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Abstract: The dc to dc buck converter operating with a vategntroller is a nonlinear,
nonsmooth system that presents different circuit tope®gvithin the same switching
cycle. In this paper, we propose two new bifurcation or chemdrol strategies based
on the use of the saltation matrix and the location of the #bauultipliers to stabilize

the period-1 orbit of the circuit regardless of the inputtagke of the converter. The
new methods are analytically and numerically validatedthed sensitivity to parameter
variations is assessed.
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1. INTRODUCTION even chaotic behavior (Chakrabaetyal., 1996). It is
generally felt desirable to avoid such unusual modes in
Dc to dc converters, which are some of the most power converters, which makes it necessary to develop
widely used circuits in power electronics, are in- methodologies to control period doubling bifurcation.
herently nonlinear, nonsmooth time varying systems

. o . o The study of these limit cycles is conventionally based
which exhibit subharmonic oscillations and chaos fol- y y y

lowi ) bif i h Th vsi on the Poincaré map which captures the essential
owing various biturcation pathways. The analysis properties of the system. In some cases this map can be

and con_trol of these phenomena are of gr,eat IMPOT" 5 htained analytically (for example in the current mode
tance since small changes in the system’s parame-

¢ ; le th | It h ¢ controlled boost converter), but in most other con-
ers (_or example the Supply vo age)-can ave catas~ o oy configurations (like the voltage controlled buck
trophic results on the system dynamics. There is ex-

- ) converter), where the model includes transcendental
tensive literature on these issues and many researcher

h d . thods of s ’ I(§quations, the discrete map can only be calculated
ave proposed various metnods of analysis, contro numerically. The authors have previously proposed a

andfor exploitation of these behayiors (Banerjee and e rent method to study the nonlinear behavior of a
Verghese, 2001; Fossas and Olivar, 1996; Tse andbuck converter whose Poincaré map can only be calcu-
Bernardo, 2002). The output voltage and current of ated numerically (Giaouriet al., n.d.) and (Giaouris
these systems are usually periodic waveforms aroun kt al., 2005). We have shown th’at this method is more

afconitant tDC v_aluei_ T_rt1e nTm'nr?l operafundg modle powerful mainly because it can follow unstable limit
O SUCh Systems IS a fimit cycle Whose perio equascycles, which play a crucial role in the appearance

Epr?. pen?td of .the PI‘IV\::iM Clch lljsegj |n|:hg contrqller. of crises. To achieve this, we used the floquet mul-
'S pattern 1S cafied period-... By allering various ipliers of the system which are the eigenvalues of
system parameters the converter may undergo periody, monodromy matrix. The monodromy matrix of

o_IoubImg bifurcations. A succession O_f such _b|furca- piecewise smooth systems can be calculated by using
tions may lead to subharmonic oscillations, crises, and



the fundamental solution matrices before, after and Vramp

during the switching (Leinet al., 2000; Leine and J_'T - Ver
Nijmeijer, 2004). We have shown that the fundamental Voon < Vramp = < =
solution matrix during the switching is very important = s =closed i x

and it can totally alter the behavior of the overall s e
system (Giaourigt al., n.d.). We refer to that matrix DGD

as the saltation matrix, a name first proposed by Leine
(Leine and Nijmeijer, 2004).

+

Cc== Rl v

There is a large body of literature on the control of
chaos in dynamical systems, such as the Ott-Grebogi-Fig. 1. The voltage mode controlled buck dc-dc con-
Yorke method and the Pyragas method (Banerjee and  verter

Verghese, 2001). These methods are aimed at stabiy,e capacitor voltage,(= x;) are taken as state vari-

lizing one of the unstable periodic orbits that exist gpjes. The individual state equations can be written as
in any chaotic system. On the other hand there are

methods which are based on the empirical observation Vin —Xa(t) _

that an application of a periodic perturbation (Zhou g, — o AN = Viet) < Vrampll), Q)
et al., 2003) that can stabilize a system in a periodic _Xl_(t) A(X1(t) = Vief) > Viamg(t)
orbit. Previous work has shown how the chaos con- L7 ! ref) = Hrampit:

trol method presented in (Zhoet al., 2003) works X)) —x(t)/R

and how it can be improved by optimally placing = (2)
the eigenvalues at predefined locations (Giaostis which in a matrix form are:

al., n.d.). .

The first part of this paper briefly analyzes the behav- X B AsX +BU 3)
ior of the buck converter based on the monodromy X =AsX (4)

matrix and proves that when the orbit is period-1, it 5ng they have a solution of the form:

is impossible to have attractive sliding modes (as was .

also observed by Di Bernardo (Bernamsal., 1998)). X(t) = ®(t,dT)X(d't) + ®(t—1,dT)Budr
The second part presents two novel bifurcation control Jd'T )
methods based on the saltation matrix and describes

its influence on the overall system. These two meth- X(t) = @(t,0)X(0) ©6)
ods stabilize the period-1 orbit regardless of the input where

voltage. Hence even though we call these mettobds 11 ;
furcation control they can easily be applied to suppress aT o -1
chaos by stabilizing one of the infinite unstable peri- X=[wi]  As= 5C1 €. B= {0 _} ’
odic orbits that are in a strange attractor. Robustness e 0

tests were carried out to test the controller sensitivity

A . u is the input voltageVi,, @ is the state transition
to parameter variation like the load resistance. b 9&in

matrix andd’ = 1—d, d is the duty cycle.

In general, the circuit gives an average dc output volt-
age close to the desirable value with a periodic ripple
2. THE BUCK CONVERTER equal to the period of the driving clock (the ramp) as
shown in Fig. 2a. As the input voltage of the system is
The buck converter (Fig. 1) consists of a switch S increased, the circuit exhibits a period doubling bifur-
which is controlled by a pulse-width modulated signal cation, Fig. 2b, and then by successive bifurcations it
to achieve the required output. The controller createsenters into a chaotic regime (Chakrabattgl., 1996).
a compensating sign&con = A(Vo — Vier) Which is
compared with a suitable periodic sawtooth waveform
Vramp @nd a switching occurs when these two signals 3. FILIPPOV THEORY
become equalA is the feedback amplifier gain and
the ramp signal can be written &amp(t) = VL + The theory of Filippov gives a generalized definition
M — W) (% mod 1). To experimentally test and ©f the solution of state equations involving switching.

analyze the proposed control schemes we used a buclg:on&der a piecewise smooth system with one switch-

converter with the following parametets= 20mH, Ing manifold:
C=47uF,R=22Q,A=8.4,V,es =113V, = 3.8V, % — f_(X,t) for X eV_ )
Wy = 8.2V, andT = 400us. T R (Xt) for X ey

The system is governed by two sets of linear differen- wheref_ andf, are the twon dimensional smooth
tial equations related to tHeN andOFF states of the  vector fields before and after the— 1 dimensional
controlled switch. The inductor curreit(= x2) and hypersurfac& which is defined by a scalar function
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0.5 Proof: For the voltage controlled closed loop buck

— 1165 AAAAAAAAAAAA 04 converter, the switching hypersurfadg (s given by
S Vv s
g 1185 \ \ ” , “ ” \ 02 3 By restricting the analysis to period-1 limit cycles we
E ‘ U U ! U U \ 3 can assume thate (0,T) hence:
O METYYYW YV MM 0106 Viamp(t) = VL + (Vu = VU)t/T (10)

e 0 0.601 o.éoz 0.603 o.c;04 o.oos(sJ The normal vecton is given as

, T
Time (s) (@ n— Dh(x,t) _ [a_h a_h:| _ [1 O}T (11)

12.4 0.51 0)(1 axz
_ 123 WWMWMW 041 _ The set valued function is defined as:
z 12.2 | 031 5;4 . f_(X,t) for X e V_
S A0 MR oz X € F(X,t) = { toff_(X,t),F-(X,t)} for X € 2
N NIV NN YR IINLS : X for X eV
£ 119 poi g
S TN e 8 e

11.7 ‘ ‘ ‘ ‘ -0.09

0 0002 0004 0006 0008 0.01 FOX(1)) = X2(t)/C—x(t)/RC
Xy =" T T
Time (s) (b) (Vin —xa(1))/
(t

Fig. 2. Experimental results, (a) period 1 pattern and
(b) period 2 pattern

h(X,t). The state space is thus separated into threeThe convex hullis defined as:

subsetsR" =V_UZ UV, where X2(t)/C—x(t)/RC
V. = Xe (B[ h(X.t) <0} O{f_ (X(1)), . (x(1)} = C_O{Vin—xl(t)’_xl(t)}
> = Xe{R"|h(X,t)=0} L L
V, = X € {R"| h(X,t) > 0} - |
The projections of the two vector fields ontoare:
To define the behavior of the system while itisBn [ 1¢  _ X2 —x1/R and nTf, = X2_X1/R_ Hence
we have to extend the previous piecewise systemto a _ T C C
differential inclusion (Filippov, 1988): n'f_xn'f. > 0 and therefore we have a transversal
intersection which guarantees a unique Filippov solu-
_ f_(X,t) for X e V_ tion, as shown in Fig. 3.
X e F(X,t) =< To{f_(X,t),fL(X,t)} for X € X ) ) _ )
£ (X,1) for X €V, Since there is a transversal intersection wheri0, T)
’ (8) it is impossible to have a period-1 orbit involving slid-
whereco{f_,f,} = {(1—q)f_ +qf;},¥ge [0,1] ing solution. This was also observed by Di Bernardo

) ) _ ) (Bernardaet al., 1998) who proved that a sliding mode
The extension of a discontinuous system (7) into a (or infinite stretching as it is also called) can only oc-
convex differential inclusion (8) is known as Flllp— cur wheVramp(0) = Veont (0) aNAV/ap(0) = Vi (0).
pov's convex method. The existence of the solution gince the previous theorem assumed that(0,T)

can be guaranteedf(X.t) is upper semi-continuous. it does not contradict with the work in (Bernareb
The uniqueness is guaranteed if the solution crossesy|  1998). O

the hypersurface transversally. A necessary condition

for a transversal intersection ats: )
The monodromy matrix of the system can be calcu-
nTf_(X,t) xnTf (X,t) >0:X € X lated as:

wheren is the normal vector ont@ i.e. the gradient M (0,X(0),T) = &(T,d'T)SP(d'T,0) (12)
of h:n=0Oh(X,t) andnf_,n"f, are the projections

of the smooth vector fields onf whereS s the saltation matrix and is defined (for this

transition) as:
oy (FX(@T) —f (X(@T)nT

4. APPLYING FILIPPOV THEORY TO THE nTE_ (X(d'T)) + oh leearT
BUCK CONVERTER ot

(13)

By using eqns. (5), (6) and (9) &= d'T it is possible
Theorem: The system described by (1) and (2) admits to create a nonlinear smooth functionddfwhich was
a unique period-1 orbit. solved numerically using a Newton-Raphson method
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Fig. 3. Phase space and the transversal intersection Fig. 4. Eigenvalue location for various valuesf

for various values of the input voltages. The value of also be presented based on the suitable choice of the
d" was found to be 0.4993 fo¥i, = 24V and from  feedback gaii which will ensure that the eigenvalues
that we can calculate the values of the state vectorof the monodromy matrix remain inside the unit circle.
while the solution is on the hypersurface(d'T) =

12.0139/ andx,(d’'T) = 0.4681A. Using these values

we calculated the saltation matrix as 5.1 Control by Using a Sinusoidal Signal

1 0
S= {—0,4639 JJ : The method in (Zhowt al., 2003) forces the period

Since this is a piecewise linear model of the converter, °N'¢ I|m!t cycl_e to_remain stable_ for a W|de_range
O(d'T,T) = €T andd(0,d'T) = AT whereA of the bifurcation parameter by slightly changing the
L ’ N ' S hypersurface. This is archived by superimposing a

is the state matrix. By using these in (12) we calculated X . .
y 9 (12) small sinusoidal signal ontu

the monodromy matrix and we found its eigenvalues:
0.8211+ 0.0708] which implies that the system is (x(0),1) Vramp(t)
stable as expected and shown in Fig. 2a. Fig. 4 shows ’ A
the evolution of the eigenvalues for various values of gince the value of is very small(~ —0.0004 for

the supply voltage showing very good agreementwith \;  — 25) it has almost no effect oh(X,T) and

the experimental results shown in Fig. 2b. therefore almost no change on the value of the duty cy-

Furthermore, when the supply voltage is increased cle. But the saltation matrix uses the partial derivative
from 24 to 25V, the change in the duty cycle is very of h with respect to time and hence the saltation ma-
small, and the change in the state vectarat0 and  trix will have the termoh/dt = —Vreraw coswd'T —

att = d'T is even smaller (Giaouriet al., n.d.). This ~ (Mu —VL)/AT instead ofdh/dt = —(Vy —VL)/AT
implies that the changes @(T,d'T) and ®(d'T,0) ar_1d hence the_elgenvalu_es of the monodromy matrlx
are minor and hence we should expect that the mon-Will be a function ofa. Fig. 5a shows the location
odromy matrix would also remain almost unchanged ©f the maximum absolute value of the monodromy
with the same stability properties. This obviously con- Matrix eigenvalues whewi, = 25V. It is clear that
tradicts with the experimental and numerical results We can place the eigenvalues of the system so that the
shown before. The answer to that peculiar circuit be- Magnitude is less than unity by appropriately choosing
havior lies on the (2,1) element of the saltation ma- the value ofa. By using the saltation matrix we were
trix which changed from-0.4639 to—0.4744. This able to place the eigenvalues at a predefined location.
change forced the floquet multipliers to move outside While (Zhouet al., 2003) proposes no theoretical cri-
the unit circle which caused the instability. This sensi- terion for the choice o#, the above approach allowed
tivity of the system on the saltation matrix will be used US to propose the method of choosiagoptimally

at the following sections as a guide to controlling the (Giaourisetal., n.d.).

system.

= Xl(t) _Vref_ aVrefs|nwt - = 0

5.2 Control by Using a Signal Proportional to the
5. BIFURCATIONS AND CHAOS CONTROL Output Voltage
ANALYSIS

Our aim in this section is to propose, apply and
Using Filippov’'s method of analysis of the stability of rigourously justify a novel chaos or bifurcation control
the period-1 limit cycle, we now analyze the method method based on the saltation matrix. To better under-
proposed in (Zhoet al., 2003). Based on that analysis stand the derivation of this control method we restrict
we will propose and rigorously analyze another novel our studies to the area where the first period doubling
control method based on the saltation matrix. A sec- occurs approximately at 24.5V. At 24V the system
ond simpler method which is easier to implement will is stable, i.e., there is a stable period 1 limit cycle,
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while at 25V the system is unstable, i.e., there is one
unstable period 1 and one stable period 2 limit cycle.
As it has been proved above the instability occurred
from the sensitivity of the system on the saltation
matrix, From eqgn. 13 it can be seen that this matrix
depends orf_, f;, n and dh/dt. The two smooth
vector fields depend on the system structure and hence
they cannot be altered. Zhou et al. (Zheial., 2003) 17 -—
effectively changed the terdh/dt by adding a small 001 002 003 004 n::)(i) 006 007 008 009

time varying componentih. In this paper we propose

that we can alter the location of the eigenvalues by Fig. 7. Response of the second controller under a
changing the normal vectar. To do that we can use sudden input voltage change.

another control Iaw (eas_lly |mplemented with @ DSP) il cause small changes in the duty cycle and that the
where the controlling signal is ndi(x, —Vrer) but jnsiapility occurs due to the changes of the saltation
is A(x1(1+a) —Vrer). This will effectively alter the 4y By appropriately changing the saltation ma-
switching manifold to trix we can force the eigenvalues of the monodromy

12.2
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. Viamp(t) matrix to remain close to a circle of radius 0.82, i.e.
hX (), 1) =%(t) =Vrer+@x(t) - A 0. (14) close to the eigenvalues of the system when the supply
Hence the normal vector will be: voltage is 24V. If we use the feedback gain as the
1+a control parameter, we can set the gain at:
n=0Oh(X,t) = (15)
0 _
A= VoW (17)
This implies that the new saltation matrix will be . xa(ts) — xl(tz)/R_ Vi
1 0 C S(2,1)L
- X(ts) —xi(ts) /R Wy — VL (16) whereS(2,1) is the element (2,1) of the saltation ma-
(1+a) e ~ AT trix when the system is stable. Since at 24V the value

of S(2,1) was —0.4638, we use this value. The re-
sults of this method (Fig. 7 where voltage perturbation
was applied at 0.03s) show that the system remained
stable. We have also used the value¥af\Wy, T as
gontrol parameter — with similar outcomes.

It is again obvious that the eigenvalues will be a
function of a, and thus it is possible to stabilize the
period 1 limit cycle even if the system nominally
exhibits period 2 patterns, Fig. 5b. Fig. 6 shows the
response of the system when the input voltage change
suddenly from 24 to 25V. It is clear that the system A small drawback with this method is that when we
after an initial transient will settle down to the stable calculateA we have to use the values ®&f andxy
period 1 limit cycle. att = d'T. In the results of Fig. 7 we have kept
these values constant at the nominal values of the

A similar method has been proposed by (Marius- :
F. Danca, 2004) on simple nonsmooth systems but.SyStem’ l.e. at the values when the supply voltage

without any rigorous justification of why it works. is 24V. The dl_rect resm_JIt of _that is the big Qecrease
of the proportional gain which caused a big steady

state error. To improve the behavior of the system we
5.3 Control by Appropriately Changing the Feedback ~ created a look-up table with the values»afand x;
Gain for different values olV, and we have used that to

update the controller. For example whégis 25V the
The second controller which we present in this section values ofx; andx; are those of the unstable period 1
is again based upon the fact that small changag,of limit cycle and not of the previous stable one as we did
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