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ABSTRACT Microgrids (MGs) are a growing energy industry segment and represent a paradigm shift from 
remote central power plants to more localized distributed generation. Controlling MGs represents a challenge 
mainly due to their complexity and the different properties each asset in the MG has. Various methods have 
been proposed to address this challenging problem of MG control. Some of these methods are considered the 
optimal operation of MG assets. Other works are based on a systems approach and address the scalability and 
simplicity of synthesizing a MG's energy management system (EMS). ε-variables based logical control 
strategies, which are practical methods to model control strategies in MGs, can make the control structure 
more scalable. However, this method is not optimal. On the other hand, Switched Model Predictive Control 
(S-MPC) is an advanced method utilized to control power systems while satisfying several constraints to 
achieve an optimal solution based on various criteria. Nevertheless, its implementation is not straightforward. 
Therefore, to overcome these existing problems, this paper proposes a novel systems approach method called 
an extended optimal ε-variable method developed by combining the ε-variable based control method with the 
S-MPC method. This unique method has demonstrated a significant improvement in optimizing an MG's 
energy management and enhanced the adaptation and scalability of a control structure of the MG. Our results 
show that the proposed extended optimal ε-variable method: (i) reduces the operational cost of MG by nearly 
35%; (ii) reduces the usage of the battery energy storage system by 42%, and (iii) enhances the practicality 
of photovoltaic (PV) usage by 28%. Our novel extended optimal ε-variable technique also increases the 
adaptation and scalability of the control structure of the MG significantly by translating the results of S-MPC 
to the ε-variable method. 

INDEX TERMS Energy Management System, ε-variables, Microgrids, Renewable Energy Sources, Systems 
Approaches, Switched Model Predictive Control 

I. NOMENCLATURE 

A. ACRONYMS 
MG Microgrid 
EMS Energy Management System 
MPC Model Predictive Control 
S-MPC Switched Model Predictive Control  
DR Demand Response 
RESs Renewable Energy Sources 
PV Photovoltaic 
GOA Grasshopper Optimization Algorithm 
WT Wind Turbine 
MILP Mixed-Integer Linear Programming 
CS Cuckoo Search 
PD Primal-dual 

TLBO Teaching Learning-Based Optimization  
ESS Energy Storage System 
MS Master Slave 
MCF Multi-Commodity Flow 
SCF Single-Commodity Flow 
HRES Hybrid Renewable Energy System 
PSO Particle Swarm Optimization 
GR Grid 
LD Load 
DG Diesel Generator 

B. PARAMETERS 



                                                                            M.Cavus et al.: Energy Management of Grid-Connected MGs using an Optimal Systems Approach 
 

2  VOLUME XX, 2022 

char Charging of the battery [kW]. 
dis Discharging of the battery [kW]. 
C Battery capacity [kWh]   20. 
SOC State of charge [%]. 
SOCmin Minimum value of state of charge [%] 

20%. 
SOCmax Maximum value of state of charge [%] 

90%. 
RsConverters Set of converters. 
Flow Set of flows. 
εi

Av(k) Boolean variable that determines the 
availability of using converter i. 

εi
Req(k) Boolean variable that determines the 

requirement of using converter i. 
εi

Gen(k) Generic condition for converter i. 
εi(k) The state of converter i. 
LAv(k) Logical operator depending on the 

availability. 
LReq(k) Logical operator depending on the 

requirement. 
PPV(k) PV data generated from the PV [kW]. 
PLD(k) Load demand (for the building) [kW]. 
Pnet(k) The differences between PV and load 

data [kW]. 
SOAccBAT(k) The state of the accumulator [%]. 
x(k) The system-state vector. 
xa(k) The system-state vector with the 

assume dimension m1. 
u(k) The system-input vector. 
y(k) The system-output vector. 
A and B The components of the discrete-time 

linear state-space system. 
PVGR(k), P1(k)  Power flows from the PV to the grid 

[kWh]. 
GRLD(k), P2(k)  Power flows from the grid to the load 

[kWh]. 
PVLD(k), P3(k)  Power flows from the PV to the load 

[kWh]. 
PVBAT(k), P4(k)  Power flows from the PV to the 

battery [kWh]. 
BATLD(k), 
P5(k)  

Power flows from the battery to the 
load [kWh]. 

DGLD(k)  Power flows from the diesel generator 
to the load [kWh]. 

PPV
max The maximum energy from the PV to 

the components [kW]   5. 
PVBAT

max The maximum energy from the PV to  
the battery [kW]   5. 

PVGR
max The maximum energy from the PV to 

the grid [kW]   5. 
BATLD

max The maximum energy from the 
battery to the load [kW]   5. 

GRLD
max The maximum energy from the grid to 

the load [kW]   5. 
PPV

min The minimum energy from the PV to 
the components [kW]   0. 

PVBAT
min The minimum energy from the PV to 

the battery [kW]   0. 
PVGR

min The minimum energy from the PV to 
the grid [kW]   0. 

BATLD
min The minimum energy from the battery 

to the load [kW]   0. 
GRLD

min The minimum energy from the grid to 
the load [kW]   0. 

yb The system-output vector for 
encouragement of the PV usage. 

yc The system-output vector for 
penalization of the battery usage. 

ηch Battery charging efficiency [%]   85. 
ηdis Battery discharging efficiency [%]   

0.95. 
w1 Positive weight coefficients for 

minimization energy consumption 
from the grid   1.0. 

w2 Positive weight coefficients for 
encouragement the PV usage   0.2. 

w3 Positive weight coefficients for 
penalization the battery usage   0.8. 

fch and γch The constraints for the charging 
situation of the battery. 

fch and γch The constraints for the charging 
situation of the battery. 

fdis and γdis The constraints for the discharging 
situation of the battery. 

𝑼𝑼(𝑘𝑘) The predictive control vector. 
Np Prediction horizon, 24. 
Nc Control horizon, 24. 
SOAccBAT(1) The initial value of the state of the 

accumulator [%]     30. 
SOAccBAT

min The minimum value of the state of the 
accumulator [%]     20.  

SOAccBAT
max The maximum value of the state of the 

accumulator [%]     90.  
∆t Time interval [h]      1. 

 
II. INTRODUCTION 
Due to their renewable and eco-friendly qualities, solar 
photovoltaic (PV) and wind turbine (WT) power generators 
are being integrated into microgrids (MGs) increasingly [1]. 
MG integrates various energy sources along with renewable 
energy sources (RESs) (PV panel, wind), energy storage 
systems (battery, hydrogen, pumped hydro (water)), diesel 
generators, and load and control devices [2]. In addition, a 
MG can schedule the load demand with demand response 
(DR) programs in order to maintain generation and demand 
balance. DR programs have the potential to alter customer 
load profiles [3]. This ability develops reliability and reduces 
energy expenditures in the MGs. For these reasons, the MG 
is regarded as an advanced power network topology [4]. 
Nevertheless, a MG has extra difficulties in controllability due 
to abrupt power changes in real-time operation, intermittent 
energy generation, and irregular energy consumption [5], [6]. 
The most critical challenges among these issues are to 
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properly manage the power flow between the main grid and 
MGs: (i) the scalability and (ii) the optimal operation of MG 
assets with increases in the complexity of control frames [7]. 
Hence, a practical method is needed to ensure effective energy 
management.  
On the other hand, in [8] it was first proposed, a new method 
to systematically model EMSs using a concept based on 
evolution operators and the state of the directed graph that 
represents the system. This method is based on the so-called 
ε-variables describing the evolution and hence the control 
approach of a multi-vector energy system [9]. The key to this 
approach is that a node represents every asset in the system, 
and every flow of energy and/or matter is defined by an edge 
between the nodes. 
More specifically, according to [9], a hybrid energy system 
can be easily described using graph theory. In other words, 
energy systems can be illustrated in such a way as to simplify 
their analysis, operation, and management with the help of 
graph theory enhanced by using the evolution as mentioned 
above operators. This methodology says that any energy 
system comprises three main elements: flows, accumulators, 
and converters. The flows represent the flow of energy and/or 
matter, the accumulators accumulate energy or matter, and the 
converters convert energy/matter to energy/matter. Finally, 
the control statements operating the converters are the 
evolution operators describing the multi-vector system’s EMS 
[10]. The scalability issue of the MG has been solved using the 
ε-variables method. However, this method is not optimal. 
TABLE 1. The comparison of optimization methods. 

As shown in Table 1, several optimization and control 
algorithms have been presented to provide an optimal 
operation on the MGs. Besides, stochastic dynamic 
programming and optimization algorithms have been used by 
several authors [28]–[31]. In order to minimize the overall 
losses in the distribution network, the operation of renewable 
energy systems has been optimized using the Cuckoo Search 
(CS) algorithm and the GOA [24]. In [16], distributed 
proximal primal–dual (PD) was utilized for the smooth 
optimization of a distributed energy management issue for 
responsive loads and distributed generators with transmission 
losses. A PD-based distributed algorithm with dynamic 

weights is presented to assign the various energy sources in 
order to achieve optimal energy management with tolerable 
operational costs and gas emissions. In addition, the suggested 
technique has lower computational complexity than 
distributed optimization algorithms [17]. The teaching 
learning-based optimization (TLBO) algorithm was employed 
to solve a multi-objective optimization problem that reduces 
costs and improves the MG’s reliability. The findings 
demonstrated how energy storage system (ESS) charging and 
discharging can lower microgrid costs while enhancing 
system performance and reliability [25]. In [18], the 
simulation findings demonstrate the effectiveness of the 
master-slave (MS) peer-to-peer integration micro-grid control 
method based on communication in achieving stable 
functioning of the MG in grid-connected and islanded states 
as well as smooth switching between these two modes. Multi-
commodity flow (MCF) and single-commodity flow (SCF) 
were utilized to provide flexible and adaptive operations for 
MG generation. This study demonstrated that, regardless of 
the difficulty of the optimization problem, MCF-based 
formulations and enumeration formulations are typically less 
effective [11]. For the best design of a hybrid renewable 
energy system (HRES), including PVs, WTs, and battery 
units, while minimizing the system's overall cost, the Particle 
Swarm Optimization (PSO) method has been incorporated 
[21]. 
On the other hand, S-MPC is a cutting-edge and more effective 
control scheme than traditional control strategies. Also, S-
MPC has a fast transient response [6] since the leading role of 
S-MPC is to integrate new updated data and forecasts. By 
doing so, the S-MPC can make better decisions for the 

system’s future demeanor using various constraints [27], [32], 
[33]. Besides, S-MPC can be effectively utilized in various 
ways to better control the MG system compared to the other 
control strategies. For instance, the understanding of S- MPC 
is straightforward and intuitive. It works by taking into 
consideration several constraints and uncertainties [34]. 
However, it is challenging to implement and modify it if the 
structure of the MG has changed during the operation due to a 
sudden change in the MG. 
As shown in Table 1, although these optimization methods are 
optimal, some are neither scalable nor straightforward. This 

Optimization method Scalability Reliability Adaptability Optimal Implementation Ref. 

ε-variable Outstanding Poor Outstanding  Easy [9] 
MCF Poor Good Good  Easy [11]–[13] 
SCF Poor Good Good  Easy [14], [15] 
PD Good Good Good  Complex [16], [17] 
MS Poor Poor Good  Complex [18]–[20] 
PSO Poor Good Good  Complex [21] 
GOA Poor Poor Poor  Complex [22]–[24] 
TLBO Poor Good Good  Moderate [25] 

MPC Poor Outstanding Outstanding  Complex [6], [26], 
[27] 

Extended optimal ε-variable Outstanding Outstanding Outstanding  Easy  
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paper follows an advanced approach to produce a more 
systematic approach to bridge between the simplicity of 
implementation, scalability, and the optimal operation of the 
MG. The approach implements the combination of the ε-
variable method and S-MPC while keeping the same 
advantages of the ε-variable method but making it more 
effective and robust using the S-MPC. 
A novel extended optimal ε-variable technique is produced. 
With the help of this method: 

• The operational cost of the MG is decreased.  
• The practicality of renewable generator usage is 

encouraged.  
• The adaptability and scalability with the changes in 

the MG structure are improved. 
The rest of the paper is organized as follows: Section III 
presents the methodology of building optimal systems-based 
EMS of the MG. Section IV describes the MG used in this 
study and explains the steps to implement the proposed 
optimal method. The simulation results of the proposed EMS 
are discussed in Section V. Finally, Section VI outlines the 
conclusions and addresses future work.  
 
III. METHODOLOGY OF BUILDING OPTIMAL SYSTEMS-

BASED EMS OF A MG 
The methodology of building the EMS of MG is composed of 
three main steps, as shown in Fig. 1. In the first step, the EMS 
will be built using a system approach method based on the MG 
specifications and the operational constraints of the MG. The 

system approach used in this paper is the ε-variable method 
[9], [35]. The output of the first step is a non-optimal EMS. In 
the second step, the obtained EMS will be used as input to 
generate the equivalent mathematical problem to meet 
optimally the objective(s) defined by the MG operators with 
considering the operational condition already included in the 
EMS obtained from Step 1. The optimal problem will be 
formulated in the form of S-MPC. After finding the optimal 
decisions in Step 2, these decisions will be embedded in the ε-
variable based EMS in Step 3. The output of Step 3 will be 
hence the extended optimal ε-variable-based EMS. During the 
operational stage of the EMS, the MG specification and inputs 
from the MG operator will be checked at the beginning of each 
time step. If this information has been modified/changed, the 
operational states of the MG assets will be updated, and the 
three steps of the EMS building will be repeated to consider 
the new input. If not, the extended optimal ε-variable-based 
EMS can be used to control the MG for the next time step. 
Notably, the proposed method checks whether or not the 
system specifications/inputs of the MG operator change for 
the next time step.  

IV. THE BUILDING OPTIMAL SYSTEM BASED EMS 
This section will explain the three steps to build the optimal 
systems-based EMS using the simple MG shown in Fig. 2. The 
MG system is composed of a 15 kW PV array, 21.6 kWh 
battery storage, a 5.4 kW diesel generator, and a utility grid 
[36]. 

FIGURE 1. Flow chart of the optimal system based on EMS.
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FIGURE 2. Conceptual microgrid structure proposed in this work. 

A. STEP 1: BUILDING THE EMS USING ε-
VARIABLE METHOD 

The hybrid power system where power can be considered as 
flow; the accumulator is the battery (BAT), and converters are 
the photovoltaic (PV) array, utility grid (GR), load (LD), and 
diesel generator (DG). The graph of that system suggests that 
the assets of the MG system can be divided into two sets, such 
as RsAccumulator = {BAT} and RsConverters = {PV, GR, LD, DG}[9]. 
The flow can be defined as the connection between two nodes: 
for instance, PV to BAT and BAT to LD. Hence the set of flow 
in this hybrid power system can be considered as: Flow = 
{Power}.  
The evolution operator for the converters can be defined by 
three factors and symbolized by binary variables: ϵi

Av, ϵi
Req and 

ϵi
Gen. For our purpose, this evolution operator is the energy 

management approach utilised to control the microgrid and the 
principle of operation of the accumulator. As with dynamical 
systems, we need a different evolution operator for each state 
variable. The availability of energy relies upon the condition 
of the accumulators. In other words, the binary variable  is 0 
or 1 depending on the accumulators, as can be seen below [9]: 

 (1) 

 (2) 

 (3) 

 (4) 

where LAv and LReq are the logical operators ‘and’ or ‘or,’ 
while the general condition relies upon the condition of 
converters in general. The power flows are calculated by 
multiplying Pnet and (4). 

 (5) 

 (6) 

 (7) 

 (8) 

 (9) 

The last step is to calculate the evolution operator for the 
accumulator: 

  (10) 

  

Depending on their working situation (activated or not), the 
converters are illustrated as:  where 

. 

B. STEP 2: SYSTEMATIC GENERATION OF THE 
EXTENDED OPTIMAL CONTROL PROBLEM USING 
S-MPC FORMULATION 

The S-MPC method is applied after the implementation of the 
ε-variable method. Before the employment of the S-MPC, 
system-state, system-input, and system-output vectors are 
defined.  
Let us start by defining the discrete-time linear state-space 
system [37]: 

 (11) 

where k=0,1,2, …, TH-1 is the discrete-time instant, and 
  and  are the state and 

control vector, respectively.  is the state-system 
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matrix and  is the input-system matrix. TH is the 
number of time instants. 
For the MG, system-control (input) vectors are energy 
consumption from the grid GRLD(k), (P2(k)); power flow from 
the PV to the load PVLD(k), (P3(k)); PV to the battery 
(charging) PVBAT(k), (P4(k)); battery to the load (discharging) 
BATLD(k), (P5(k))). On the other hand, the system-output 
vectors are exported energy from PV to the grid PVGR(k), 
(P1(k)); the battery exploitation (charging and discharging 
situation) PVBAT(k)+BATLD(k), (P4(k)+P5(k)); and the 
practical utilization of PV, PVLD(k)+ PVBAT(k), (P3(k)+P4(k)). 
The system-state vector and system-control vector of the 
hybrid power system can be stated as follows: 

 

                        

 

(12) 

 

(13) 

where subscription “a” in the equations represents a matrix 
with assumed dimension m1.  
The dynamic process of the battery can be defined by: 
 

  
(14)  

 
where . Define the system-output 
vectors  ,  , and   : 

 (15) 

where  and . From the definition 
of  ; 

 (16) 

With respect to  ;  

 (17) 

where  and . To encourage the 

practicality of PV utilization, the definition of  ; 

 (18) 

Regarding , 

 (19) 
where  and . To increase the life 

cycle of the battery, the definition of  ; 

 (20) 
Finally, the augmented system-state and the system output of 
the hybrid power system will be: 

 
 

(21) 

The linear state-space can be defined according to the battery 
(22). In general, the linear state-space (11) can be represented 
as follows: 

 
(22) 

Because of the dynamic equation of SOC in (22), the A and B 
in (11) will be: 

      

 
 

(23) 

 
1) THE INEQUALITIES CONSTRAINTS OF THE MG 
The PV system is used to supply the load demand and charge 
the battery. It runs depending on several constraints at 
sampling time k, as follows: 
 

 (24) 

 (25) 

 (26) 

 (27) 

Also, the sum energy for meeting the load demand and 
charging the battery should be equal or less to/than PPV as 
below:  

 (28) 

In addition, constraints related to the battery can be 
represented below: 

 (29) 

 (30) 

The utility grid is exploited to meet the load demand when the 
PV panel and the battery are insufficient. This is the last option 
because this scenario is more expensive and not 
environmentally friendly. The only advantage of its 
exploitation is to be available at any time except for blackout. 
Moreover, the constraints related to the grid system and load 
can be written as follows: 

 (31) 

 (32) 

2) OBJECTIVES FUNCTIONS OF THE MG 
The cost functions of the MG are composed of three items 
which are: 
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• To minimize the energy consumption from non-
RES:  

• To increase the life cycle of the battery: 
 

• To maximize the practicality of the renewable energy 
usage:  

3) THE IMPLEMENTATION OF S-MPC USING 
PERSISTENCE OF EXCITATION (PE) 
Unquestionably, the battery is not permitted to charge and 
discharge simultaneously, so (33) can be written as follows 
[38]: 

 (33) 

The constraint (33) is non-convex, whereas the others are 
convex. The system requires to be separated into two cases in 
order to accomplish convex optimization in S-MPC design. 
These cases are the charging situation (PVBAT = 0) and 
discharging situation (BATLD = 0). 
Charging situation: The constraint can be written as follows 
[38]: 

 

 

(34) 

Constraints (24), (25), (26), (27), (28), (30), (31), (32), and 
(34) can be written in a compact form by [38]: 

 (35) 

where  

 

 

 

 

(36) 

Equation (36) requires to be converted to matrix form with 
respect to 𝑼𝑼(𝑘𝑘) and Np by [38]: 

 (37) 

where 

       

 

(38) 

Discharging situation: The constraint can be written as follows 
[38]: 

 
(39) 

Constraints (24), (25), (26), (27), (28), (30), (31), (32), and 
(33) can be written in a compact form by [38]: 

 (40) 

where  

 

 

 

 

(41) 

Equation (43) requires to be converted to matrix form with 
respect to 𝑼𝑼(𝑘𝑘) and Np by [38]: 

 (42) 

where 

      

 

(43) 

C. STEP 3: TRANSLATING THE OPTIMAL 
CONTROL DECISIONS OF S-MPC TO ε-VARIABLES 
The power flows are calculated by multiplying (13) and (4), 
and (21) and (4). 
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 (44) 

 (45) 

 (46) 

 (47) 

Then, another step is to estimate the evolution operator for the 
accumulator: 

 
(48) 

D. SUMMARY OF THE BUILDING THE EXTENDED 
OPTIMAL ε-VARIABLE METHOD 
As illustrated in Fig. 3, the ‘control decisions from the ε-
variable method’ exploited by the S-MPC technique as input 
data are initially obtained using the ε-variable method. The 
“control decisions” are PVGR, GRLD, PVLD, PVBAT, and BATLD 
in Fig. 3. Then, the input (control), output, and state variables 
of the hybrid power system are re-calculated and optimized 
employing “quadratic programming” in S-MPC. It is vitally 
significant to note that charging and discharging are not 
permitted simultaneously. Therefore, the persistence of 
excitation is applied to the battery. Finally, the SOC of the 
battery and “optimal control decisions” are found and 
compared with the “control decisions” obtained by the ε-
variable method. More specifically:  
To summarise, as shown in Fig. 3, the extended optimal ε-
variable technique is composed of several steps:  

• The system specifications and operational 
conditions from the MG operator are read.  

• Net energy (differences between the PV and the 
load data for 96 hours and 8760 hours) is calculated. 

• The evolution operators and power flows for the 
PV, battery, load, and utility grid are calculated. 

• The last step in the ε-variable method is the 
estimation of the SOAccBAT. 

• The first step in the extended optimal ε-variable 
technique is to assess the “control decisions” 
obtained using the ε-variable method. 

• The A, B, u, x, and y matrices rely on the “control 
decisions.” 

• Then, the persistence of excitation is applied in 
order not to permit simultaneously the charging and 
discharging situations for the battery. 

• The MG operation is optimized/simulated with the 
help of quadratic programming on 
MATLAB/Simulink on a CoreTM i7 4500U 
(2.40GHz) computer, 8GB of RAM with Windows 
10 Professional. 

• All “optimal control decisions” are updated and 
compared with former “control variables.”   

• Regarding the section translating S-MPC results to 
ε-variables, the utility grid is removed, and the 
diesel generator is added. Then, the “optimal 
control variables” are updated for the ε-variable 
method as input data. 

• Evolution operators and power flows are re-updated 
depending on the “optimal control variables” 
obtained from the S-MPC. 

• The final step is to estimate and update the 
SOAccBAT and power results and make the feedback 
control. 
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FIGURE 3. The flowchart of building the extended optimal ε-variable technique for the MG is shown in Fig. 2.
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V. RESULTS AND DISCUSSIONS 

A. SIMULATION RESULTS OF THE EXTENDED 
OPTIMAL Ε-VARIABLE METHOD 

Before the simulation, some parameters were defined, as 
shown in Table 2 [38], [39].  
TABLE 2. Values of system parameters. 

Notations Values Notations Values 
PVGR

max 5 kW w1 1.0 
PVLD

max 5 kW w2 0.2 
PVBAT

max 5 kW w3 0.8 
BATLD

max 5 kW ηch 0.85 
GRLD

max 5 kW ηdis 0.95 
SOAccBAT(1) 30% C 20 kWh 
SOAccBAT

min 20% SOAccBAT
max 90% 

The PV array and load data for the simulation were obtained 
from the building in the UK for four days (96 hours) and one 
year (8760 hours) [40].  

(a) 

(b) 

FIGURE 4. (a) Power flows and (b) SOAcc of the accumulators for 4 days 
(96 hours) using the standard ε-variable method. 

To see explicitly how to perform our method, the ε-variables 
method is applied, and obtained the results as shown in Fig. 4. 
Then, ε-variable-S-MPC is applied and gets the results as 
shown in Fig. 5. From the results, (i) the energy consumption 
from the grid GRLD significantly decreased when compared to 
Fig. 4(a) and Fig. 5(a), (ii) the practicality of PV usage (PVGR 
and PVBAT) is encouraged, (iii) the battery usage BATLD is 
penalized. On the other hand, the state of charge of the battery 
is working at the desired conditions in Fig. 5(b) using the 
extended optimal ε-variable technique. After translating the 
results of S-MPC to ε-variable methods, the same results were 
obtained with the extended optimal ε-variable technique. 

(a) 

(b) 

 
FIGURE 5. (a) Power flows and (b) SOAcc of the accumulators for 4 days 
(96 hours) using the extended optimal ε-variable method. 
 
Regarding the simulation for 8760 hours, as shown in Fig. 6, 
and Table 3, the overall energy consumption from the grid 
decreased from 2055 kWh to 1529 kWh. Besides, the energy  
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TABLE 3. Numerical comparisons of e-variable method and extended optimal variable method.

usage from the PV (PVGR + PVBAT) is encouraged from 
2747.78 kWh to  3512.12 kWh. Lastly, the usage of the battery 
accounting for 2137.4 kWh and 1234.6 kWh for the ε-variable 
method and extended optimal ε-variable technique, 
respectively, is penalized in order to increase the battery life. 
All these results are expected and desired since the extended 
optimal ε-variable technique has optimization techniques. 

1:PVGR; 2:GRLD; 3:PVBAT; 4:BATLD 

FIGURE 6. Power flows for 1 year (8760 hours) using the standard ε-
variable method and the extended optimal ε-variable method. 

B. THE ILLUSTRATING THE ADAPTABILITY AND 
SCALABILITY OF THE EXTENDED OPTIMAL ε-
VARIABLE METHOD 

To show how our structure gets more adaptable and scalable 
using our proposed method, some processes have been 
fulfilled (i) changing evolution operators and (ii) adding a 
diesel generator by standalone. 
1) CHANGING EVOLUTION OPERATORS ON THE 
EXTENDED OPTIMAL Ε-VARIABLE METHOD 
In order to illustrate how our structure gets more adaptable and 
scalable, the evolution operator for the utility grid  was 
changed by altering the logical operator from “OR” to 
“AND.” When the SOC gets below 50%, the S-MPC will 
import energy from the grid, as illustrated in Fig. 5(a). 
However, there are cases where this may happen close to a 
point where the PV will produce enough power to compensate 
for the slight drop of SOC below 40%, increasing the system’s 
autonomy from the main grid. So, in this case, and without 
changing the S-MPC structure, the evolution operator of the 
converter “Grid” will contain another term that will be logical 
0 when it is anticipated that the PV will produce sufficient 

power in 1 or 2 samples. Since, in this work, this evolution 
operator uses the AND logical gate, when this new binary 
variable is 0, the evolution operator, , will also be 0. 
Hence, the system will not import energy from the main grid, 
Fig. 7(a). Regarding the , its binary variables (black line 
in Fig. 7(a)) are turned to 0 from 1 when the utility grid works 
for charging the battery (red line). In other words, in the case 
of lacking energy in the battery, the evolution operator of grid 

 will turn 1 from 0. Therefore,  runs, and the 
connection of GRBAT is active.  

(a) 

(b) 

FIGURE 7. The translating of results of S-MPC to the ε-variable method 
for (a) power flows and (b) SOAcc of the accumulator. 

2) ADDING A DIESEL GENERATOR BY STANDALONE 

Method PVGR [kWh] GRLD [kWh] PVBAT [kWh] BATLD [kWh] 
ε-variable method 620.68 2055.8 2127.1 2137.4 

Extended optimal ε-variable method 791.12 1529.8 2721 1234.6 
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During the second step (S-MPC section) in the extended 
optimal ε-variable technique, as shown in Fig. 3, a diesel 
generator is added, the utility grid is removed, and updated the 
algorithm. PVGR and GRLD are excluded in this case, and DGLD 
is included. The ε-variables easily are adopted into the system 
and utilized for the hybrid power system in the case of an 
emergency case such as a blackout or imbalance load demand. 
The extended optimal ε-variable technique results illustrate 
that the load demand is met by the PV, battery, and diesel 
generator, respectively, as shown in Fig. 8. During the 
morning and afternoon, the PV meets the load demand (blue 
line). If there is excess energy from the PV, the battery is 
charged from the PV (pink line). The imbalance load is 
covered by the battery (black line) and diesel generator (red 
line). It is worth noting that the battery has not been charged 
(pink line) at all during the operation of the diesel generator 
(red line). The battery works at desired conditions, and the 
SOC of the battery values does not exceed the critical values. 
Our results illustrate that the adaptability/flexibility and 
scalability of the S-MPC have been increased with the help of 
the extended optimal ε-variable technique. 

FIGURE 8. The illustration of the scalability of the extended optimal ε-
variable method. 

VI. CONCLUSION 
There are several reasons to utilize the variable method to 
manage the MG power system; however, this method is not 
optimal. On the other hand, S-MPC has various optimization 
techniques and can predict power generation and consumption 
by employing cost functions and constraints. However, S-
MPC implementation is not straightforward, especially in 
complex MG systems. To overcome the existing issues of e-
variable and S-MPC methods, we developed an extended 
optimal ε-variable technique that effectively: (i) reduces the 
operational cost of MG by nearly 35%, (ii) reduces the usage 
of the battery energy storage system by 42%, and (iii) 
enhances the practicality of PV usage by 28%. The 
computation power of the new method is more or less similar 

(+2%) to that of the S-MPC. This extended optimal ε-variable, 
(i) optimized the existing ε-variable method, (ii) mitigated the 
complexity of the existing S-MPC implementation, and (iii) 
improved the scalability and adaptability of the S-MPC 
implementation significantly. The adaptability and scalability 
properties of the extended optimal ε-variable technique were 
enhanced by changing some evolution operators and adding a 
diesel generator. Therefore, the system's control is made more 
straightforward and optimal using the proposed extended 
technique. In future work, the scalability of the proposed 
method will be fully demonstrated on a real system built in 
Xanthi, Greece. It will employ fuel cells and electrolysers in 
order to have complete autonomy from the main grid. In this 
case, hydrogen and water tank can be considered 
accumulators, whereas fuel cells, electrolyzers, PVs, and so on 
can be conceived as converters.  
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