
For Peer Review

 

 

 

 

 

 

Design of Robust Digitally Controlled DC-DC Converters in 

the Presence of Strong Interference 
 

 

Journal: International Journal of Circuit Theory and Applications 

Manuscript ID CTA-16-0176.R1 

Wiley - Manuscript type: Research Article 

Date Submitted by the Author: 26-Sep-2016 

Complete List of Authors: Hayes, Brendan; Dublin City University, Electronic Engineering 
Condon, Marissa; dublin city university,  
Giaouris, Damian; Newcastle University 

Keyword: 
bifurcation, chaos, intermittent operation, dc-dc converters, controller 
design, noise, intermittency 

  

 

 

http://mc.manuscriptcentral.com/ijcta

International Journal of Circuit Theory and Application



For Peer Review

1 

 

Design of Robust Digitally Controlled DC-DC Converters in the 

Presence of Strong Interference 

Brendan Hayes*, Marissa Condon* and Damian Giaouris** 

* School of Electronic Engineering, Dublin City University, Ireland. 

The Rince Institute, Researching Innovative Engineering Technologies. 

** School of Electrical and Electronic Engineering, Newcastle University, UK. 

Abstract 

One of the main advantages of digital control is the ability to design more sophisticated control 

strategies to enable high performance dc-dc converters. One such example is a buck converter 

operating with a digital state-feedback controller. Previous works characterise the nonlinear dynamics 

of such systems under ideal operating conditions. However, in practical applications, these conditions 

cannot be guaranteed. The focus of this work is on the behaviour of such systems when they operate 

in the presence of strong interference signals. Previous works on the effect of noise have shown that 

intermittent operation is possible when the frequency of the noise signal is close to the switching 

frequency. Intermittent operation can be characterised by long periods of stable operation interspersed 

with periods of unstable or chaotic operation which greatly downgrade the efficiency and performance 

of the converter and reduce its lifetime as for example increase the current ripple or add extra AC 

components at its output. Typically, such behaviour is avoided by modifying the circuit parameters. 

However, little or no work exists on developing design guidelines in order to effect its elimination. 

This is the focus of this research, that is, by utilising Filippov’s theory on discontinuous differential 

equations, to set out a design procedure that can be applied to any dc-dc converter, to tune its 

controller in order to eliminate intermittent operation. As a case study, the digitally controlled buck 

converter with a state-feedback control law is selected. 

Keywords: bifurcation; chaos; intermittent operation; dc-dc converters; controller design; 

noise.  
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1 Introduction 

State of the art circuits for regulation employ digital control schemes owing to their advantages such 

as low power, immunity to analog component variations and the possibility for more advanced control 

schemes [1]. Digital state-feedback control is employed when high/optimal performance is required 

[2]. While several recent papers [2]–[4] have addressed the nonlinear dynamics of these circuits under 

ideal operating conditions, the focus of the current work is on their behaviour when they are perturbed 

by noise signals. The effect of the noise signals can be catastrophic as it may lead to permanent or 

intermittent unstable operation of the converter that will result in high current ripple or operation at 

unwanted voltage/current levels. Obviously, when a state feedback controller is used in state of the art 

applications that require fast and efficient performance, these phenomena are even more critical. The 

analysis of intermit operation is a much more complicated problem (as there is no steady-state fixed 

point in the system which can be used to perform standard bifurcation analysis) and this will be the 

focus of this work. In particular, our goal is to set out a design procedure in order to ensure stable 

operation.  

Intermittent operation can be qualitatively described as distributed periods of irregular motion such as 

bursts of unstable or chaotic operation separated by long periods of stable operation [5]. It is a 

phenomenon that is frequently observed in periodically driven nonlinear systems, like the buck 

converter, where the frequency of a coupled signal is not consistent with the driving frequency of the 

system. It occurs when a crucial parameter is being modulated by the coupling signal. Such intermit 

operation has been observed in switch-mode power supplies which are not protected against spurious 

signals or where parasitic inductances or capacitances are present causing unwanted oscillations of a 

control signal [5]. These unwanted oscillations affect the efficiency of the system [6]–[8] and thus, a 

better analysis of their nonlinear dynamics is required to provide design guidelines in order to 

eliminate this type of operation.  

Intermittent operation was first observed in dc-dc converters in [7]. By considering a Voltage-Mode 

Control (VMC) buck converter with the ramp signal being perturbed by a disturbance signal, the 

output voltage is seen to go through distributed periods of irregular motion. As the strength of the 
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interference signal increases, the duration of the unstable operation increases until the output is 

chaotic. While no quantitative analysis is performed, the author concludes that systems with high 

feedback gains are more likely to exhibit intermittent operation. In [8], the author considers perturbing 

the control signal of a VMC buck converter. Intermittent operation is observed when the frequency of 

the interference signal is close to the clock frequency or its rational multiples. In order to perform 

bifurcation analysis, a transformation that relates changes in time to changes in another variable is 

performed. This enables the derivation of an iterative discrete-time map and allows the examination of 

the eigenvalues of the system as a parameter varies. Similar work is carried out in [6] where 

sinusoidal, triangular and saw-tooth disturbance signals perturbing the input voltage, control voltage 

and reference voltage are considered. Other works qualitatively assessing the effect of spurious 

signals on dc-dc converters are in [9]–[14] and references therein. 

Some of these previous works utilise iterative discrete-time maps to derive the Jacobian matrix. This 

method is algebraically complex and not suited to deriving conditions to tune a controller in order to 

avoid intermittent operation. The Filippov method is a technique that achieves the same objective as 

the work in [6] and [8] but in a more straightforward way, that is, to derive the Jacobian of the 

Poincaré map in order to assess the eigenvalues of the system. This technique has been used to assess 

the eigenvalues of the buck converter [15], predict the onset of period-doubling bifurcations in a PI 

controlled buck converter [16] and to develop stability criteria in order to tune a PID controlled buck 

converter [17]. Furthermore, little work has been carried out in the way of control of intermittent 

operation. [13] applies resonant parametric perturbation, where a control parameter is perturbed in 

order to ensure stability, to a parallel-buck converter. However, little or no work exists on design 

procedures for controllers in order to eliminate intermittent operation. 

The aim of this research is to study the effect of noise perturbing the input voltage of a buck converter 

operating with a digital state-feedback controller and to develop a design procedure in order to ensure 

stable operation. This design procedure can be applied to any controller by modifying the relevant 

steps.  
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2 System Description 

 

Fig. 1: Digital state-feedback buck converter with parameters L = 20 mH, C = 47 µF, R = 22 Ω, T = 400 µs, vref = 
12.4381 V, uref = 11.677 V, kv = -0.1334, ku = 0.0092. 

Figure 1 shows a buck converter controlled by an affine static digital state-feedback control law. The 

purpose of the buck converter is to step an input voltage, *

INV , to a lower output voltage, vo, where 

*

o INv dV=  and d is the duty cycle of switch SW1. SW1 is closed at the start of the switching period for 

a time dT and is open for the remainder of the switching period, (1-d)T, where T is the switching 

period of the buck converter and SW1 and SW2 open and close with a frequency of 1/f T=  . SW2 

operates complimentary to SW1. Hence, the open loop buck converter model is written as: 

 *

1 1
0

1
1

0

o o

IN

L L

v vd RC C
V

i idt
L

L

δ

 −        = +          −    

  (1) 

where δ = 1 when SW1 is closed and 0 when open. Instead of the inductor current, iL, it is easier to 

consider a new variable u, where u is a linear combination of the two state variables, 
1

L ou i v
C

σ
ω ω

= −

, in order to simplify the equations [18]. Letting [ ]T

ox v u= , (1) becomes: 

 
*

0
IN

U

dx
x V

dt

σ ω
δ

δω σ
−   

= +   − −   
  (2) 
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where 1 / 2RCσ = , 
21/ LCω σ= −  and ( )2 2 /Uδ ω σ ω= +  .  As a digital state-feedback controller 

is used, the state vector is sampled at the switching frequency, using a Zero-Order Hold (ZOH), and 

compared to the demanded value: 

 [ ] [ ]
T T

ref ref ref ox v u v u= + ∆ ∆   

where 
ov∆  and u∆  are the estimated ripple of the state variables given by [19]: 

 *

8

1
8

L
o

IN ref

i T
v

C

V v T
u dT

LC

σ
ω

∆
∆ =

−  ∆ = − 
 

  

By knowing the circuit parameters and estimating the ripple of the state variables, this allows for the 

proper selection of the refx  terms meaning the control scheme has an indirect integral action. The 

state-feedback control law is formed by adding the two state error terms together, comparing them to 

the demanded values and multiplying by the gain [ ]v uk k , as well as adding a constant affine term 

equal to the desired steady-state value of the system 
*/ss ref INd v V= . The control signal is given by: 

 [ ]( )( ) ( )v u ref ssd kT k k x kT x d= − +   (3) 

Figure 2 shows (a) the steady state output voltage and (b) the Poincaré section of the buck converter 

operating under ideal conditions. The Poincaré section samples the state variables at the switching 

frequency and plots one state variable against another. If the system is operating with a period-1 orbit, 

only one point will be seen which is the fixed point of the Poincaré map. If the system is operating 

with a period-n orbit then the trajectory intersects the Poincaré section n times. The effect of 

perturbing the input voltage with an undesirable noise signal is now considered. 
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Fig. 2: (a) Steady-state output voltage of buck converter (b) Poincaré section. 

3 Perturbation of Input Voltage  

The system described in (2) and (3) has been modelled and shown to be stable for the circuit 

parameters in Fig. 1. These simulations assume ideal operating conditions and ideal sources. 

However, noise sources can affect the input voltage of the buck converter. Typically, these are caused 

by finite input capacitances, the ESR of the input capacitor or stray inductance and stray capacitance 

in the circuit [20]. Consider an interference signal, 
sv , which is injected directly into the input voltage 

of the converter. This coupling can be modelled as an additive process which superposes the 

disturbance directly on the input voltage. The perturbed input voltage 
INV  is now given by: 

 *

IN IN sV V v= +   (4) 

If the interference signal is periodic, the simplest case to consider is a sinusoidal disturbance with an 

amplitude ˆ
sv  and frequency 

nf  . Then the perturbed signal is: 

 ( ) ( )( )* *ˆ sin 2 1 sin 2IN IN s n IN v nV V v f t V f tπ α π= + = +   (5) 

where 
vα  is the strength of the interference signal which is defined as the ratio of ˆ

sv  to *

IN
V  i.e. 

*ˆ /v s INv Vα =  and n ff fα=  where αf  is the ratio of the noise frequency to the switching frequency. 

Since the noise signal is coupled unintentionally, it is possible that the frequency of the noise will be 

close to the switching frequency. In order to determine what period the output is and the intermittent 
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behaviour, the output voltage is sampled once per switching cycle and plotted against the time instant. 

This type of diagram is known as a time-bifurcation diagram and illustrates the change in behaviour 

of the system as time varies as opposed to the conventional parameter-bifurcation diagram. Figures 3-

5 show the resulting time-bifurcation diagrams for �� = 2501 (Hz), 2499 (Hz) and 5001 (Hz) for 

varying signal strengths. From these plots, the following observations can be made: 

• For low signal strengths, 
� = 0.16, the converter maintains the expected period-1 orbit, 

though the operating point fluctuates due to the oscillating input voltage. The effect of the 

disturbance signal is not significant and no intermittent operation is present. Figures 3-5 (a) 

shows the corresponding time-bifurcation plots. 

• As the strength of the interference signal increases, the system cannot maintain the expected 

period-1 orbit. Instead, the system operates with a period-1 orbit for the majority of the time 

with bursts of unstable operation. The system loses stability through a Hopf bifurcation and a 

limit cycle is present on the output. However, the system does regain stability after a short 

period of time. This type of behaviour is known as intermittent operation. Figures 3-5 (b) 

shows the corresponding time-bifurcation diagrams. 

• Further increases to the strength of the disturbance signal leads to an increase in the 

proportion of time over which the limit cycle is present as well as an increase in its amplitude. 

The corresponding time-bifurcation diagrams are plotted in Figs. 3-5 (c) and (d). 

While any noise frequency can lead to intermittent operation, noise frequencies close to the switching 

frequency are more likely to cause intermittent operation. This is due to the length of time spent in the 

unstable region for differing noise frequencies. 

Consider the case where the input to the system is not being perturbed. Figure 6 shows the bifurcation 

diagram with *

INV  as the bifurcation parameter. The system is seen to undergo a bifurcation at 

* 29INV =  (V), term this value 
*

_IN critV . If a stable *

INV  value is selected and the system is perturbed by 

some sinusoidal disturbance signal, the following sequence of events occurs for sufficiently large 

interference signals: 
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• At 0t = , the system is stable. 

• 
INV  increases and reaches the point where 

*

_IN IN critV V=  at 
critt t= . The system is operating in 

the unstable region.  

• The system remains unstable until 
*

_IN IN critV V=  is reached again at 
stabt t= . 

• The system will repeat with a period of int 1/ nT f f= − . 

It is important to note that in a time-bifurcation plot, there is only one switching period between each 

sampling point. Thus, the system may appear to be stable for several iterations past 
critt . However, 

closer inspection of the eigenvalues may reveal that the system is unstable.  

For values of �� close to the switching frequency, the intermittent period is large e.g. for �� = 2501 

(Hz), 
int 1T =  (s). The length of time the system spends in the unstable region is quite long i.e. 

stab critt t− . The system spends enough time in the unstable region for intermittent operation to be 

observed on a time-bifurcation diagram, as in Figs. 3-5 (b)-(d). 

For values of �� further away from the switching frequency, the intermittent period is much shorter 

e.g. for �� = 2600 (Hz), 
int 0.01T =  (s). The time spent in the unstable region is 100th of that when 

�� = 2501 (Hz). While the system is unstable every 0.01 (s), this is not captured by a time-bifurcation 

diagram. The system is intermittently unstable but does not exhibit intermittent operation as the 

system does not spend a sufficiently long enough period of time in the unstable region for the systems 

trajectory to noticeably diverge from the fixed point. Hence, frequencies close to the switching 

frequency are studied in this work as they are more likely to exhibit intermittent operation. 

We will now consider using the Filippov method as a tool to assess the stability of the described 

operation and track the eigenvalues of the system as its trajectory evolves. 
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Fig. 3: Time-bifurcation diagrams with a sinusoidal interference signal with a frequency of �� = ���� (Hz) for (a) 
�� = �. �� (b) �� = �. �� (c) �� = �. � and (d) �� = �. 
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 Fig. 4: Time-bifurcation diagrams with a sinusoidal interference signal with a frequency of �� = ���� (Hz) for (a) 
�� = �. �� (b) �� = �. �� (c) �� = �. � and (d) �� = �. 
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Fig. 5: Time-bifurcation diagrams with a sinusoidal interference signal with a frequency of �� = ���� (Hz) for (a) 
�� = �. �� (b) �� = �. �� (c) �� = �. �� and (d) �� = �. 
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Fig. 6: Bifurcation diagram of digital state-feedback buck converter with ���
∗  as the bifurcation parameter. 

4 Stability Analysis 

As there is no steady-state fixed point in the system which can be used to perform bifurcation analysis 

of the time-bifurcation plots above, a transformation must take place. The transformation must 

convert changes in time to changes in another variable. This enables stability analysis to be performed 

on a parameter-bifurcation plot. The new parameter,  , is considered as a conceptual phase shift to 

model the equivalent drift of the system from the switching frequency and the perturbed input voltage 

can now rewritten as: 

 ( )*
1 sin 2IN IN vV V ftα π φ=  + +     (6) 

where 2 nf f tφ π= − . Using (6), the time-bifurcation plots presented in Figs. 3-5 can be 

reconstructed as parameter-bifurcation plots with   as the bifurcation parameter. Figure 7 shows the 

reconstructed parameter-bifurcation plots for �� = 2501 (Hz). When the time-bifurcation plots and 

the parameter-bifurcation plots are compared, the results are in very close agreement. This 

transformation enables standard-bifurcation techniques to be used to analyse the stability of the 

system. Essentially, the parameter-bifurcation diagram over the range 0 2φ π≤ ≤  is the same as the 

time-bifurcation diagram over the intermittent period, Tint, shown in Figs. 3-5. The Filippov method is 
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now used to derive the Monodromy matrix which enables the stability of the system to be assessed as 

φ  varies. The results can then be converted from the parameter-domain to the time-domain. For 

brevity, the case for �� = 2501 (Hz) will be presented in this section. However, the proposed method 

can be extended to any value of the noise frequency. 

 

Fig. 7: Parameter bifurcation diagram with a sinusoidal interference signal with �� = ���� (Hz) for (a) αv = 0.16 (b) 
αv = 0.38 (c) αv = 0.5 and (d) αv = 1. 
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The stability of a general orbit, say x(t), is assessed by placing a small perturbation at 
0t t=  and 

monitoring the evolution of the perturbation ∆x(t). The evolution is related to the initial perturbation 

by the fundamental solution matrix Φ(t, t0) and when the vector field governs the original orbit is 

linear time invariant, the fundamental solution matrix is given by the exponential matrix: 

 0( )

0 0 0( ) ( , ) ( ) ( )
A t t

x t t t x t e x t
−∆ = Φ ∆ = ∆   (7) 

If the orbit is periodic, then the stability can be quantitatively determined by the eigenvalues of the 

fundamental solution matrix evaluated at 
0t t T= + , where ! is the period of the orbit under study. 

The fundamental solution matrix obtained at 
0t t T= +  is termed the Monodromy matrix whose 

eigenvalues are called Floquet Multipliers. If the Floquet Multipliers lie inside the unit circle, the orbit 

is stable. 

The buck converter switches between two topologies and each is described by a linear vector field: 

 , {1,2}j j inx A x B x j= + ∈&   (8) 

where j denotes the topology when SW1 is closed and open. Due to the switching of topologies, (7) 

cannot be assessed directly. Instead, the method shown in [21] must be applied. The effect the 

switching has on the perturbation vector is given by: 

 ( ) ( )x t S x t+ −∆ = ∆   (9) 

where t- and t+ denote the times just before and after switching between topologies. The Saltation 

matrix, S, is given by [15]:  

 
( )

( )

( ) ( )

T

T

t k d T

x t x t

f f n
S I

h
n f

t
Σ

+ −

− = +

=

−
= +

∂
+
∂

  (10) 

with f- and f+ being the right hand side of (2) before and after switching respectively, h(x,t) is the 

switching surface and n is the normal vector to the switching surface. Thus, the perturbation at the end 
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of the switching period related to that at the beginning of the switching period is given by the 

Monodromy matrix: 

 ( ) 2 1,0M OFF ONT S SΦ = Φ Φ   (11) 

S1 relates to the first switching event at t dT=  and S2 relates to the second switching event at t T= . 

The stability of the system is found by finding the eigenvalues of (11). If all of the eigenvalues lie 

inside the unit circle, the system is asymptotically stable. The elements of (10) for this work are: 

 ,
U IN

v u v u
f f

v u V v u

σ ω σ ω
ω σ δ ω σ

Σ Σ Σ Σ
− +

Σ Σ Σ Σ

− + − +   
= =   − − + − −  

  (12) 

 [ ]( )( , ) ( ) modss v u refh x t d k k x kT x t T= + − −   (13) 

(13) is dependent on the state variables at " = #! but n and ∂h/∂t are both evaluated at the switching 

instant i.e. ( )t k d T= + . As shown in Appendix A, the state vector at start of the switching period can 

be rewritten in terms of the state vector at the switching instant. Thus, h(x,t) becomes: 

 
[ ] ( ) ( )1 *

*

( , ) ( )

mod

(

)

AdT AdT

ss v u IN

v kT IN ref

h x t d k k e x k d T A e I BV

N BV x t Tα

− − −= + + + −

+ − −
  (14) 

where: 

 
( ) ( ) ( )

( ) ( )

1
2 2(2 ) sin 2 2 cos 2

sin 2 ( ) 2 cos 2 ( )

(

)

kT n n n n

AdT AdT

n n n

N A f AI f kT f I f kT

Ae f k d T f e f k d T

π π π π

π π π

−

− −

= + −

+ + + +

−
 

n and ∂h/∂t are: 

 
( ) ( )
( ) ( )

( )

cos sin

sin cos

v udTo

v u

t k d T

h

k dT k dTv
n e

k dT k dTh

u

σ ω ω
ω ω

= +

∂ 
   + ∂ = =  − + ∂  
 ∂ 

  (15) 
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( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( )( )( )

cos sin
1

sin cos

sin cos

v u u v

dT

v u u v

t k d T

v u U IN

k k dT k k dT v
h

e k k dT k k dT u
t T

k dT k dT V

σ

σ ω ω σ ω ω

σ ω ω σ ω ω

ω ω δ

Σ

Σ
= +

 + + −
 ∂

= − − + − − 
∂   − 

  (16) 

Evaluating (10) using (12), (15) and (16), S1 is given as: 

 1

21 22

1 0

1
S

S S

 
=  + 

   (17) 

where: 

( ) ( )( )
( ) ( )( )

21

22

cos sin

sin cos

dT

U IN v u

dT

U IN v u

S T V e k dT k dT

S T V e k dT k dT

σ

σ

δ ω ω

δ ω ω

= +

= − +
 

The second switching point occurs at the falling edge of the ramp signal thus, S2 is the identity matrix 

of the same dimension as S1. The overall Monodromy is as follows: 

 (1 )

1

A d T AdT

M e S e−Φ =   (18) 

where the exponential matrix is given by: 

 
( ) ( )
( ) ( )

cos sin

sin cos

At t
t t

e e
t t

σ ω ω
ω ω

−  
=  − 

  

Figure 8 shows the parameter-bifurcation plots of the system with   as the bifurcation parameter for 

varying signal strengths with �� = 2501 (Hz). Consider the case when 
� = 0.5. The corresponding 

parameter-bifurcation plot is shown in Fig. 8 (c). This can be broken into 3 regions: 

1. 0 ≤  ≤ 1.885: In this region, the system is stable and operating with a period-1 orbit. 

2. 1.885 ≤  ≤ 4.964: The system is unstable and undergoes a bifurcation at  = 1.885, this is 

confirmed by assessing the eigenvalues of (18) at the bifurcation point which are presented in 

Table 1. Since the |'| > 1 and ' has a non-zero imaginary part, it is determined that a Hopf 

bifurcation takes place. 

3. 4.964 ≤  ≤ 6.28: The system is stable and operating with a period-1 orbit. 
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Similar dynamics occur in Fig. 8 (b)-(d), where the system moves from a stable orbit to an unstable 

orbit through a Hopf bifurcation. In the next section, a design procedure to tune one of the feedback 

gains of the controller in order to avoid intermittent operation is presented.  

 

Fig. 8: Parameter-bifurcation diagram of ) with (a) �� = �. �� (b) �� = �. �� (c) �� = �. �� and (d) �� = �.�� for 
�� = ���� (Hz).  
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4.1 Design Procedure 

In the previous section, by assessing the eigenvalues of the Monodromy matrix presented in (18), it 

was shown that the system undergoes a Hopf bifurcation as   varies. This type of operation can be 

catastrophic in many applications and it must be avoided. In this section, we present a procedure that 

can be used to tune a control variable in any control scheme in order to avoid intermittent operation. 

As a case study, we will derive an expression to tune the 
uk   term of the digital state-feedback 

controller in order to eliminate intermittent operation.  

Given a two-by-two matrix, the characteristic equation is given by [22]: 

 ( )2
tr det( )M Mλ λ− Φ + Φ   (19) 

The general solution to (19) is: 

 
( ) ( ) ( )2

1,2

4det

2

M M Mtr tr
λ

Φ ± Φ − Φ
=   (20) 

where tr and det are the trace and determinant of the Monodromy matrix given by: 

 ( ) ( ) ( )( )(1 )
( ) 2 cos sin (1 ) cos (1 )

T d T

M U v u IN

M P

tr e T Te k d T k d T V
σ σω δ ω ω− − −Φ = + − + −

1442443 14444444444244444444443
  (21) 

 ( ) ( ) ( )( )2 (2 )det sin cosT d T

M U IN v ue Te V k dT k dTσ σ δ ω ω− − −Φ = + − +   (22) 

Thus, the discriminant of (20) is given as: 

( )
( )

( )( )

( ) ( ) ( ) ( )

( ) ( )( )
2

2 2

2

(2 )

2
(1 ) 2

4 cos 1

4 sin cos (1 ) sin sin (1 )
4det

sin (1 ) cos (1 )

T

R

d TM
U v u IN

M
Q

d T

U v u IN

P

e T

tr
e T k T d T k T d T V

e T k d T k d T V

σ

σ

σ

ω

δ ω ω ω ω

δ ω ω

−

− −

− −




−


Φ
=  − − −  − Φ

 − + − 


144424443

1444444444444442444444444444443

14444444444244444444443






 
 
 
 
 
  



 

The magnitude of (20) is given by:  
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( )2 22

1,2
2 4

IN ININ
P V QV RM PV

λ
− + ++ 

= + 
 

   (23) 

Setting 1,2 1λ =  which is the condition for having a bifurcation, yields:  

( ) ( )22 4 0INMP Q V M R− + − − =  

 ( ) ( )( )(2 ) 24 sin cos 4 4 0d T T

U v u IN
e T k dT k dT V eσ σδ ω ω− − −− + + − =   (24) 

Rearranging (24), the value of ku at which a Hopf bifurcation takes place can be determined. This is 

termed ku_crit or the critical ku value and is given by: 

 
( )

( )
2

_ (2 )

1
tan

cos

T

u crit vd T

U IN

e
k k dT

e TV dT

σ

σ ω
δ ω

−

− −

−
= +   (25) 

 

Fig. 9: Values of *+ at which intermittent operation occurs as �� varies for  �� = ���� (Hz). 

Figure 9 shows the critical #, value, calculated using (25), as the strength of the interference signal 

increases. When #, is in the shaded region, the system is unstable. This can be used by designers in 

order to tune a digital state-feedback converter in order to avoid intermittent operation. Systems with 

high feedback gains are more likely to exhibit intermittent operation [7]. Thus, lower feedback gains 

are desirable. However, high feedback gains may be required in order to meet some desired response 
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characteristic. Since noise signals are unpredictable, ideally, a method of changing the gain term as 

the input voltage varies in such a way as to minimise the effect on the response characteristics while 

avoiding intermittent operation is required. In the next section a controller is proposed where the input 

voltage is monitored and the #, term is updated appropriately using (25).  
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5 Controller Design 

 

Fig. 10: Buck converter with an input voltage supervisory controller. 

In the previous section, the Monodromy matrix was calculated and the Floquet multipliers were 

derived as a function of the controller parameters (25). A formula for calculating the value of #, 

which leads to a Hopf bifurcation was developed (25). This enables the development of an adaptive 

state-feedback controller. By modifying (3) and using (25), an adaptive control scheme is proposed 

and illustrated in Fig. 10. In the suggested scheme, estimators are used to monitor the input voltage 

[23]–[25] and determine the amplitude and frequency of any noise source present at the input. The 

function of the supervising controller is to update the #, term in order to avoid intermittent operation. 

This can ensure stable period-1 orbits. The controller operates as follows: 

1. The supervising controller monitors the input voltage for disturbances. If no disturbances are 

present, the controller does not modify the control law. 

2. When a disturbance is present, the controller identifies the amplitude and frequency of the 

interference signal. 

3. The supervising controller checks if the system is stable. This is done by evaluating the 

eigenvalues of the Monodromy matrix presented in (18).  

a. If all of the eigenvalues over the range 0 ≤  ≤ 2- lie inside the unit circle, the 

system is stable and #, remains the same. 

Page 21 of 35

http://mc.manuscriptcentral.com/ijcta

International Journal of Circuit Theory and Application

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

22 

 

b. Otherwise, the system is unstable and the #, term must be updated using (25) (or a 

figure similar to Fig. 9) to make the system stable again. Sample values of #, are 

given in Table 2 which ensure stability for different noise frequencies. 

Using this method the resulting time-bifurcation plots are illustrated in Figs. 11-13 with �� = 2501 

(Hz), 2499 (Hz) and 5001 (Hz), respectively. By determining the critical #, value, the system can 

avoid intermittent operation and instead, operate with a stable period-1 orbit. While the fixed point of 

the system oscillates due to the periodic nature of the perturbed input voltage, the intermittent 

operation seen in Figs. 3-5, when the standard control law is used, is eliminated. 

Load changes are frequent and important in power electronic systems as they can lead to unstable 

operation. The proposed method can take any parameter change into account through the Monodromy 

matrix which enables the derivation of the critical gain terms to ensure stable operation. In this work, 

fluctuations in the input voltage are considered while the load resistance is assumed to be fixed. Thus, 

it is important to demonstrate that the controller is robust to load variations.  Figures 14-16 show the 

effect of a step increase in the load resistance. The system starts with 22R = Ω  at 0t =  and a step 

increase occurs at 2t =  for four different increments of (a) 10% (b) 20% (c) 30% and (d) 40%. Since 

there is a step change in . at " = 2, a small disturbance is present as the system reacts to this change. 

The following observations can be made: 

• For small changes in the load resistance, a 10% increase, the controller maintains the desired 

period-1 orbit. The system does not exhibit intermittent operation.  

• When the load is increased by 20%, intermittent operation is observed for the first time. The 

amplitude of the unstable operation is quite small. 

• For larger increases to the load resistance, the amplitude and period of the intermittent 

operation increases. 

The tuning method presented in this paper can ensure stable period-1 orbits as the load varies up to a 

20% increase to its nominal value. This method can be adapted for any controller type in order to 

avoid intermittent operation. 
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Fig. 11: Time-bifurcation plots of the output voltage for �� = ���� (Hz) using the ku values presented in Table 2 (a) 
for (a) �� = �. �� (b) �� = �.�� (c) �� = �.� and (d) �� = �. 
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Fig. 12: Time-bifurcation plots of the output voltage for �� = ���� (Hz) using the ku values presented in Table 2 (a) 
for (a) �� = �. �� (b) �� = �.�� (c) �� = �.� and (d) �� = �. 
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Fig. 13: Time-bifurcation plots of the output voltage for �� = ���� (Hz) using the ku values presented in Table 2 (c) 
for (a) �� = �. �� (b) �� = �.�� (c) �� = �.� and (d) �� = �. 
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Fig. 14: Effect of variation of the load resistance on the output voltage for an increase in R by (a) 10% (b) 20% (c) 
30% and (d) 40% for �� = ���� (Hz) and �� = �. �. 

  

Page 26 of 35

http://mc.manuscriptcentral.com/ijcta

International Journal of Circuit Theory and Application

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

27 

 

 

Fig. 15: Effect of variation of the load resistance on the output voltage for an increase in R by (a) 10% (b) 20% (c) 
30% and (d) 40% for �� = ���� (Hz) and �� = �. �. 
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Fig. 16: Effect of variation of the load resistance on the output voltage for an increase in R by (a) 10% (b) 20% (c) 
30% and (d) 40% for �� = ���� (Hz) and �� = �. ��. 
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7 Conclusion 

In this work, detailed analytical and numerical work has been carried out to investigate how the loss 

in stability of a digital state feedback controlled buck converter can lead to intermittent operation due 

to the presence of an undesired noise signal.  The intermittent operation was characterised by a loss in 

stability as time varied and a limit cycle was present on the output for periods of time interspersed 

with periods of stable operation. Time-bifurcation plots were used to demonstrate this. It was shown 

that intermittent operation is more likely to occur when the frequency of the noise is close to the 

switching frequency. However, conventional stability analysis techniques are not suited to time-

bifurcation analysis hence, a transformation was performed to convert changes in time to changes in 

another parameter  . This enabled the application of the Filippov method to derive the Floquet 

Multiplier and track the eigenvalues as   varied as well as deriving conditions for the elimination of 

the intermittent operation. Based on this, a design procedure was proposed in order to tune a 

controller in order to avoid intermittent operation. The buck converter under digital state-feedback 

control was taken as a case study. Through the use of a supervising controller, whose function was to 

monitor the input voltage, the procedure was shown to be effective at tuning the 
uk  term in an 

adaptive controller. Intermittent operation was eliminated. The sensitivity of the controller to 

variations in the load resistance was checked through simulation. It was shown that the controller 

effectively removed intermittent operation for 20% variations in the nominal load resistance. 

However, this design procedure is suitable for developing guidelines for any controller type to ensure 

stable operation by modifying the relevant steps in the design procedure. 
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Table 1: Eigenvalues at bifurcation point for �� = ���� (Hz). 

�� = 2501 


�   '/,1 |'/,1| 

0.38 

2.0106 0.7515 ± 0.65784 0.9987 

2.0735 0.7510 ± 0.66274 1.0016 

4.6496 0.7168 ± 0.69744 1.0000 

4.7124 0.7251 ± 0.68764 0.9993 

0.50 

1.8221 0.7549 ± 0.65584 0.9999 

1.8850 0.7535 ± 0.65884 1.0009 

4.9637 0.7167	 ± 	0.69734 1.0000 

5.0265 0.7169	 ± 	0.69304 0.9971 

1.00 

1.4451 0.7611 ± 0.62484 0.9847 

1.5080 0.7613 ± 0.64864 1.0001 

5.7805 0.6725 ± 0.74034 1.0002 

5.8434 0.6716 ± 0.73664 0.9967 
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Table 2: ku_crit for varying signal strengths and noise frequencies 

  (a)    (b)    (c) 

�� 
� ku_crit  �� 
� ku_crit  �� 
� ku_crit 

2501 

0.16 0.0110  

2499 

0.16 0.0100  

5001 

0.16 0.0121 

0.38 0.0010  0.38 0.0004  0.38 0.0002 

0.50 -0.0027  0.50 -0.0037  0.50 -0.0045 

1.00 -0.0151  1.00 -0.0155  1.00 -0.0098 
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Appendix A: Derivation of x(kT) 

SW1 is closed at the start of the switching period and remains closed for dT. The switching is closed 

from ( )kT k d T→ + . Therefore, (2) becomes: 

( )
( ) ( )k d T k d T

At At

IN

kT kT

d
e x dt e BV dt

dt

+ +
− −=∫ ∫  

However, ( )( )* 1 sin 2IN IN v nV V f tα π= +  :  

 

( )( ) ( ) ( )

( )

1 *

( )

( ) *
sin 2

AdT AdT

IN

k d T

A k d T At

v n IN

kT

x k d T e x kT A I e BV

e e f t dt BVα π

−

+
+ −

+ = − − +

∫   (A.1) 

Let ( )
( )

( ) sin 2

k d T

A k d T At

dT n

kT

N e e f t dtπ
+

+ −= ∫ . Using integration by parts, 
dTN  can be derived to be: 

 ( )( ) ( ) ( )( )
( )

1
2( ) 2 2 sin 2 2 cos 2

t k d T

A k d T At At

dT n n n n

t kT

N e A f Ae f t f e f tπ π π π
= +−

+ − −

=

= + − −   

Inserting the limits yield: 

 
( ) ( ) ( )

( ) ( )

1
2 2(2 ) sin 2 2 cos 2

sin 2 ( ) 2 cos 2 ( )

(

)

AdT AdT

dT n n n n

n n n

N A f Ae f kT f e f kT

AI f k d T f I f k d T

π π π π

π π π

−
= + +

− + − +
  

Evaluating (A.1), the state variable at the start of the switching period can be related to the state 

variable at the switching instant: 

 
( )( ) ( ) ( )1 * *AdT AdT

IN v dT INx k d T e x kT A I e BV N BVα−+ = − − +
  (A.2) 
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Rearranging (A.2) so that the value of the state vector at the start of the switching period is expressed 

in terms of its value at the switching instant gives: 

 
( ) ( )( ) ( )1 * *AdT AdT

IN v kT INx kT e x k d T A e I BV N BVα− − −= + + − +
  (A.3) 

where: 

 
( ) ( ) ( )

( ) ( )

1
2 2(2 ) sin 2 2 cos 2

sin 2 ( ) 2 cos 2 ( )

(

)

kT n n n n

AdT AdT

n n n

N A f AI f kT f I f kT

Ae f k d T f e f k d T

π π π π

π π π

−

− −

= + −

+ + + +

−
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