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Abstract: The dc to dc buck converter operating with a voltage controller is a nonlinear,
nonsmooth system that presents different circuit topologies within the same switching
cycle. In this paper, we propose two new bifurcation or chaoscontrol strategies based
on the use of the saltation matrix and the location of the floquet multipliers to stabilize
the period-1 orbit of the circuit regardless of the input voltage of the converter. The
new methods are analytically and numerically validated andtheir sensitivity to parameter
variations is assessed.
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1. INTRODUCTION

Dc to dc converters, which are some of the most
widely used circuits in power electronics, are in-
herently nonlinear, nonsmooth time varying systems
which exhibit subharmonic oscillations and chaos fol-
lowing various bifurcation pathways. The analysis
and control of these phenomena are of great impor-
tance since small changes in the system’s parame-
ters (for example the supply voltage) can have catas-
trophic results on the system dynamics. There is ex-
tensive literature on these issues and many researchers
have proposed various methods of analysis, control
and/or exploitation of these behaviors (Banerjee and
Verghese, 2001; Fossas and Olivar, 1996; Tse and
Bernardo, 2002). The output voltage and current of
these systems are usually periodic waveforms around
a constant DC value. The nominal operating mode
of such systems is a limit cycle whose period equals
the period of the PWM clock used in the controller.
This pattern is called period-1. By altering various
system parameters the converter may undergo period
doubling bifurcations. A succession of such bifurca-
tions may lead to subharmonic oscillations, crises, and

even chaotic behavior (Chakrabartyet al., 1996). It is
generally felt desirable to avoid such unusual modes in
power converters, which makes it necessary to develop
methodologies to control period doubling bifurcation.

The study of these limit cycles is conventionally based
on the Poincaré map which captures the essential
properties of the system. In some cases this map can be
obtained analytically (for example in the current mode
controlled boost converter), but in most other con-
verter configurations (like the voltage controlled buck
converter), where the model includes transcendental
equations, the discrete map can only be calculated
numerically. The authors have previously proposed a
different method to study the nonlinear behavior of a
buck converter whose Poincaré map can only be calcu-
lated numerically (Giaouriset al., n.d.) and (Giaouris
et al., 2005). We have shown that this method is more
powerful mainly because it can follow unstable limit
cycles, which play a crucial role in the appearance
of crises. To achieve this, we used the floquet mul-
tipliers of the system which are the eigenvalues of
the monodromy matrix. The monodromy matrix of
piecewise smooth systems can be calculated by using



the fundamental solution matrices before, after and
during the switching (Leineet al., 2000; Leine and
Nijmeijer, 2004). We have shown that the fundamental
solution matrix during the switching is very important
and it can totally alter the behavior of the overall
system (Giaouriset al., n.d.). We refer to that matrix
as the saltation matrix, a name first proposed by Leine
(Leine and Nijmeijer, 2004).

There is a large body of literature on the control of
chaos in dynamical systems, such as the Ott-Grebogi-
Yorke method and the Pyragas method (Banerjee and
Verghese, 2001). These methods are aimed at stabi-
lizing one of the unstable periodic orbits that exist
in any chaotic system. On the other hand there are
methods which are based on the empirical observation
that an application of a periodic perturbation (Zhou
et al., 2003) that can stabilize a system in a periodic
orbit. Previous work has shown how the chaos con-
trol method presented in (Zhouet al., 2003) works
and how it can be improved by optimally placing
the eigenvalues at predefined locations (Giaouriset
al., n.d.).

The first part of this paper briefly analyzes the behav-
ior of the buck converter based on the monodromy
matrix and proves that when the orbit is period-1, it
is impossible to have attractive sliding modes (as was
also observed by Di Bernardo (Bernardoet al., 1998)).
The second part presents two novel bifurcation control
methods based on the saltation matrix and describes
its influence on the overall system. These two meth-
ods stabilize the period-1 orbit regardless of the input
voltage. Hence even though we call these methodsbi-
furcation control they can easily be applied to suppress
chaos by stabilizing one of the infinite unstable peri-
odic orbits that are in a strange attractor. Robustness
tests were carried out to test the controller sensitivity
to parameter variation like the load resistance.

2. THE BUCK CONVERTER

The buck converter (Fig. 1) consists of a switch S
which is controlled by a pulse-width modulated signal
to achieve the required output. The controller creates
a compensating signalVcon = A(vo −Vre f ) which is
compared with a suitable periodic sawtooth waveform
Vramp and a switching occurs when these two signals
become equal.A is the feedback amplifier gain and
the ramp signal can be written asVramp(t) = VL +

(VU −VL)
( t

T
mod 1

)

. To experimentally test and

analyze the proposed control schemes we used a buck
converter with the following parametersL = 20mH,
C = 47µF,R = 22Ω, A = 8.4,Vref = 11.3V,VL = 3.8V,
VU = 8.2V, andT = 400µs.

The system is governed by two sets of linear differen-
tial equations related to theON andOFF states of the
controlled switch. The inductor currentiL(= x2) and

closeds

vv rampcon

=� �<

 
Fig. 1. The voltage mode controlled buck dc-dc con-

verter

the capacitor voltagevo(= x1) are taken as state vari-
ables. The individual state equations can be written as

ẋ2 =











Vin − x1(t)

L
, A(x1(t)−Vref) < Vramp(t),

−
x1(t)

L
, A(x1(t)−Vref) > Vramp(t).

(1)

ẋ1 =
x2(t)− x1(t)/R

C
(2)

which in a matrix form are:

Ẋ = AsX+ Bu (3)

Ẋ = AsX (4)

and they have a solution of the form:

X(t) = Φ(t,d′T )X(d′t)+
∫ t

d′T
Φ(t − τ,d′T )B u dτ

(5)
X(t) = Φ(t,0)X(0) (6)

where

X =
[

v0 iL
]T

, As =







−1

RC

1

C
−1

L
0






, B =

[

0
−1
L

]T

,

u is the input voltageVin, Φ is the state transition
matrix andd′ = 1−d, d is the duty cycle.

In general, the circuit gives an average dc output volt-
age close to the desirable value with a periodic ripple
equal to the period of the driving clock (the ramp) as
shown in Fig. 2a. As the input voltage of the system is
increased, the circuit exhibits a period doubling bifur-
cation, Fig. 2b, and then by successive bifurcations it
enters into a chaotic regime (Chakrabartyet al., 1996).

3. FILIPPOV THEORY

The theory of Filippov gives a generalized definition
of the solution of state equations involving switching.
Consider a piecewise smooth system with one switch-
ing manifold:

Ẋ =

{

f−(X,t) for X ∈V−

f+(X,t) for X ∈V+
(7)

wheref− and f+ are the twon dimensional smooth
vector fields before and after then − 1 dimensional
hypersurfaceΣ which is defined by a scalar function
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Fig. 2. Experimental results, (a) period 1 pattern and
(b) period 2 pattern

h(X,t). The state space is thus separated into three
subsets:Rn = V−∪Σ∪V+ where







V− = X ∈ {R
n | h(X,t) < 0}

Σ = X ∈ {R
n | h(X,t) = 0}

V+ = X ∈ {R
n | h(X,t) > 0}

To define the behavior of the system while it is onΣ
we have to extend the previous piecewise system to a
differential inclusion (Filippov, 1988):

Ẋ ∈ F(X,t) =







f−(X,t) for X ∈V−

co{f−(X,t), f+(X,t)} for X ∈ Σ
f+(X,t) for X ∈V+

(8)
whereco{f−, f+} = {(1−q)f− + qf+},∀q ∈ [0,1]

The extension of a discontinuous system (7) into a
convex differential inclusion (8) is known as Filip-
pov’s convex method. The existence of the solution
can be guaranteed ifF(X,t) is upper semi-continuous.
The uniqueness is guaranteed if the solution crosses
the hypersurface transversally. A necessary condition
for a transversal intersection atΣ is:

nT f−(X,t)×nT f+(X,t) > 0 : X ∈ Σ

wheren is the normal vector ontoΣ i.e. the gradient
of h: n = ∇h(X,t) andnT f−,nT f+ are the projections
of the smooth vector fields ontoΣ.

4. APPLYING FILIPPOV THEORY TO THE
BUCK CONVERTER

Theorem: The system described by (1) and (2) admits
a unique period-1 orbit.

Proof: For the voltage controlled closed loop buck
converter, the switching hypersurface (h) is given by

h(X(t),t) = x1(t)−Vref−Vramp(t)/A = 0. (9)

By restricting the analysis to period-1 limit cycles we
can assume thatt ∈ (0,T ) hence:

Vramp(t) = VL +(VU −VL)t/T (10)

The normal vectorn is given as

n = ∇h(X,t) =

[

∂h

∂x1

∂h

∂x2

]T

=
[

1 0
]T

(11)

The set valued function is defined as:

Ẋ ∈ F(X,t) =







f−(X,t) for X ∈V−

co{f−(X,t), f+(X,t)} for X ∈ Σ
f+(X,t) for X ∈V+

where

f−(X(t)) =

[

x2(t)/C− x1(t)/RC
(Vin − x1(t))/L

]

,

f+(X(t)) =

[

x2(t)/C− x1(t)/RC
−x1(t)/L

]

.

The convex hull is defined as:

co{f−(x(t)), f+(x(t))}=







x2(t)/C− x1(t)/RC

co

{

Vin − x1(t)

L
,−

x1(t)

L

}







The projections of the two vector fields onton are:

nT f− =
x2− x1/R

C
and nT f+ =

x2− x1/R

C
. Hence

nT f−×nT f+ > 0 and therefore we have a transversal
intersection which guarantees a unique Filippov solu-
tion, as shown in Fig. 3.

Since there is a transversal intersection whent ∈ (0,T )
it is impossible to have a period-1 orbit involving slid-
ing solution. This was also observed by Di Bernardo
(Bernardoet al., 1998) who proved that a sliding mode
(or infinite stretching as it is also called) can only oc-
cur whenVramp(0) = Vcont(0) andV ′

ramp(0) =V ′
cont(0).

Since the previous theorem assumed thatt ∈ (0,T )
it does not contradict with the work in (Bernardoet
al., 1998). 2

The monodromy matrix of the system can be calcu-
lated as:

M(0,X(0),T ) = Φ(T,d′T )SΦ(d′T,0) (12)

whereS is the saltation matrix and is defined (for this
transition) as:

S = I+
(f+(X(d′T ))− f−(X(d′T )))nT

nT f−(X(d′T ))+
∂h

∂ t
|t=d′T

(13)

By using eqns. (5), (6) and (9) att = d′T it is possible
to create a nonlinear smooth function ofd′ which was
solved numerically using a Newton-Raphson method
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 Fig. 3. Phase space and the transversal intersection

for various values of the input voltages. The value of
d′ was found to be 0.4993 forVin = 24V and from
that we can calculate the values of the state vector
while the solution is on the hypersurface,x1(d′T ) =
12.0139V andx2(d′T ) = 0.4681A. Using these values
we calculated the saltation matrix as

S =

[

1 0
−0.4639 1

]

.

Since this is a piecewise linear model of the converter,
Φ(d′T,T ) = eAsdT andΦ(0,d′T ) = eAsd′T , whereAs

is the state matrix. By using these in (12) we calculated
the monodromy matrix and we found its eigenvalues:
0.8211± 0.0708j which implies that the system is
stable as expected and shown in Fig. 2a. Fig. 4 shows
the evolution of the eigenvalues for various values of
the supply voltage showing very good agreement with
the experimental results shown in Fig. 2b.

Furthermore, when the supply voltage is increased
from 24 to 25V, the change in the duty cycle is very
small, and the change in the state vector att = 0 and
at t = d′T is even smaller (Giaouriset al., n.d.). This
implies that the changes ofΦ(T,d′T ) andΦ(d′T,0)
are minor and hence we should expect that the mon-
odromy matrix would also remain almost unchanged
with the same stability properties. This obviously con-
tradicts with the experimental and numerical results
shown before. The answer to that peculiar circuit be-
havior lies on the (2,1) element of the saltation ma-
trix which changed from−0.4639 to−0.4744. This
change forced the floquet multipliers to move outside
the unit circle which caused the instability. This sensi-
tivity of the system on the saltation matrix will be used
at the following sections as a guide to controlling the
system.

5. BIFURCATIONS AND CHAOS CONTROL
ANALYSIS

Using Filippov’s method of analysis of the stability of
the period-1 limit cycle, we now analyze the method
proposed in (Zhouet al., 2003). Based on that analysis
we will propose and rigorously analyze another novel
control method based on the saltation matrix. A sec-
ond simpler method which is easier to implement will
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Fig. 4. Eigenvalue location for various values ofVin

also be presented based on the suitable choice of the
feedback gainA which will ensure that the eigenvalues
of the monodromy matrix remain inside the unit circle.

5.1 Control by Using a Sinusoidal Signal

The method in (Zhouet al., 2003) forces the period
one limit cycle to remain stable for a wide range
of the bifurcation parameter by slightly changing the
hypersurface. This is archived by superimposing a
small sinusoidal signal ontoh:

h(x(t),t) = x1(t)−Vref−aVrefsinωt −
Vramp(t)

A
= 0.

Since the value ofa is very small(≃ −0.0004 for
Vin = 25V) it has almost no effect onh(X,T ) and
therefore almost no change on the value of the duty cy-
cle. But the saltation matrix uses the partial derivative
of h with respect to time and hence the saltation ma-
trix will have the term∂h/∂ t = −Vref a ω cosωd′T −
(VU −VL)/AT instead of∂h/∂ t = −(VU −VL)/AT
and hence the eigenvalues of the monodromy matrix
will be a function ofa. Fig. 5a shows the location
of the maximum absolute value of the monodromy
matrix eigenvalues whenVin = 25V . It is clear that
we can place the eigenvalues of the system so that the
magnitude is less than unity by appropriately choosing
the value ofa. By using the saltation matrix we were
able to place the eigenvalues at a predefined location.
While (Zhouet al., 2003) proposes no theoretical cri-
terion for the choice ofa, the above approach allowed
us to propose the method of choosinga optimally
(Giaouriset al., n.d.).

5.2 Control by Using a Signal Proportional to the
Output Voltage

Our aim in this section is to propose, apply and
rigourously justify a novel chaos or bifurcation control
method based on the saltation matrix. To better under-
stand the derivation of this control method we restrict
our studies to the area where the first period doubling
occurs approximately at 24.5V. At 24V the system
is stable, i.e., there is a stable period 1 limit cycle,
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 Fig. 5. Maximum absolute eigenvalue for various val-
ues ofa for the two control schemes

while at 25V the system is unstable, i.e., there is one
unstable period 1 and one stable period 2 limit cycle.
As it has been proved above the instability occurred
from the sensitivity of the system on the saltation
matrix, From eqn. 13 it can be seen that this matrix
depends onf−, f+, n and ∂h/∂ t. The two smooth
vector fields depend on the system structure and hence
they cannot be altered. Zhou et al. (Zhouet al., 2003)
effectively changed the term∂h/∂ t by adding a small
time varying component inh. In this paper we propose
that we can alter the location of the eigenvalues by
changing the normal vectorn. To do that we can use
another control law (easily implemented with a DSP)
where the controlling signal is notA(x1 −Vref) but
is A(x1(1+ a)−Vref). This will effectively alter the
switching manifold to

h(X(t),t)= x1(t)−Vref+ax1(t)−
Vramp(t)

A
= 0. (14)

Hence the normal vector will be:

n = ∇h(X,t) =

[

1+ a
0

]

(15)

This implies that the new saltation matrix will be

S =









1 0
(1+ a)Vin/L

(1+ a)
x2(tΣ)− x1(tΣ)/R

C
−

VU −VL

AT

1









(16)

It is again obvious that the eigenvalues will be a
function of a, and thus it is possible to stabilize the
period 1 limit cycle even if the system nominally
exhibits period 2 patterns, Fig. 5b. Fig. 6 shows the
response of the system when the input voltage changes
suddenly from 24 to 25V. It is clear that the system
after an initial transient will settle down to the stable
period 1 limit cycle.

A similar method has been proposed by (Marius-
F. Danca, 2004) on simple nonsmooth systems but
without any rigorous justification of why it works.

5.3 Control by Appropriately Changing the Feedback
Gain

The second controller which we present in this section
is again based upon the fact that small changes ofVin
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 Fig. 6. Response of the first controller under a sudden
input voltage change
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Fig. 7. Response of the second controller under a

sudden input voltage change.

will cause small changes in the duty cycle and that the
instability occurs due to the changes of the saltation
matrix. By appropriately changing the saltation ma-
trix we can force the eigenvalues of the monodromy
matrix to remain close to a circle of radius 0.82, i.e.
close to the eigenvalues of the system when the supply
voltage is 24V. If we use the feedback gain as the
control parameter, we can set the gain at:

A =
VU −VL

T

(

x2(tΣ)− x1(tΣ)/R

C
−

Vin

S(2,1)L

) (17)

whereS(2,1) is the element (2,1) of the saltation ma-
trix when the system is stable. Since at 24V the value
of S(2,1) was−0.4638, we use this value. The re-
sults of this method (Fig. 7 where voltage perturbation
was applied at 0.03s) show that the system remained
stable. We have also used the values ofVL, VU , T as
control parameter — with similar outcomes.

A small drawback with this method is that when we
calculateA we have to use the values ofx1 and x2

at t = d′T . In the results of Fig. 7 we have kept
these values constant at the nominal values of the
system, i.e. at the values when the supply voltage
is 24V. The direct result of that is the big decrease
of the proportional gain which caused a big steady
state error. To improve the behavior of the system we
created a look-up table with the values ofx1 andx2

for different values ofVin and we have used that to
update the controller. For example whenVin is 25V the
values ofx1 andx2 are those of the unstable period 1
limit cycle and not of the previous stable one as we did
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Fig. 8. Sensitivity test of the two controllers under a

sudden resistance change whenVin = 25V .

before. This improvement led to a controller that can
suppress chaos but it has smaller steady state error, as
shown in Fig. 7 (after 0.06s).

5.4 Sensitivity to system’s parameter changes

To further validate the chaos controllers that were
presented in the previous section we subjected the
system to a sudden change of the load resistance, i.e.,
while the controller was forcing the system to be stable
at 25V we increased the load resistance by 50%. This
is something that can happen to applications were
the converter is feeding a variable dc load like a dc
machine. It can be seen from Fig. 8 that the two
controllers will satisfactory force the system back to
a stable period 1 pattern.

6. CONCLUSIONS

We have proposed two novel control methods based
on the location of the floquet multipliers which forces
the system to be stable regardless of the value of
the bifurcation parameter. The bifurcation phenomena
have been proven with simulated and experimental
results. These control methods use the concept of
the saltation matrix to change stability properties of
the period 1 limit cycle. Advantages and limitations
of these methods over other existing ones have been
discussed and analyzed.
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