆𝑘, and the entire horizon would have 23 intervals, if 𝑘 is the first hour, 01: 00h and 𝑁 = (𝑘 + 23) is the 

24: 00h of the day. If the PGCC violates a limit at a specific instant, then at an appropriate instant before the 

violation occurs, a suitable controlled asset will be activated in a control horizon of interval 24h ∈ [𝑘: 𝑁] with 

equivalent time duration as in the predictive horizon in order to provide/remove the necessary energy/material so 

that the system limits are not exceeded. In order to better describe the aforementioned concepts, a specific 

motivating case will be presented in the next subsection.  

 

2.2 Motivating case  

    In the HESS as shown in Figure 1, let the stored electrical energy (i.e. state of charge, 𝑆𝑂𝐴𝑐𝑐) be the quantity 

that we wish to control within specific operating limits. Therefore, an EMS is derived in prediction horizon using 

a DA strategy and implemented on the HESS in a control horizon. In the prediction horizon, 𝑆𝑂𝐴𝑐𝑐 is plotted 
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(dotted black line in Figure 3a) at an hourly time step 𝑘, for a daily (24 h) span as defined in section 2.1. The 

PoPA enables the identification of deficit and excess energy targets, which must be successively met, in order to 

prevent the 𝑆𝑂𝐴𝑐𝑐 in the control horizon from falling below the lower pinch utility (or limit) 𝑆𝐿𝑜 (say 30%) and/or 

rising above the upper pinch utility 𝑆𝑈𝑝 (say 90%).   

    At first, the control strategy aims to determine the deficit energy target at the minimum 𝑆𝑂𝐴𝑐𝑐, denoted 

as 𝑆𝑚𝑖𝑛. In this case study, the deficit results from the absence of sufficient energy supply by the PV. The deficit 

energy target is then the amount of energy needed to ensure 𝑆𝑂𝐴𝑐𝑐 avoids the violation of the 𝑆𝐿𝑜 limit at time 𝑘 +

𝑘𝑚𝑖𝑛. The PGCC determines the minimum amount of outsourced electricity supply (MOES) required in order to 

violate SLO. A dispatchable asset, (such as a FC) indicated by a red arrow pointing upward at time 𝑘 shown in 

Figure 3b, supplies the energy needed to shift the PGCC above 𝑆𝐿𝑜.  

    Secondly, the control strategy aims to determine the excess energy target at the maximum 𝑆𝑂𝐴𝑐𝑐, denoted 

as 𝑆𝑀𝑎𝑥. The excess energy target is then the amount of energy that needs to be dumped in order to avoid the 

violation of the 𝑆𝑈𝑃 limit at time  𝑘 + 𝑘𝑚𝑎𝑥. This is denoted as the minimum excess energy for storage (MEES).  

Thus, the MEES is recovered for storage by a dispatchable asset (such as an electrolyser (EL)) denoted by the red 

arrow pointing downwards shown in Figure 3b.  

    Thirdly, to preserve the duty cycle of the energy storage, the available energy for the next day (AEEND) i.e. 

𝑆𝑂𝐴𝑐𝑐 at time step 𝑁 has to be matched to the 𝑆𝑂𝐴𝑐𝑐 at time step 𝑘, by activating dispatchable assets (either the 

FC or EL) at time step 𝑁 − 1.   

    Consequently, by shifting the entire PGCC up or down (black dot-dashed line in Figure 3b), there are instances 

where the PGCC reaches (but no longer exceeds) the 𝑆𝐿𝑂 or 𝑆𝑈𝑃 at times 𝑘 + 𝑘𝑚𝑖𝑛 and 𝑘 + 𝑘𝑚𝑎𝑥, which is 

termed the Pinch point. Therefore, the shifted PGCC which resolves the PoPA EMS is responsible for the instant 

and duration for which the energy targeting resources are activated/deactivated in the control horizon [5, 7, 49, 

73].  

    However, effectively realising the optimal PoPA EMS via DA operation requires an accurate load and weather 

forecast model for an ideal PGCC plot, which is impractical due to uncertainty for most real applications. The 

effect of uncertainty, ∆𝐻 due to RES variability and stochasticity of electricity demand, causes a mismatch 

between the actual (red line) and predicted (blue line) 𝑆𝑂𝐴𝑐𝑐 as illustrated in Figure 3c and consequent violation 

of  𝑆𝑈𝑃 and the duty cycle constraint. Therefore, the utilisation of a feedback loop is crucial to improve the excess 

energy recovery and reliability indices. It can also reduce the need for (potentially higher carbon emission) energy 

imports to the system. 
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(a) 

 

(b) 
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(c) 

 

Fig. 3. (a) Original PGCC; (b) Shaped PGCC and (c) the effects of uncertainty with the DA-PoPA 

 

 

3. Adaptive Power Pinch Analysis 

    The effects of uncertainty on renewable energy sources and electricity demand with respect to the DA-PoPA 

operation have been highlighted in section 2. Thus, in this section we adapt the DA-PoPA, to create an Adaptive 

PoPA which uses a receding horizon MPC approach. In a prediction horizon spanning 24 h with hourly 

interval ∆𝑘 and time step 𝑘, as defined in section 2, the dispatchable control variable 𝑈𝑐(𝑘) is determined based 

on the PoPA targets. Accordingly, 𝑈𝑐(𝑘) determined in the prediction horizon is activated in control horizon at 

each time interval 𝑘. Furthermore, the 𝑆𝑂𝐴𝑐𝑐 as a function of the minimum energy recovery is achieved with 

regards to the Adaptive PoPA expressed as follows: 

𝐽𝑃𝑖𝑛𝑐ℎ =
𝑚𝑖𝑛
𝑈𝑐

∑ 𝑓(𝜀𝑖 (𝑘) ,  𝑆𝑂𝐴𝑐𝑐𝑙
𝑚(𝑘), 𝑈𝑐(𝑘))

𝑁−1
𝑘=1                                                                                                  (1)                                                      

 
Subject to the Power Pinch analysis constraints: 
                 

𝑆𝐿𝑜
𝑙 ≤ 𝑆𝑂𝐴𝑐𝑐𝑙

𝑚(𝑘) ≤ 𝑆𝑈𝑝
𝑙                                                          (2) 

𝑆𝑂𝐴𝑐𝑐𝑙
𝑛(𝑘1) ≅ 𝑆𝑂𝐴𝑐𝑐𝑙

𝑚(𝑁)                                                (3) 

𝜀𝐸𝐿(𝑘) + 𝜀𝐹𝐶(𝑘) ≤ 1                                                     (4) 

 

where, 𝑘1 is the first hour ,  𝜀𝑖 (t)  is a binary variable for the dispatchable asset’s state 𝑖 ∈ [𝐹𝐶, 𝐸𝐿],  (see appendix 

I), 𝑈𝑐  (𝑘) represents the PoPA EMS control variable and subscript  𝑐 ∈  {𝐹𝐶, 𝐸𝐿} indicates the dispatchable asset. 

In 𝑆𝑂𝐴𝑐𝑐𝑙
𝑚,𝑛 the superscripts 𝑚 and 𝑛 refers to the predicted and real 𝑆𝑂𝐴𝑐𝑐 respectively, and subscript 𝑙 ∈

 {𝐵𝐴𝑇,𝐻𝑇,𝑊𝑇} indicates the energy storage of note.  
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    The constraints imposed by (2) ensures the pinch operating limits are not violated. The duty cycle of the energy 

storage is preserved by the terminal constraint (3) to infer the available energy at the end of the prediction horizon 

N (AEEND). The binary variable constraint (4) prevents the simultaneous dispatch of assets that concurrently 

consume and produce the same energy carrier (e.g. 𝐹𝐶 and 𝐸𝐿).  

    The following explanation is for one asset, the BAT, but is relevant to all asset types. At every time step 𝑘, the 

proposed algorithm compares the forecast and real  𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘) for inconsistency or forecast deviation via a 

state feedback close loop [72]. As illustrated in Figure 4a, ∆𝐻 exceeds 5% at time 𝑘 + 2. Therefore, state 

correction is effected at the next time 𝑘 + 𝑘𝑚𝑖𝑛, to decrease the forecast deviation between the predicted 

 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚  and actual 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑛 . The re-computation of the PGCC (dotted black line in Figure 4a) which follows 

reveals an anticipated violation of the 𝑆𝑈𝑃 such that  𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚  is a maximum at time 𝑘 + 11, and the AEEND. 

Thus, the predicted PGCC is re-shaped as shown in Figure 4b (blue line) with the EL dispatched at time 𝑘 + 10 

and 𝑁 − 1.  

    The error 𝑒(𝑘)  and magnitude of uncertainty ∆𝐻 between the forecast and real state of charge of the Battery 

are expressed in (5) and (6) respectively as follows: 

𝑒(𝑘) = 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘) − 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑚 (𝑘|𝑘 − 1)                       (5) 

∆𝐻(𝑘) = |𝑒(𝑘)|                                                                                        (6) 

where, 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 (𝑘|𝑘 − 1) is the predicted battery state of charge at time 𝑘 based on a prior time step 𝑘 − 1 and 

𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘) is the actual battery state of charge at time step 𝑘.  

    Furthermore, if ∆𝐻 is greater than the deviation threshold 𝜉 at any sampling instance, the PoPA is repeated in 

the predictive horizon in order to determine the optimal dispatch and schedule sequence from that instant up until 

time 𝑁. 𝜉 (which may be varied or decreased for a tighter bound) is set at 5%, to ensure minimal forecast deviations 

as well as to reduce any computational cost. Re-computation of the PGCC uses equations (7) - (8) as follows: 

𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 (𝑘): = {

𝑓(∆𝐻(𝑘))                                          𝑖𝑓  ∆𝐻(𝑘) > 𝜉 

𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 (𝑘|𝑘 − 1)                                  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       , ∀𝑘                                                      (7) 

Where, 𝑓(∆ℋ(𝑘)) corrects 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚  as follows: 

   𝑓(∆𝐻(𝑘)) = {
  𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑚 (𝑘|𝑘 − 1) + ∆𝐻(𝑘)              𝑒(𝑘) > 0

𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 (𝑘|𝑘 − 1) − ∆𝐻(𝑘)              𝑒(𝑘) < 0

                                                     (8)
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(a) 

 

(b) 

Fig. 4. (a) State error correction and (b) re-shaped PGCC with Adaptive PoPA 

 

4. Kalman Filter Adaptive Power Pinch Analysis 

     In the previous section a reactive error correction strategy has been presented, the adaptive PoPA, which does 

not consider the effect of future un-modelled uncertainty. This may result in a limit violation as shown in Figure 

5a. Therefore, the Kalman filter is incorporated into the Adaptive PoPA framework for robustness, as the battery’s 

future state (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 (𝑘 + 1|𝑘)  is predicted while incorporating the effect of uncertainty at each time interval 
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upon the availability of the most recent battery state (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘)) measurement. In order to predict the battery’s 

state, a priori error covariance 𝒫𝑘−1 matrix with respect to 𝑆𝑂𝐴𝑐𝑐𝑙 , updates the Kalman gain 𝐾𝐺(𝑘) as follows: 

 𝐾𝐺(𝑘) = 𝒫𝑘−1 ℐ
𝑇 [ℐ 𝒫𝑘−1 ℐ

𝑇 + ℛ𝑘]
−1                         (9)

  

    The updated Kalman gain is used to update the a priori covariance matrix: 

𝒫𝑘 = [ℐ − 𝐾𝐺(𝑘)ℐ] 𝒫𝑘−1                                                                              (10)                   

    The most recent output state measurement 𝑆𝑂𝐴𝑐𝑐𝑙
𝑛(𝑘) is used to update the estimated state as follows: 

𝑆𝑂𝐴𝑐𝑐𝑙
𝑚(𝑘) = 𝑆𝑂𝐴𝑐𝑐𝑙

𝑚(𝑘|𝑘 − 1) + 𝐾𝐺(𝑆𝑂𝐴𝑐𝑐𝑙
𝑛(𝑘) − ℐ𝑘𝑆𝑂𝐴𝑐𝑐𝑙

𝑚(𝑘|𝑘 − 1))                                    (11)                        

    The posterior error covariance matrix is also updated: 

𝒫𝑘+1 = A 𝒫𝑘  A
𝑇 + ℛ𝑘                                                      (12) 

Where, A ∈ 𝑙 x 𝑙 is an identity state transition matrix for the energy storages 𝑙, ℐ𝑘 ∈  𝑙 x 𝑙 is an identity matrix and 

ℛ𝑘 is the covariance noise matrix related to the uncertainty in 𝑆𝑂𝐴𝑐𝑐𝑙
𝑚 .  

    Therefore, this formulation can be used to consider a multi-vector case of uncertainty in the energy storages. 

Nevertheless, in this work only the 𝑆𝑜𝐴𝑐𝑐 of the BAT is the parameter directly impacted by the LD and RES 

uncertainty since it acts as the central integrating ES, and a change in the 𝑆𝑜𝐴𝑐𝑐 of HT and WT can be considered 

deterministic as well as contingent on the controlled activation of FC or EL. Therefore, the variance and co-

variance of  𝑆𝑜𝐴𝑐𝑐 of HT and WT in 𝒫𝑘  matrix are set to 0. Furthermore, the 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 (𝑘) ∈ [𝑆𝑂𝐴𝑐𝑐𝑙

𝑚(𝑘)] is 

determined in (11) in order to identify the uncertainty over successive 𝑘- steps ahead and consequently to compute 

the PGCC. Thereafter, the PGCC is re-shaped via PoPA minimum energy targeting as before. Thus, a sequence 

of dynamic EMSs which satisfies both the PoPA SLO and SUP constraints with uncertainty projection is realised in 

the prediction horizon for the optimal dispatch and scheduling of energy resources in the control horizon. The 

concept is illustrated in Figure 5b, where the cyan plot indicates the PGCC re-shaped via the Kalman+Adaptive 

PoPA. The violation of the 𝑆𝑈𝑃  at time 𝑘 + 11, which occurred with the Adaptive PoPA EMS in Figure 5a, is 

avoided by dispatching the EL to recover correct MESS at time k+10. Likewise, the procedure is repeated for the 

AEEND constraint. Figure 6, shows the Kalman+Adaptive PoPA algorithm. 
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(a) 

 

b) 

Fig. 5. (a) PGCC shaped with Adaptive PoPA and (b) PGCC shaped with Kalman+Adaptive PoPA 
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Fig. 6. Kalman +Adaptive Power Pinch Algorithm 
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5. Reinforcement Learning Adaptive Power Pinch Analysis 

    The approach presented in this work involves formulating the uncertainty problem as a MDP considered in the 

discrete time step 𝑘, where an agent has to act optimally by inferring an action in each state as determined by the 

adaptive MPC PoPA trajectory.  

    The MDP is a tuple(𝑆, 𝐴, 𝑅, 𝑆’, 𝐴’) where: 

𝒮: is a set of discrete n-states 𝒮 = {𝑠1, 𝑠2, . . . , 𝑠𝑛  } and 𝑠𝑘 denotes the state of the environment at time step k.  

    In this work, 𝑠𝑘: = 𝑓〈𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 (𝑘), 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑛 (𝑘), 𝑒(𝑘)〉                                   (13) 

𝒜 : is a discrete set of n-actions for selection by the agent 𝒜 = {𝑎1  , 𝑎2, … , 𝑎7  } and 𝑎𝑘 indicates the selected 

action at time k.  

    Furthermore, the set of dispatchable assets for the PGCC shaping is expressed as follows: 

  𝑈𝑐(𝑡) ⊆ 𝒜𝑘 ∶= {𝑎1,  𝛿1𝐹𝐶, 𝛿2𝐹𝐶, 𝛿3𝐹𝐶, 𝛿4𝐸𝐿, 𝛿5𝐸𝐿, 𝛿6𝐸𝐿 }  

Where, 𝛿𝑥, 𝑥 ∈ [1: 6], represents percentage proportions {10, 50, 90} and {10, 50, 100} of corresponding flow 

of energy/material 𝐹𝐹𝐶→𝐵𝐴𝑇
𝑃𝑜𝑤 (𝑘) and 𝐹𝐵𝐴𝑇→𝐸𝐿

𝑃𝑜𝑤 (𝑘) respectively to a selected action and 𝑎1 denotes null action.  

𝒯(𝑠, 𝑎, 𝑠′): is the probability of transitioning to a next state 𝑠’ from state 𝑠 over a given set of transitions when 

an action 𝑎 is chosen. 

𝒮 𝑥 𝒜 →  𝑅 : An immediate reward 𝑟𝑡  is received as a result of the system state transition 𝒯(𝑠, 𝑎) to the next state 

𝑠′ by mapping state and action pair (s, a) due to a decision making policy 𝜋.  

    Therefore, both the transition and reward probability distributions are implicitly Markov properties where the 

future state 𝑠′ only depends on the present state 𝑠. The current action 𝑎 is independent of the past state(s) 𝑠− that 

lead to the present state [74, 75].  

𝒯(𝑠′|𝑠−, 𝑠, 𝑎)= 𝒯(𝑠′|𝑠, 𝑎)                                                                                                                                      (14) 

    The model of the system is required for initial training of the agent in order to infer the control action on the 

actual system from the MPC-PoPA. The agent adapts to the real system over time and retrains on newer samples. 

The MDP learning agent learns the optimal policy 𝜋∗(𝑎|𝑠) from accumulated past experience which maps an 

optimal action to a given state. Hence, this maximises the cumulative scalar reward return as shown in (15). 

𝒱𝜋 = 𝐸 [∑ 𝛾𝑘−1𝑟𝑘(𝑠1, 𝑎1|𝜋)
∞
𝑘=1 ]                                                                                                                          (15) 

    The Q-function 𝑄𝜋(s, a) for a given MDP represents the optimal value function 𝒱𝜋∗.  

The agent learns the optimal action to take in the environment through experience by taking actions in the 

environment while learning the optimal policy. 

   The Q-learning rule after taking an action 𝑎 in a state s, obtaining a reward 𝑟 and transitioning to 𝑠’ is as 

follows: 

𝑄𝑘(s, a) = {

𝑄𝑘(s, a) +  α [𝑟𝑘 + 𝛾  𝑄𝑘+1(s′, a′) − 𝑄𝑘(s, a)]             ∀ 𝑘 = [1,2, …𝑁 − 2]
𝑎′
𝑚𝑎𝑥

     
𝑄𝑘(s, a) +   α [𝑟𝑘   − 𝑄𝑘(s, a)] 

𝑄𝑘(s, a)
                                                      

∀ 𝑘 = 𝑁 − 1
∀ 𝑘 = 𝑁

 
 𝛼, 𝛾 ∈ [0, < 1]    

(16) 

Where 𝛼, 𝛾 are learning rate and future reward discount factor with the future discounted reward omitted during 

the update of the agent at a terminal state at time step 𝑁 − 1.  
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5.1 Planning stage for the Q-learning Agent  

    The MPC-PoPA model is used to bootstrap the Q-learning agent to ensure that the agent acts optimally with 

respect to tracking the PoPA trajectory, computed offline prior to online deployment so as to minimise and avoid 

exploiting costly mistakes on the real system. The advantage of the Q-algorithm is that the agent garners 

experience from the real environment and retrains offline by replaying the experience after each episode at time 

𝑁 to further reinforce the learning agent’s Q - value to guarantee optimality. The model-free learning happens 

using the Q-learning algorithm and switches to a Monte Carlo algorithm at 𝑁 − 1 which denotes the terminal state  

(horizon) for the agent, as shown in (16). Therefore, the learning involves two steps; a direct and indirect learning, 

from the model and from the actual system (environment) respectively.  

 

 

 

5.2 Action Selection 

    The action selection approach in (17) which has been modified to include safety precautions in critical states 

(near the Pinch limits), is based on the probability (1 - 𝜃) of selecting a 𝑔𝑟𝑒𝑒𝑑𝑦 policy 𝜋(s) over a random action 

with probability of 𝜃 [76, 77]. This approach exploits the best action as indicated by the maximum value function 

𝑄𝜋∗(𝑠, 𝑎) for a given state while performing exploration with the inverse probability (𝜃) of acting greedily. This 

strategy strikes a balance between exploration and exploitation while satisfying the famous Bellman’s principle 

of optimality [78], minimizing the deviation of the system controlled by the learning agent from the Pinch target, 

and exploring the state space. If the 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘) is less than 𝐿𝑜 or greater than 𝑈𝑝, the FC and EL are 

dispatched by the agent respectively. Furthermore, the AEEND constraint imposed at the end of the day is 

achieved by overriding the agent’s action with the Adaptive PoPA’s EMS. The action policy 𝜋(s) is expressed as 

follows: 

 

𝜋(s)=

{
 
 
 

 
 
 

𝑎𝑘(𝑠) 𝐼𝑓 𝑈 <  𝑔𝑟𝑒𝑒𝑑𝑦 𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 −  𝜃)  

 𝛿3𝐹𝐶 𝑖𝑓 𝑈 >  𝑔𝑟𝑒𝑒𝑑𝑦 𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 −  𝜃) ∧ 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘) ≤ 30%

 𝛿6𝐹𝐶 𝑖𝑓 𝑈 >  𝑔𝑟𝑒𝑒𝑑𝑦 𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 −  𝜃) ∧ 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘) ≥ 90%

𝑠𝑒𝑙𝑒𝑐𝑡 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   }

 
 
 

 
 
 

 

                                                (17)      

Where,  

 𝑈 is a randomly generated value between 0 and 1 given each 𝑘 time step. 
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𝑎𝑘(s): =

{
 
 
 
 
 
 

 
 
 
 
 
 

 𝛿3𝐹𝐶 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘) ≤ 30%

 𝛿6𝐸𝐿 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘) ≥ 90%

   

              𝑎𝑟𝑔𝑚𝑎𝑥
𝑎𝑘(𝑠) ⊆{𝑎1, 𝛿𝑛𝐹𝐶} ,𝑛∈[1:3]

𝑄(𝑠𝑘 , 𝑎𝑘) 

           𝑎𝑟𝑔𝑚𝑎𝑥
𝑎𝑘(𝑠) ⊆{𝑎1, 𝛿𝑛𝐸𝐿} ,𝑛∈[4:6]

𝑄(𝑠𝑘 , 𝑎𝑘) 
 

           𝑎𝑟𝑔𝑚𝑎𝑥
                     𝑎𝑘(𝑠) ⊆ 𝐴𝑡

𝑄(𝑠𝑘 , 𝑎𝑘) 

𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘) ≥ 30% ∧ 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑛 (𝑘) ≤ 40%

𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘) ≥ 80% ∧ 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑛 (𝑘) ≤ 90%

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

                          (18) 

 

5.3 Reward Function Formalisation 

    In order to train the Q-learning agent, a suitable reward function is expressed mathematically. This is such that 

the agent follows the optimal policy 𝜋∗(𝑠) which minimises the cost function between the agent’s off-policy and 

the adaptive MPC PoPA trajectory, and is expressed as follows:  

𝐽𝜋 (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 ) =

𝑙𝑖𝑚
𝑘 → 𝑁 − 2

   𝐸 [∑ |𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 − 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑛 |2 + ( 𝛾𝐽𝜋 (𝑠𝑘+1))
𝑁−2
𝑘=1  ]                                        (19)                                       

Thus, it follows that:                        

min
𝑈𝑐

𝐽𝜋 (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 ) ≜

𝑙𝑖𝑚

𝑘 →∞
 
𝑎𝑟𝑔𝑚𝑎𝑥
𝑎𝑘 ∈ 𝐴𝑘

 𝐸 [∑ ( 𝛾𝑘−1ℛ(𝑠𝑘+1, 𝑎𝑘+1))
−1∞

𝑘=𝑁−2 ]                                                   (20)                          

 

    The reward function in (21) is aimed at accelerating learning. It comprises of a fixed reward 𝐺, with penalty 

factors 𝑊1 and 𝑊2, representing a squared error penalty cost function and constant penalty factor respectively.  

 

 

 

 

The magnitude of the 𝑊1 penalty factor is such that it increases proportionally to the absolute squared error 

deviation from the pinch target at that instant and the systems state if the agent takes a suboptimal action as shown 

in equation (22). Furthermore, the rewarded function in (23) - (25) is able to update the agent 𝑄(𝑠, 𝑎) regardless 

of whether the availability proposition 𝜀𝑖
𝐴𝑣𝑙(𝑘) (see appendix II) for both the FC and EL assets are met, while 

exploiting an action which minimises the error cost. 

     A typical illustration; if the operating point dictated by Adaptive PoPA anticipates future energy deficit and 

requests activation of the FC, while the agent activates the EL, a penalty would suffice. Thus, the penalty function, 

serves as a closed loop negative feedback to the agent. Therefore, in order to obtain the maximum reward G at a 

given time step, the action performed by the agent, must satisfy the consequent conditional proposition. Thus, if 

𝑎𝑘  results in 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘 + 1) being greater than or equal to  𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑚 (𝑘 + 1) and the agent’s action 𝑎𝑘 , is 

equal to the optimal action 𝑈𝑐𝑚𝑖𝑛 the maximum reward G, is obtained. As shown in (23) 𝑈𝑐𝑚𝑖𝑛 is contingent on 

function D and E in equation (24) and (25) respectively. Where, functions D and E are performed abstractly by 

iterating over all actions 𝑎𝑖 the agent can perform if the 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 (𝑘 + 1) is greater than 80% and less than 80% 

respectively. Specifically, assuming the  𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 (𝑘 + 1) is less than 80%, function D is used and thus by 



- 23 - | P a g e  
 

iterating over all actions 𝑎𝑖  𝑖 ∈ [1: 7], 𝑈𝑐𝑚𝑖𝑛 becomes the minimum (infimum) action which results in 

 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 (𝑘 + 1) being greater or equal to  𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑛 (𝑘 + 1). This supresses the excessive usage of the FC. 

Similarly, where function E suffices, the maximum (supremum) action which results in  𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 (𝑘 + 1) being 

less than or equal to 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘 + 1) becomes 𝑈𝑐𝑚𝑖𝑛 such that the EL is used optimally. 

Furthermore, if the action performed by the agent is not equal (¬=) to 𝑈𝑐𝑚𝑖𝑛, and consequently 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘 + 1) 

becomes less than or equal to 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 (𝑘 + 1) a negative penalty denoted by –W1 ensues in other to apprise the 

agent from exploiting adverse actions which over discharges the BAT. 

 Also, where the agent performs 𝑎𝑘  not equal to 𝑈𝑐𝑚𝑖𝑛 , but which results in the 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘 + 1) becoming 

greater than or equal to 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 (𝑘 + 1), a penalty W1 is deducted from the maximum reward G in order to 

dampen excessive usage of the FC. Similarly, a penalty −(𝑊1 +𝑊2)  is used to accelerate the agent’s learning 

curve if successive violations of any of the pinch limits occur as a result of suboptimal action. 

 

The reward function proposition for 𝒮 𝑥 𝒜 ∶ ℛ(𝒮,𝒜) is implemented as follows; 

ℛ(𝑠𝑘 , 𝑎𝑘) = 

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 𝐺

−𝑊1

𝐺 −𝑊1

−(𝑊1 +𝑊2)

 

|

|

|

|

|

|

| [

𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘 + 1) ≥ 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑚 (𝑘 + 1) ∧ 𝑎𝑘 == 𝑈𝑐𝑚𝑖𝑛  ∧

[𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘 + 1) > 𝑆𝐿𝑜

𝑙 ∧ 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘 + 1) < 𝑆𝑈𝑝

𝑙 ]  ]

 
[

[𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘 + 1) ≤ 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑚 (𝑘 + 1)] ∧ 𝑎𝑘 ¬= 𝑈𝑐𝑚𝑖𝑛  ∧          

[𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘 + 1) > 𝑆𝐿𝑜

𝑙 ∧ 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘 + 1) < 𝑆𝑈𝑝

𝑙 ] 
  

]

[
[𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑛 (𝑘 + 1) ≥ 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 (𝑘 + 1)] ∧  𝑎𝑘 ¬= 𝑈𝑐𝑚𝑖𝑛   ∧      

[𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘 + 1) > 𝑆𝐿𝑜

𝑙 ∧ 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘 + 1) < 𝑆𝑈𝑝

𝑙 ] 
 

]

[
 
 
 
 

[𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘) ≤ 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑛 (𝑘 + 1)] ∧ 

[𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘) ≥ 𝑆𝑈𝑝

𝑙 ∧ 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘 + 1) ≥ 𝑆𝑈𝑝

𝑙 ] ∧

𝑎𝑘 ¬= 𝑈𝑐𝑚𝑖𝑛 ∨  𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘 + 1) ≥ 𝑆𝑈𝑝

𝑙 ∧ 𝑎𝑘 ¬= 𝑈𝑐𝑚𝑖𝑛

       

]
 
 
 
 

[
 
 
 
 

[𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘) ≤ 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑛 (𝑘 + 1)] ∧ 

[𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘) ≥ 𝑆𝑈𝑝

𝑙 ∧ 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘 + 1) ≥ 𝑆𝑈𝑝

𝑙 ] ∧ 

𝑎𝑘 ¬= 𝑈𝑐𝑚𝑖𝑛  ∨  𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘 + 1) ≤ 𝑆𝐿𝑜 

𝑙 ∧ 𝑎𝑘 ¬= 𝑈𝑐𝑚𝑖𝑛 

    

]
 
 
 
 

∨

 

 
}
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

                           (21) 

Where, 𝑊1 𝑎𝑛𝑑 𝑊2 are penalty factors for reward shaping. 

𝑊1 = [(𝑆𝑂𝐴𝑐𝑐𝑙
𝑛(𝑘 + 1)−𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑚 (𝑘 + 1)) 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 (𝑘 + 1)⁄ ]2                                                                   (22)  

 

The action which results in the minimum optimal control action is derived abstractly as follows: 

 

𝑈𝑐𝑚𝑖𝑛 ≔ {
𝐷 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑚 (𝑘 + 1) > 𝑆𝐿𝑜
𝑙 ∧ 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑚 (𝑘 + 1) ≤ (𝑆𝑈𝑝
𝑙 − 10%)

𝐸      𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 (𝑘 + 1) > (𝑆𝐿𝑜

𝑙 + 50%) ∧ 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 (𝑘 + 1) < (𝑆𝑈𝑝

𝑙 )
}                                       (23) 
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Where, 

𝐷 ∶= inf {(𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 (𝑘 + 1)| ∑ 𝑄(𝑎𝑖

7
𝑖=1 , 𝑠𝑘+1)) ≥ 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑛 (𝑘 + 1)}                                                         (24)

   

𝐸:= sup { (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 (𝑘 + 1)| ∑ 𝑄(𝑎𝑖

7
𝑖=1 , 𝑠𝑘+1)) ≤ 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑛 (𝑘 + 1)}                               (25)

   

During the online deployment, the PoPA target is modified respectively with the MOES or MEES so as to capture 

the effect of uncertainty after SLO and SUP violation occurs at any instant as follows: 

𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚 (𝑘|𝑘): = {

𝑆𝑈𝑝
𝑙    𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑛 (𝑘) > 𝑆𝑈𝑝
𝑙   

𝑆𝐿𝑜
𝑙      𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑛 (𝑘) < 𝑆𝐿𝑜
𝑙
             ,    ∀𝑡   𝑖𝑓 ∃ ∆𝐻(𝑘) ≠ 0                                                (26)    

           

    The reward function is modified to incorporate the MOES or MEES thus guaranteeing the model-free agent 

will act optimally in the event of uncertainty to maximise the expected reward: 

𝐽𝑃𝑖𝑛𝑐ℎ (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 ) + 𝐽𝑒 (∆𝐻) =

𝑚𝑖𝑛
𝑈𝑐

 𝐽𝜋 (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 )                                                                                          (27) 

 

    Furthermore, by performing the optimal policy 𝜋∗ the corresponding cost is as follows: 

 

𝐽𝜋
∗(𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑛 ) → lim
𝑘→∞

𝐸 [∑ 𝛾 ( 𝐽𝑃𝑖𝑛𝑐ℎ (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 ) + 𝐽𝑒 (∆𝐻))

∞
𝑘 ]                                                                      (28) 

 

    Since the cost of the error due to uncertainty tends to zero when following the optimal policy, 𝐽𝜋
∗(s), the agent 

incorporates the uncertainty estimation into the PoPA: 

 

 lim
𝑘→∞

      𝐽𝜋(𝑘)
∗ (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑛 )  ≤ 𝛾𝐽𝑃𝑖𝑛𝑐ℎ(𝑘) (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 )                                                                                         (29)     

    

    The expected cost following the pinch analysis and uncertainty propagation is less than following only the 

PoPA model. Hence, the experience of the agent integrated into the MPC Adaptive PoPA framework guarantees 

optimal operation, as long as the conditions of optimal action selection and learning rate decay are satisfied. Figure 

7 and 8, illustrates the RL+Adaptive PoPA architecture and algorithm respectively. Furthermore, the pseudo codes 

for the proposed algorithms are presented in Appendix I. 
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Fig. 7. Reinforcement Learning Adaptive Power Pinch architecture 
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Fig. 8. RL + Adaptive Power Pinch Algorithm 
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6. Results and Discussion 

    The three new methods are evaluated against the DA-PoPA in a short (three days (72h)) and long-term (one 

year (8760 h)) deployment in a stand-alone HESS. The initial conditions for the 𝑆𝑂𝐴𝑐𝑐𝑙
𝑚  is such that 𝑙 ∈

{BAT, HT and WT} corresponds to 70%, 80% and 30% respectively. The HESS parameters used as case study are 

derived from an existing real system [9] as shown in Table 1. Also, real load demand profiles for a typical 

residential home and solar irradiance data pertaining to Newcastle, United Kingdom, are sourced from ELEXON 

[79] and NREL [80] respectively. 

 

Table 1  

HESS Micro-grid parameters [9] 

System Components Specification 

Load (peak) 2200 W 

PV (66.64 W rated power) 217 

DSL 2210 W 

BAT 3000 Ah  / 48 V 

FC 3000 W 

EL 4000 W 

HT 30 bar, 15 m3 

η
𝐶𝑉,

η
𝑃𝑉
, 𝜂𝐹𝐶 , 𝜂𝐸𝐿  0.95, 0.10, 0.87, 0.87 

 

 

    The performance main indices (30) - (32) used in evaluating the EM approaches are with respect to the total 

number of times the 𝑆𝐿𝑜
𝑙  (30%) and 𝑆𝑈𝑝

𝑙  (90%) Pinch limits are violated and the DSL activated, as follows [42];  

Sum of Deficit=∑ {1  𝑆𝐿𝑜
𝑙 > 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑛 ( 𝑘 ) 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}𝑁=8760

𝑘=1                                                                                        (30) 

Sum of Surplus=∑ {
1  𝑆𝑈𝑝

𝑙 > 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 ( 𝑘 ) 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}𝑁=8760

𝑘=1                                                                                      (31) 

Sum of DSL activation =∑ {
1  20% > 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑛 ( 𝑘 ) 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}𝑁=8760
𝑘=1                                                                       (32)              

 

6.1 Short-term operation 

6.1.1 Day – Ahead Power Pinch Analysis  

    As illustrated in Figures 9(a), the original PGCC show the 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑚  would dip successively below the SLO due 

to impending energy deficit within the first 72 h, if electricity is not outsourced in advance. Thus the PGCC is 

shaped accordingly by activating the FC four times as shown in Figure 9 (b). However, the PGCC continuously 

violated SLO 14 time instances which led to the activation of the DSL twice due to uncertainty indicated by the 

error plot as shown in Figure 8a, regardless of hydrogen availability.  
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a) 

 

b) 

Figure 9: a) DA-PoPA response and b) Dispatchable Logic state for the first 72h of the year 

 

6.1.2 Adaptive Power Pinch Analysis Energy Management Strategy for Uncertainty 

    The energy deficit and consequent forecast error deviation exhibited by the DA-PoPA was reduced by the 

dynamic shaping of the PGCC within a receding control horizon as shown in Figure 10(a). Figure 10(b) illustrates 

the state error correction at the inception of the 11:00 Hr after ∆𝐻 became greater than 5% at 10:00 h. However, 

the 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛  dipped at the 33rd,   34th,    47th,    57th,    58th,   70th,   and 71st h, without activating the DSL. 

Furthermore, despite dispatching the FC six times, as shown in Figure 10(c) after the occurrence of the unforeseen 

dip, a further violation of SLO re-occurred. This was because the MOES delivered by the FC was less than required, 

due to deficit energy target variability. The successive dips underscore the need for a preventive approach since 

the reactive approach only responds after the forecast error has occurred.  
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(a) 

 

 

(b) 

 

(c) 

Fig. 10. a) Adaptive Power PoPA, b) State error correction and c) Converter Logic 
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  6.1.3 Kalman Filter Adaptive PoPA 

    The Kalman + Adaptive approach results in the PGCC violating SLO 7 times at time 49:00 - 56:00 h and at time 

64:00 - 70:00 h, as shown in Figure 11a.  Additionally, the FC was activated 20 times in response to uncertainty 

with the DSL never activated as shown in Figure 11 (b). The Kalman+Adaptive PGCC closely matched the actual 

state of the plant as shown in Figure 11(a), with the uncertainty adequately propagated within the first 48h, hence, 

the performance was better than using the Adaptive PoPA alone. However, the uncertainty (previously unknown 

until now, but expected to be a normal Gaussian distribution) was essentially non-Gaussian (bimodal). Thus, 

further investigation as illustrated in Figure 12(a) and 12(b) shows that the Kalman+Adaptive PoPA performs 

better as the variance of forecast error is reduced when the uncertainty is normally distributed. Figure 12(b) shows 

the converter logic. Hence, a more sophisticated approach when the uncertainty is unknown should suffice. 

 

a) 

 

b)  

Fig 11. (a) The estimated and real Battery 𝑆𝑂𝐴𝑐𝑐 response with the Kalman Adaptive PoPA for 72 h under 

Gaussian uncertainty; (b) converter logic  
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(a) 

 

b) 

 

c) 

Fig 12: a) The estimated and real Battery 𝑆𝑂𝐴𝑐𝑐 response with the Kalman Adaptive PoPA for 72 h under Non-

Gaussian (Bimodal) uncertainty, b) Comparison of the real 𝑆𝑂𝐴𝑐𝑐 response under both Gaussian and Non-

Gaussian uncertainty, and c) converter logic under non-Gaussian uncertainty. 
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6.1.4 RL+Adaptive PoPA 

    The RL+Adaptive PoPA had only one violation of SLO, which occurred at the 45th h as shown in Figure 13a. 

Also, the DSL was never activated. However, the FC and EL were activated 28 and 20 times respectively in a bid 

to track the Adaptive PoPA’s PGCC as shown in Figure 13b.  

a) 

b) 

Fig. 13. (a) shows the performance of the RL+Adaptive Pinch strategy for 72h; (b) converter logic 
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    The violation of  SLO as indicated in Table 2, evidently showed Kalman Adaptive PoPA  had  the most significant 

improvement from 7 to 0 SLO violations and none for the SUP under Gaussian uncertainty and non-Gaussian case 

respectively. The RL Adaptive had no limit violations under the Gaussian uncertainty. While the Adaptive PoPA 

had an improvement when the uncertainty was Gaussian, there was negligible in the DA-PoPA’s performance.   

 

Table 2  

Summary of the performance indices for 72h. 

 Non-Gaussian Uncertainty Gaussian Uncertainty 

 DA-

PoPA 

Adaptive 

PoPA 

Kalman+

Adaptive 

PoPA 

RL+ 

Adaptive 

PoPA 

DA-

PoPA 

Adaptive 

PoPA 

Kalman + 

Adaptive 

PoPA 

RL + 

Adaptive 

PoPA 

Lower Pinch 

violation 

14 7 7 1 13 3 0 0 

Upper Pinch 

violation 

0 0 0 0 0 0 0 0 

DSL 

Activation 

2 0 0 0 4 0 0 0 

 

 

6.2 Long-term operation  

    The proposed methods are evaluated against the DA-PoPA over a period of 8760 h and the results are shown 

in Table 3. From Table 3, the DA PoPA method had the worst performance indices as regards excessive charging 

of BAT (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 >90%) and over-discharging (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑛 <30%) and consequently fossil fuel utilisation due to 

the DSL activation, despite a decently sized HT of 15m3 (initialised with 𝑆𝑂𝐴𝑐𝑐𝐻𝑇
𝑛  at 100%). The lower limit 

(𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 <30%) of the BAT was violated 804 times and accordingly the DSL was activated 229 times. Also the 

upper pinch limit  (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 > 90%) of the BAT was violated 756 times.  

    Thus, benchmarked against the performance of the DA, the Adaptive, Kalman+Adaptive and RL+Adaptive 

PoPA methods led to a reduction in SLO violation by 66%, 92% and 94%, as well as a decrease in the upper limit 

violation by 60%, 65% and 70%, respectively. Additionally, the DSL was activated only once with the Adaptive 

PoPA and was never activated with the Kalman, and RL+Adaptive PoPA. Consequently, a reduction in fossil fuel 

emission by 99.59%, 100% and 100% was achieved with the Adaptive, Kalman, RL+Adaptive PoPA EMS 

respectively. Furthermore, the reduction in upper limit violation by the Adaptive, Kalman and RL+Adaptive PoPA 

methods led to an increase in PV penetration by 6%, 6% and 7% respectively, due to the decreased violation of 

the PV (ON/OFF) protection constraint. 

    The RL+Adaptive method had the best performance with the least violations of SLO and SUP. However, to 

counteract the uncertainty, the learning agent increased activation of the FC and EL in the control horizon by 

642% and 425% respectively, compared to the dictate of the Adaptive PoPA in the predictive horizon.  
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    Also, the activation of the FC and EL with the Adaptive PoPA was seen to have increased by 95% and 150% 

and similarly for the Kalman +Adaptive PoPA, it was 520% and 255 % respectively, compared to the DA-PoPA. 

    The available hydrogen in HT at 8760 hrs is as follows: 55% (DA-PoPA), 45% (Adaptive), 44% (RL+Adaptive) 

and 19% (Kalman+Adaptive). The  𝑆𝑂𝐴𝑐𝑐𝐻𝑇
𝑛   and 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑛  are shown in Figure 14-17. The Kalman+Adaptive 

PoPA had the most usage of the hydrogen energy carrier, with the DA-PoPA having the least utilisation. 

 

Table 3 

Performance metrics characterizing the proposed Pinch methods for one year (8760 hr) with HT Volume of 15m3.  

 Day –   

Ahead 

PoPA 

Adaptive 

PoPA 

Kalman+Adaptive 

PoPA 

RL+Adaptive 

PoPA 

Lower Pinch violation (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛  < 30%) 804 271 64 51 

Upper Pinch violation (𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 >90%) 756 303 265 226 

FC start-stop (cycles/year) 296 577 1837 3802 

EL start-stop (cycles/year) 262 654 931 3503 

DSL start-stop (cycles/year) 229 1 0 0 

PV start-stop (cycles/year) 8004 8457 8495 8534 

 

 

(a)       
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(b)  

Fig.14. (a) The response of the BAT and (b) HT with the DA-PoPA 

 

(a) 

 

(b) 

Fig. 15. (a) The response of the BAT and (b) HT with the Adaptive PoPA method 
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(a)    

 

(b)    

Fig. 16. (a) The response of the BAT and (b) HT response with Kalman +Adaptive PoPA 

 

(a) 
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(b) 

Fig. 17. (a) The response of the BAT and (b) HT response using RL+Adaptive Pinch Analysis 

6.3 Sensitivity Analysis of HT Size with the PoPA Schemes  

    As shown in Figure 18, a sensitivity analysis was carried out to investigate the impact of hydrogen uncertainty 

by varying the HT capacity between 10, 5, and 1 m3 with the EMS’s. The RL+Adaptive PoPA scheme with HT 

at 10 m3 had the fewest SLO and SUP violations of 68 and 256 times respectively, with the DSL never activated. 

The Kalman Adaptive PoPA had an SLO and SUP violation of 264 and 87 times. The DA-PoPA SLO and SUP 

violations were 756 and 804 times, and the adaptive PoPA violations were 303 and 271.  However, the Kalman 

Adaptive PoPA activated the DSL at 15 instances in response to 87 lower limit violations, compared to the 

Adaptive PoPA which activated the DSL only once. Decreasing the HT capacity to 5 m3 and 1 m3, the 

RL+Adaptive PoPA lower limit was violated 1553 and 2616 times respectively, which consequently lead to the 

activation of the DSL  440 and 782 times.  

 



- 38 - | P a g e  
 

 

Fig.18. Sensitivity analysis of the PoPA Energy Management Schemes with 10, 5 and 1m3 HT capacity. 

    When considering upper limit violations for different HT sizes, the RL+Adaptive PoPA had the best upper limit 

violation for an HT of 10m3 and 5 m3, and the second-best upper limit violation with an HT of 1m3.  

    The RL+Adaptive PoPA had the least DSL activation overall for HT sizes of 5m3 and 1m3, which consequently 

implies that despite the SLO violation of 1203 and 2616 times in that order were only better than the Kalman 

Adaptive PoPA’s 1553 and 3468 times respectively.  In addition, as seen in Figure 17, the preventive methods 

were more effective when the hydrogen is adequately available (i.e. HT > 5 m3) (see figure I in appendix III). 

    The DA-PoPA violation of the upper limit remained almost unchanged despite the HT size variation. This 

clearly indicates the weakness of the DA-PoPA to uncertainty, in event of an unanticipated excess or deficit energy 

not considered during the daily energy target planning.  

 

7. Conclusion 

    The Adaptive, Kalman+Adaptive and RL+Adaptive PoPA methods have been proposed to counteract 

uncertainty caused by PV and load profile variation which may impact the reliability of the HESS. These methods 

were compared against the existing DA-PoPA strategy using real-world data. The Adaptive PoPA had a better 

performance than the DA-PoPA, as a result of the inclusion of a feedback loop which minimised the effect of 

forecast deviations. However, the method offered a reactive strategy whose correction mechanism relied on the 

occurrence of the forecast error. Furthermore, the Adaptive PoPA incorporated a receding horizon without 

uncertainty propagation. The Kalman + Adaptive PoPA had a better performance than the adaptive PoPA. 

However, the formulation of the estimator relies on the assumption of a normally distributed uncertainty which 

was not the case. The RL+Adaptive method, which incorporates a learning agent illustrated for short and long-

term operation, was shown to maximise the expected reward by acting optimally to meet the identified pinch 

targets. The RL+Adaptive had the best response across all performance indices; SLO and SUP limits violation as 
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well as reduced diesel carbon footprint when the HT was sized at 10m3. However, even though the RL +Adaptive 

PoPA method offers the best results with respect to an avoided violation of operating limits on the storage devices 

this excellent performance comes at the cost of increased complexity. Therefore, the method used will be 

dependent on the application. For example, if there is a high confidence in the load/weather forecast then the DA 

PoPA method can be used, but if there is some error in the forecast, then the first Adaptive PoPA method, which 

does not require heavy processing power but is less accurate, should be used. However, if the difference between 

the real and the forecasted load/weather profile is significant and the uncertainty has specific statistical properties, 

then the right choice should be the use of the Adaptive PoPA with Kalman filter. Finally, if the error is large with 

no information about the type of uncertainty, then the RL+Adaptive PoPA should be the choice.  

 

Appendixes 

A.1 Pseudo Codes for the Proposed Algorithms 

a. Pseudo Code for the First Proposition  

1. Define the entire time span and intervals. 

2. Define the initial systems state and EMS propositions  

3. For all intervals 𝑘  

Perform within the prediction horizon the following procedures: 

4. if  (𝑘 –  𝑁)  = 23 ⋁  ∆𝐻(𝑘) > (𝜉 == 5%) 

4.1.1 Repeat while Loop, L < =24 ∧ (𝑆𝑚𝑎𝑥 > 𝑆𝑈𝑝
𝑙  ∨ 𝑆𝑚𝑖𝑛 < 𝑆𝐿𝑜

𝑙 ) 

4.2 Compute the PGCC with dispatch control sequence 𝑈𝑐 according to equations (1) 

4.3 Determine 𝑆𝑚𝑖𝑛 =   𝑆𝑂𝐴𝑐𝑐𝑙
𝑚(𝑘) 𝑘∈[𝑘,𝑘+1,…,𝑁]

𝑚𝑖𝑛  and 𝑆𝑚𝑎𝑥 =   𝑆𝑂𝐴𝑐𝑐𝑙
𝑚(𝑘)  𝑘∈[𝑘,𝑘+1,…,𝑁]

𝑚𝑎𝑥  

4.3.1 If 𝑆𝑚𝑖𝑛 < 𝑆𝐿𝑜
𝑙  

a. Determine the energy 𝑀𝑂𝐸𝑆 = 𝐿𝑜 − 𝑆𝑚𝑖𝑛 required  to shift the PGCC  

(Such that, 𝑆𝑂𝐴𝑐𝑐𝑙
𝑚,1(𝑘1) = (𝑆𝑂𝐴𝑐𝑐𝑙

𝑚,0(𝑘1) + 𝑀𝑂𝐸𝑆) < 𝑆𝑈𝑝
𝑙  )  

b. 𝑈𝑐 = 𝐹𝐶 ∶  𝑈𝑐(𝑆𝑂𝐴𝑐𝑐𝑙
𝑚) = [𝑈𝑘(𝑆𝑘+1), …𝑈𝑁−1(𝑆𝑇), | 𝑆𝑘+1 ∶ 𝑘∈ [1,2,… ,𝑁] < 𝑆𝑈𝑝

𝑙 ] In a 

memory location, store the control sequence 𝑈𝑐  

c. Activate the selected converter 𝑈𝑐  to inject the energy determined in step 4.2.1(a) at 

𝑘1 then go to step 4.3. 

4.3.2 if  𝑆𝑚𝑎𝑥 > 𝑆𝑈𝑝
𝑙   

a. Determine the amount of energy MEES = 𝑆𝑚𝑎𝑥 − 𝑆𝑈𝑝
𝑙  (Such that, 𝑆𝑂𝐴𝑐𝑐𝑙

𝑚,1(𝑘1) =

(𝑆𝑂𝐴𝑐𝑐𝑙
𝑚,0(𝑘1) − MEES) > 𝑆𝐿𝑜

𝑙  to shift the PGCC). 

b. Activate the selected converter 𝑈𝑐  , 𝑐 ∈ {EL} to absorb the energy determined in step 

4.2.2(a) at 𝑘1 then go to step 4.3. 

4.4 Determine 𝑆𝑂𝐴𝑐𝑐𝑙
𝑚,𝐿 (𝑁) : L ∈ [0: 24] 

4.4.1 if 𝑆𝑂𝐴𝑐𝑐𝑙
𝑚,𝐿 (𝑁 − 1) ≅ 𝑆𝑂𝐴𝑐𝑐𝑙

𝑚,𝐿 (𝑘1) 

a. calculate ∆𝑆 = 𝑆𝑂𝐴𝑐𝑐𝑙
𝑚,𝐿 (𝑘1) − 𝑆𝑂𝐴𝑐𝑐𝑙

𝑚,𝐿 (𝑁 − 1) (such that 𝑆𝑂𝐴𝑐𝑐𝑙
𝑚,1 (𝑁 − 1) 

=𝑆𝑂𝐴𝑐𝑐𝑙
𝑚,0 (𝑁 − 1) ± ∆𝑆 

b. Activate the selected converter 𝑈𝑐  to inject or absorb the energy ± ∆𝑆 determined in 

step 4.3.1(a) at 𝑁 − 1 . 

c. repeat from step 4 until L>24 

5. Activate the determined control sequence in control horizon 𝑈𝑐(𝑆𝑂𝐴𝑐𝑐𝑙
𝑛) : 𝑆𝐿𝑜

𝑙 <

[𝑈𝑘(𝑆𝑘+1), …𝑈𝑁−1(𝑆𝑁), | 𝑆𝑘+1 ∶ 𝑘∈ [1,2,… ,𝑁] < 𝑆𝑈𝑝
𝑙 ] 

6. Determine state estimation error due to uncertainty: 

∆𝐻(𝑘) = |𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 (𝑘|𝑘 − 1) − 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇

𝑚 (𝑘)|  

7. Update the model with the actual system state with (7)  for new PGCC re-computation 

8. Repeat from step 3 until k > 8760 
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b. Pseudo Code for the Second Proposition 

This follows steps 1 – 5 of the first proposal, but with the inclusion of the Kalman filter. 

7. Update the priori covariance estimate 𝒫𝑘 = [ℐ − 𝒦𝒢ℐ] 𝒫𝑘−1  

8. Determine the Kalman gain 𝐾𝐺(𝑘) = 𝒫𝑘  𝐼
𝑇 [ℐ 𝒫𝑘  ℐ

𝑇 + ℛ𝑘]
−1   

9. Predict the system state with the most recent output measurement from (11): 

 𝑆𝑂𝐴𝑐𝑐𝑙
𝑚 (𝑘) = 𝑆𝑂𝐴𝑐𝑐𝑙

𝑚 (𝑘|𝑘 − 1) +𝒦𝒢(𝑆𝑂𝐴𝑐𝑐𝑙
𝑛 (𝑘) − ℐ 𝑆𝑂𝐴𝑐𝑐𝑙

𝑚 (𝑘|𝑘 − 1)) 

10. Estimate the posterior covariance matrix 𝒫𝑘+1 = 𝐴 𝒫𝑘𝐴
𝑇 +ℛ𝑘  

11. Repeat from step 3 while 𝑘 ≤  8760 

 

c. Pseudo Code for the Third Proposition 

This follows steps 1 – 6 of the first proposal, with the inclusion of the Q-learning state-action pair 𝑄(𝑠, 𝑎). 

5. Observe the systems state, s   

6. For 𝑘~ = 𝑁 

Switch ON/OFF dispatchable energy resources with the action selection policy 𝜋 (𝑠) defined in (17) based 

on the state-action value function 𝑄(𝑠, 𝑎). 

    Else 

Override the action selected from policy 𝜋 (𝑠) with AEEND EMS from Adaptive PoPA 

    End 

7. Observe 𝑆𝑂𝐴𝑐𝑐𝐵𝐴𝑇
𝑛 and determine the reward, 𝑅 according to (21) 

8. Update 𝑄(𝑠, 𝑎) based on equation (16)  

s← 𝑠′ 

9. Randomly draw without replacement n-sample from memory 𝐷 ∈< S, A, R, S’, A’ >  pairs of the most recent 

𝑛-pinch limits violation experience due to uncertainty. 

10. Update 𝑄(𝑠, 𝑎) with the uncertainty experience  

11. Repeat from step 3 until 𝑘 > 8760 

 

Table A.1 

Connection Symbol Logic proposition for HESS 

𝐵𝐴𝑇 ← 𝑃𝑉 𝜀𝑃𝑉(𝑡) ∩
𝑐
[𝜀𝑃𝑉
𝑐 (t)], ∈ {𝐴𝑣𝑙, 𝑅𝑒𝑞, 𝐺𝑒𝑛} 

 𝜀𝑃𝑉
𝐴𝑣𝑙(𝑡) 1 

 𝜀𝑃𝑉
𝑅𝑒𝑞
(𝑡) 𝓆𝑃𝑉

𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(t) 

 𝜀𝑃𝑉
𝐺𝑒𝑛(𝑡) 1 

 𝓆𝑃𝑉
𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(t) 𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(𝑡) < 𝑆𝐿𝑂

𝐵𝐴𝑇←𝑃𝑉(𝑡) 

𝐵𝐴𝑇 ← 𝐷𝑆𝐿 𝜀𝐷𝑆𝐿(𝑡) ∩
𝑐
[𝜀𝐷𝑆𝐿
𝑐 (t)], ∈ {𝐴𝑣𝑙, 𝑅𝑒𝑞, 𝐺𝑒𝑛} 

 𝜀𝐷𝑆𝐿
𝐴𝑣𝑙 (𝑡) 1 

 𝜀𝐷𝑆𝐿
𝑅𝑒𝑞
(𝑡) 𝓆𝐷𝑆𝐿

𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(t) 

 𝜀𝐷𝑆𝐿
𝐺𝑒𝑛(𝑡) 1 

 𝓆𝐷𝑆𝐿
𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(t) 𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(𝑡) < 𝑆𝐿𝑂

𝐵𝐴𝑇←𝐷𝑆𝐿(𝑡) ∨ 

[
[𝑆𝐿𝑂
𝐵𝐴𝑇←𝐷𝑆𝐿(𝑡) < 𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(𝑡) < 𝑆𝑈𝑃

𝐵𝐴𝑇←𝐷𝑆𝐿(𝑡)] ∧

[ 𝜀𝐷𝑆𝐿(𝑡 − 1)]                                                      
] 

𝐵𝐴𝑇 ← 𝐹𝐶 𝜀𝐹𝐶(𝑡) ∪
𝑐
[𝜀𝐹𝐶
𝑐 (t)] ∧ 𝜀𝐹𝐶

𝐴𝑣𝑙(𝑡),  𝑐 ∈ {𝑅𝑒𝑞, 𝐺𝑒𝑛} 

 𝜀𝐹𝐶
𝐴𝑣𝑙(𝑡) ∩

𝑙
[𝒶𝐹𝐶

𝑆𝑂𝐴𝑐𝑐 𝑙(𝑡)], 𝑙 ∈ {𝐻𝑇,𝑊𝑇} 

 𝜀𝐹𝐶
𝑅𝑒𝑞
(𝑡) 𝓆𝐹𝐶

𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(t) 

 𝜀𝐹𝐶
𝐺𝑒𝑛(𝑡) 𝜌𝐹𝐶

𝑈𝑐   



- 41 - | P a g e  
 

 

Cont. of Table A.1 

  

 𝜌𝐹𝐶
𝑈𝑐  𝑈𝑐

→
(𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(𝑡)) 

 𝓆𝐹𝐶
𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(t) 𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(𝑡) < 𝑆𝐿𝑂

𝐵𝐴𝑇←𝐹𝐶(𝑡) 

 𝒶𝐹𝐶
𝑆𝑂𝐴𝑐𝑐 𝑊𝑇(𝑡) 𝑆𝑂𝐴𝑐𝑐 𝑊𝑇(𝑡) < 𝑆𝑈𝑃

𝑊𝑇←𝐹𝐶(𝑡) 

 𝒶𝐹𝐶
𝑆𝑂𝐴𝑐𝑐 𝐹𝑇(𝑡) 𝑆𝑂𝐴𝑐𝑐 𝐹𝑇(𝑡) > 𝑆𝐿𝑂

𝐹𝐶←𝐻𝑇(𝑡) 

𝐵𝐴𝑇 → 𝐸𝐿 𝜀𝐸𝐿(𝑡) ∪
𝑐
[𝜀𝐸𝐿
𝑐 (t)] ∩ 𝜀𝑃𝑉

𝐴𝑣𝑙(𝑡),  𝑐 ∈ {𝑅𝑒𝑞, 𝐺𝑒𝑛} 

 𝜀𝐸𝐿
𝐴𝑣𝑙(𝑡) ∩

𝑙
[𝒶𝐸𝐿

𝑆𝑂𝐴𝑐𝑐 𝑙(𝑡)], 𝑙 ∈ {𝐵𝐴𝑇,𝐻𝑇} 

 𝜀𝐸𝐿
𝑅𝑒𝑞
(𝑡) 𝓆𝐸𝐿

𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(t) 

 𝜀𝐸𝐿
𝐺𝑒𝑛(𝑡) 𝜌𝐸𝐿

𝑈𝑐   

 𝒶𝐸𝐿
𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(𝑡) 𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(𝑡) > 𝑆𝐿𝑂

𝐵𝐴𝑇→𝐸𝐿(𝑡) 

 𝒶𝐸𝐿
𝑆𝑂𝐴𝑐𝑐 𝐹𝑇(𝑡) 𝑆𝑂𝐴𝑐𝑐 𝐹𝑇(𝑡) < 𝑆𝑈𝑃

𝐸𝐿→𝐻𝑇(𝑡) 

 𝓆𝐸𝐿
𝑆𝑂𝐴𝑐𝑐 𝑊𝑇(t) 𝑆𝑂𝐴𝑐𝑐 𝑊𝑇(𝑡) > 𝑆𝐿𝑂

𝐸𝐿←𝑊𝑇(𝑡) 

 𝜌𝐸𝐿
𝑈𝑐 𝑈𝑐

→
(𝑆𝑂𝐴𝑐𝑐 𝐵𝐴𝑇(𝑡)) 

 

 

 

 

Fig. A.1 

 

Fig. A.1. Sensitivity analysis of the PoPA Energy Management Schemes with 10, 7.5 and 5m3 HT capacity. 
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