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Abstract— The current-mode controlled Ćuk converter, being
a fourth-order nonlinear nonsmooth system, does not lend itself
to any simple analysis and the complexity lies mainly in the
modeling of the circuit to capture all the essential nonlinearities
that occur in fast time scale. This paper, for the first time,
extends the Takagi-Sugeno fuzzy modeling approach to capture
fast time-scale nonlinearities in the converter like border-collision
bifurcation and chaos. Then, non-smooth Lyapunov theory is em-
ployed to study the stability and actually pinpoint the operating
point at which the converter loses its stable period-1 operation
to bifurcation.

I. INTRODUCTION

DC-DC SWITCHING converters are a traditional bench-
mark for testing different nonlinear modeling and stabil-

ity analysis approaches, due to their inherent nonsmooth char-
acteristics. Closed loop current-mode controlled Ćuk converter
is a fourth-order nonsmooth dynamical system that shows a
variety of nonlinear phenomena. Up to this date, the number
of modeling methods proposed to capture all the nonlinearities
in power electronic converters like period-doubling bifurca-
tion,subharmonics and chaos, although powerful, is limited.
Accurate mathematical modeling turns out to be even more
essential for power electronic circuits like Ćuk converter. It
is mainly because analysis and simulations for the converter,
as a fourth-order system, will become rather complicated
if we intend to identify all nonlinear phenomena occurring
on fast-time scale and not to use the traditional averaged
modeling technique, merely capable of characterizing low-
frequency behavior [1]. In exploring new methods for nonlin-
ear modeling of the converter, a novel Takagi-Sugeno fuzzy
modeling approach is proposed to study the instabilities in the
Ćuk converter, which occurs at clock frequency. Despite other
complicated approaches based on discrete nonlinear modeling
[1], [2], the proposed TS fuzzy modeling approach seems a
promising method to simulate high-frequency behavior of the
converter to acceptable accuracy and with low computational
time [3].

At the same time, the traditional approach for the stability
analysis of the converter is to obtain the period-n equilibrium
orbit or limit cycle by setting x(0) = x(nT ) acquired from
iterated map. Then, the stability of the limit cycle can be
determined by checking if the magnitude of all characteristic
multipliers at the limit cycle are less than unity [1], [4].

However, using the classical iterative map approach will be
ended up with the fourth-order iterative map which makes
the stability analysis for higher period-doubling bifurcation
fairly knotty. In another attempt, Filippov’s method is suc-
cessfully applied to study the stability of the free-running
current controlled Ćuk converter [2]. Even though the method
is essentially used for slow-scale stability of the converter,
the complexity is inevitable. As an alternative approach ,
for the first time in this paper, the proposed Takagi-Sugeno
model-based system is employed to accurately investigate the
stability of the nonsmooth model of the converter and predict
the operating point when the converter loses it’s stability to
border collision bifurcation. The stability analysis will be
based on nonsmooth Lyapunov approach which seems realistic
[5] for the nonsmooth nature of the model and be formulated
numerically as a Linear Matrix inequality (LMI) system.
Less computational complexity and more direct analysis by
checking the feasibility of the LMI system, take an edge
comparing to the former analysis using nonlinear iterative
map. Further more, based on LMI stability conditions which
will be presented in this paper, a new control strategy can
be elaborated to extend the period-1 behavior to the wide
range of operating-point excursion. The method has been
previously applied to non-autonomous system like boost and
buck converter and showed promising results [3], [6].

II. THE ĆUK CONVERTER AND ITS MATHEMATICAL MODEL

The closed loop current-mode controlled Ćuk converter
(1) is an non-autonomous nonsmooth dynamical system that
conventionally is controlled by comparing sum of the inductor
current, iL1 + iL2, with a reference current Iref to generate the
OFF driving signal for the switch. The switch S is turned on at
the beginning of the cycle t = nT and stay there until iL1+iL2

reaches the value of Iref , then, the switch S is turned OFF, and
stay off until the next cycle begins. The control scheme can
be formulated as follows [1]:

Iref − (iL1 + iL2)n = [
E

L1
+

vC2,n − vC1,n

L2
]dnT (1)

where subscript n denotes values at t = nT . Therefore

dn =
Iref − (iL1 + iL2)n

( E
L1

+ vC2,n−vC1,n

L2
)T

(2)
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    Fig. 1. Ćuk converter under original current-mode control scheme

The dynamic of the system can be described by four sets
of differential equations:

dvC1(t)
dt

=





−1
RC2vC1 + 1

C2 iL1, S is OFF

−1
RC2vC1 + 1

C2 iL1, S is ON
(3)

dvC2(t)
dt

=





−1
C1 iL1, S is OFF

−1
C2 iL2, S is ON

(4)

diL1(t)
dt

=





−1
L2 vC1 + 1

L2vC2, S is OFF

−1
L2 vC1, S is ON

(5)

diL2(t)
dt

=





1
L1vin, S is OFF

−1
L1 vC2 + 1

L1vin, S is ON
(6)

If we define the state vector as x = [vC1 vC2 iL1 iL2] and
u as an input voltage Vin, the equations (3), (4), (5) and (6)
can be written as:

ẋ =
{

A1x + Bu, (Iref −A(iL1 + iL2)) < iramp(t),
A2x + Bu, (Iref −A(iL1 + iL2)) > iramp(t).

where:

A1 =




−1/RC2 0 1/C2 0
0 0 −1/C1 0

−1/L2 1/L2 0 0
0 0 0 0


 , B =




0
0
0

1/L1




(7)

A2 =




−1/RC2 0 1/C2 0
0 0 0 1/C1

−1/L2 0 0 0
0 −1/L1 0 0


 , B =




0
0
0

1/L1




(8)
In this paper, the proportional feedback controller is used

where iref = K(Vref − v1), K is the control parameter and
Vref is the reference voltage. The outer closed loop determine
the reference current Iref based on the value of v1. Under this
control scheme the normal output of the converter will be a
periodic ripple with the peak value of Iref and the period that
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Fig. 2. The nominal period-1 operation of the Ćuk converter when Iref =
0.4A for (a) iL1 + iL2 (b) iL1 (c) the output current becomes unstable
and behaves in period-2 operation when Iref = 0.5A (d) the output current
behaves chaotically when Iref = 0.7A. The fixed parameter values are Vin =
15V , L1 = L2 = 1mH , R = 75Ω, C = 47µF , T = 1/2500s.
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Fig. 3. Period 1 limit cycle:Phase space and the transversal intersection

is equal to the period of the PWM ramp signal. Figure 2a
and 2b, shows this so-called stable period-1 operation of the
converter for sum of the currents iL1 + iL2 and iL1 respec-
tively. Figure 2c shows the unstable period-2 operation when
border collision bifurcation occurs and Figure 2d illustrates
the chaotic behavior under reference-current variation. The
example Ćuk converter has two switching manifold on ON and
OFF switching instances. Figure 3 illustrates the stable period-
1 orbit in v − i space, where the orbit periodically switches
between X(dT) and the fixed point of the cycle with Poincaré
map X(0). If a system parameter like reference current Iref is
varied, the circuit becomes unstable through period-doubling
bifurcation and then chaos, which is apparent from Figure 4
[1].

III. TS FUZZY MODEL OF THE BUCK CONVERTER FOR
FAST-SCALE ANALYSIS

The fuzzy inference system of Takagi-Sugeno Fuzzy models
[7], [8] in order to approximate smooth dynamical functions
is generally described by a set of rules in the form

Rule j : IF x1 is F j
1 AND...AND xq is F j

q

THEN ẋ = Ajx + Bju, j = 1, . . . , l
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Fig. 4. Bifurcation diagram of the Ćuk converter under closed loop current-
mode control (Figure 1), varying reference current as a parameter.

and the dynamics of this system can be described by:

ẋ =
∑l

j=1 wj(x)(Ajx + Bju) (9)

where wj(x) are normalized membership functions of the rule
antecedents satisfying 0 ≤ wj(x) ≤ 1,

∑l
j=1 wj(θ) = 1

and l is the number of rules. It is well-known that the model
structure above, being famous as affine TS models, is the uni-
versal approximator of smooth nonlinear functions to arbitrary
accuracy [8], [9]. As discussed in [3], [6], approximating the
nonsmooth dynamical function as the example converter with
TS fuzzy model structure (9) cannot be realized. The TS model
(9) designed to approximate smooth nonlinear functions is fun-
damentally incapable to represents the inherent discontinuity
already observed in the set of equations (3),(4),(5) and (6). In
the mathematical point of view, existence (and uniqueness) of
the TS fuzzy model of the form (9) is not being hold should
the Ćuk converter’s non-smooth dynamics modeled with this
approach [3], [6]. Nevertheless, deriving the averaged model of
the system in Figure 1, makes possible to model the converter
with TS modeling approach (9). At the same time, taking
advantage of averaging technique to derive an smooth model
of the converter, the nonlinearities occurs on fast-time scale
will be thoroughly ignored. Therefore, the border-collision
bifurcation and chaos occur at the clock frequency [1] is not
observable by any means.

The new TS fuzzy modeling approach (11) initially pro-
posed in [3], [6] is capable of representing the essential
dynamics of the Ćuk converter (discontinuous), which has the
form:

Rule j : IF (x3 + x4) is F j (10)

THEN ẋ =
{

Aj(mi)x + Bj(mi)u
m+ = φ(x,m), j = 1, 2, i = 1, 2

and by the appropriately restricting the inference parameters,
the dynamics of the discontinuous fuzzy system can be de-
scribed by:

{
ẋ =

∑l
j=1 wj(x,mi)(Aj(mi)x + Bj(mi)u)

m+ = φ(x,m)
(11)

where x ∈ Rn is the continuous state, m ∈ M = {m1,m2}
is the discrete state, Aj(mi) ∈ <n×n, Bj(mi) ∈ <n,
wj : <n × M → [0 1], j ∈ Il, are continuous weighting

functions which satisfy
∑l

j=1 wj(x,m) = 1, l is the number
of fuzzy rules and F j are fuzzy sets. The state space is the
Cartesian product <n ×M . The function φ : <n ×M → M
describes the dynamics of the discrete state. The notation m+

means the next state of m. Any value of discrete state mi ∈ M
is associated with an affine subsystem like:

if ∀x ∈ A(mi)x + B(mi)u then mi ∈ M, i ∈ {1, 2}
Remark 1: In general a value of mi could be associated with
a subset of subsystem as:

if ∀x ∈ {∑j∈{1,2,...} wj(x,mi)(Aj(mi)x + Bj(mi)u)}
then mi ∈ {m1,m2, . . . , mN} when N is possibly infinite
¤

As it is inferred from (10) and (11), function φ formally
describes the transition of the discrete states. Each transition
involves with jumping from the subset of fuzzy subsystems,
which from now on is called fuzzy sub-vector field, to another
fuzzy sub-vector field. Alternatively, the transition can be
defined by a set of switch sets used to mathematically define
the switching manifold. The general formulation of the switch
sets is defined as:

Si,k = {x ∈ Rn|mk = φ(x,mi)}, mi 6= mk, i, k ∈ IN

(12)
which in the case of the Ćuk converter, the switching hyper-
surface at the switching OFF

h(X, (dT )) = x3(dT ) + x4(dT )−K(Vref − x1) (13)

in the form of switch sets can be describe as:

S1,2 = {x ∈ Rn|x3(dT ) + x4(dT ) + Kx1 < KVref},
S2,1 = {x ∈ Rn|x3(dT ) + x4(dT ) + Kx1 > KVref}}

(14)
where d is the duty ratio at each instant and T is the switching
period.

To construct the TS model (10) of the converter, the
membership functions are defined to exactly represent each
fuzzy sub-vector as follows:

F 1(x3(t) + x4(t)) =
1
2
(1 +

X1(0)− x3(t)− x4(t)
2l

),

F 2(x3(t) + x4(t)) =
1
2
(1 +

X1(0)− x3(t)− x4(t)
2l

)

Here, l is a constant denoting the range of sum of the currents,
i.e. iL1(t) + iL2(t) ∈ {0.4 − l, 0.4 + l}. We let l = 0.2.
The state vector X(0) = [12.7187 27.5608 0.1012 0.1268]
is the transversal intersection of the periodic orbit with the
switching manifold when the switch is OFF (see Figure 3).
Normally we would pick the equilibrium point of the system
if destined for modeling a smooth or the average model of
the converter [10]. However, the nonsmooth model is the
target here so the transversal intersection point should take
into consideration in the membership function to accurately
represents switching between two sub-vector fields. Since the
linear vector fields are dealt with in this case, the matrices in
(7) and (8) can immediately be used in building the exact TS
fuzzy models of the converter as A1(m1) = A2(m1) = A1,
A1(m2) = A2(m2) = A2 and B(m1) = B(m2) = B where
the discrete states m1 and m2 is actually representing ON
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and OFF state of the converter respectively. Figure 5a and
5b comparing with the original behavior of the converter in
different operation modes (Figure 2) shows that the proposed
TS fuzzy model under current-mode control can well repre-
sents the nonsmooth switching and capture any phenomena
occurring at the clock cycle like border collision bifurcation
and chaos. The bifurcation diagram in Figure 6 makes it more
evident the strength of the new TS fuzzy modeling method
in capturing all nonlinearities by showing exactly the same
quantitative behavior compared with Figure 4.
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Fig. 5. (a) The nominal period-1 operation of the TS fuzzy model of the
Ćuk converter under original current-mode control when Iref = 0.4A (b)
The nominal period-2 operation of the TS fuzzy model of the converter when
Iref = 0.5A.
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Fig. 6. Bifurcation diagram of the Ćuk converter modeled with TS fuzzy
approach, varying reference current as a parameter.

IV. EXPONENTIAL STABILITY ANALYSIS

The stability of the limit cycle in power electronics circuits
will be predominately determined using Poincaré maps [11].
At a selected switching surface, a perturbation of the switching
point is mapped through the switching cycle back to the

same switching surface. This is a discrete mapping, where the
eigenvalues of the mapping matrix determines the stability of
the limit cycle. Employing this approach with an engagement
of Filippov’s method , the stability analysis of an autonomous
Ćuk converter is already studied [2].

A. Nonsmooth Lyapunov method to show the stability of limit
cycle

Considering the fact that the proposed TS fuzzy model
of the converter represents a nonsmooth dynamical system,a
Lyapunov method is employed for the first time in this section
for the bifurcation analysis of the example converter. The
traditional approach of finding a smooth global Lyapunov
function to show the stability of TS fuzzy models approx-
imating a smooth nonlinear system have been around for
long time in the model-based fuzzy control literature [8]. The
shortcomings of finding global quadratic Lyapunov candidates
in the entire fuzzy state space and the subsequent conservative
LMI formulation for TS fuzzy models of the smooth nonlinear
systems and naturally for the proposed TS fuzzy model (11)
is also already hashed over [3], [6], [12]. Briefly, to relax
the Linear Matrix Inequalities (LMI) formulation for the
stability analysis of the nonsmooth model of the converter, the
Lyapunov function candidate should be given as discontinuous
or nonsmooth functions. We also let the fuzzy state space to be
partitioned to different flexible regions. A switching function
partitions the state space into two regions, separated by the
switching surface h(X, (dT )) = 0. Followingly, we let the
fuzzy state space F is partitioned into two detached region
Ωq, q ∈ I2 where I2 = {1, 2}. Therefore

Ω1 = {(x,m) ∈ F| x ∈ <n,m = m1}
Ω2 = {(x,m) ∈ F| x ∈ <n,m = m2} (15)

A trajectory initiated in any region at time tk, k = 1, 2, ... can
pass through another region if tk < tk+1. We define Λqr as a
neighboring region which means:

Λqr = {x ∈ <n|∃t < t0, such that x(t−) ∈ Ωq, x(t) ∈ Ωr}
(16)

Λqr is given by the hypersurface of the form (13). In fact,
conditions for the switching from mode m1 to mode m2 at
time τ are{

h(X, τ) = 0∑
j∈{1,2,...} wj(x,mi)(Aj(mi)x + Bj(mi)u) · ∇h(X, τ) < 0

(17)
Hence if Λqr 6= ∅, Ωq and Ωr must be neighboring sets. As a
sufficient condition let:

IΛ = {(q, r)|Λqr 6= ∅} (18)

which is a set of tuples indicating that there is at least one
point for which the trajectory passes from Ωq to Ωr.

Now, we define a local quadratic Lyapunov function for
each region, which has the structure:

V (x) = Vq(x) = x̃T P̃qx̃ when (x,m) ∈ Ωq (19)

where x̃ =
[
x
1

]
, P̃q =

[
Pq pq

pT
q πq

]
, πq ∈ <, pq ∈ <n, Pq =

PT
q ∈ <n ×<n and q ∈ I2.
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Let Ωx
q denote the continuous state of x in Ωq. Vq :

clΩx
q → <, q ∈ I∆, is a (scalar) function which is assumed

to be continuously differentiable on closure of region Ωq (cl.
denotes the closure of a set, which is the smallest closed set
containing the set). In fact, the scalar function Vq(x, t) is used
to measure the fuzzy system’s energy in a local region Ωq .
As it is apparent, the overall Lyapunov function V (19) is a
discontinuous Lyapunov function at the hypersurface (13) or at
the neighboring regions Λqr, (q, r) ∈ IΛ. Assuming tk < tk+1

for every trajectory with initial point in any region, V (x) is
piecewise continuous function with respect to time.

B. LMI formulation for stability and bifurcation analysis

The first stage in formulating the Lyapunov stability condi-
tions into LMI conditions is to define fuzzy state-space parti-
tions by (positive) quadratic functions. This is realizable using
the so-called S-procedure technique to substitute the confined
conditions with unconfined conditions [13]. To explain the
procedure in general terms and more clearly, let Q0, . . . , Qs,
be quadratic functions of the variable x ∈ <n on the form:

Qk(x) = xT Zkx + 2cT
k + dk, k = 0, . . . , s, (20)

where Zk = ZT
k . We consider the following condition on Q0:

Q0(x) ≥ 0 in the region {x ∈ <n|Fk(x) ≥ 0, k ∈ Is} (21)

The confined condition (21) can be substituted by an
unconfined condition in the following way:

Lemma [13]: if there exist δk ≥ 0, k ∈ Is, such that

∀x ∈ <n, Q0(x) ≥
∑s

k=1
δkQk(x) (22)

then (21) holds. Hence, by introducing additional variables
δk ≥ 0, k ∈ Is, condition (21) can be turned into an LMI
which can be written as:

xT

[
Z0 c0

cT
0 d0

]
x ≥

∑s

k=1
δkxT

[
Z0 c0

cT
0 d0

]
x (23)

The replacement of (21) by Lemma may be conservative.
However it can be shown that the converse is true in case
of single quadratic form, s=1 [13] contingent on the existence
of some x such that Q1(x) > 0. In case of hypersurface which
can be defined by Qk(x) = 0, k ∈ Is, Lemma is true without
the restriction δk ≥ 0.

Here, all the conditions in the stability theorem are imme-
diately described by Q0(x) ≥ 0, where Q0(x) is a quadratic
function defined by (20).





Q0(x) = x̃T (P̃q − αĨ)x̃ ≥ 0, ∀x ∈ Ωx
q , q ∈ I2

Q0(x) = x̃T (βĨ − P̃q)x̃ ≥ 0, ∀x ∈ Ωx
q , q ∈ I2

Q0(x) = −x̃T (Ã(m)T P̃q + P̃qÃ(m) + γĨ)x̃ ≥ 0, ∀(x,m) ∈ Ωq

Q0(x) = x̃T (P̃r − P̃q)x̃ ≥ 0, ∀x ∈ Λx
qr, (q, r) ∈ IΛ

(24)
In the conditions above, α and β are constants which originally
represent class K function α(‖x‖), α : <+ → <+ and β(‖x‖),
β : <+ → <+.(for definition of class K function see [14])
and γ > 0 is a scalar constant. The third condition is satisfied
on the hypersurface Λx

qr which can be given by Qk(x) =

0, k ∈ Is, where each Qk(x) = 0 has the form (20) with no
limitation on δk as mentioned before. All the conditions can be
substituted by the unconfined condition (23); however, if the
switching manifold cannot exactly be represented by Qk(x) =
0, k ∈ Is in the last condition, it is possible to represent such
a region with quadratic fucntions satisfying Qk(x) ≥ 0, in
which the additional variables δk should be limited to δk ≥ 0.

Now, all the stability conditions for bifurcation analysis can
be recasted to LMI conditions:

LMI problem: If there exist P̃q , q ∈ I∆, constants α > 0,
µq

k ≥ 0, νqij
k ≥ 0, ηqr

k and a solution to min β subject to the
three conditions:

• αĨ +
sq∑

k=1

µq
k

[
Zq

k cq
k

(cq
k)T

dq
k

]
≤ P̃q

P̃q ≤ βĨ +
sq∑

k=1

µq
k

[
Zq

k cq
k

(cq
k)T

dq
k

]
, q ∈ I∆

• (q, i, j) ∈ IΩ, (Ãj)T P̃q + P̃qÃ
j

+
sqij∑

k=1

νqij
k

[
Zq

k cq
k

(cq
k)T

dq
k

]
≤ −Ĩ , q ∈ I∆

• P̃r ≤ P̃q −
sqr∑

k=1

ηqr
k

[
Zqr

k cqr
k

(cqr
k )T

dqr
k

]
, (q, r) ∈ IΛ

Then the fixed point 0 is exponentially stable in the sense
of Lyapunov 1.

Remark 2: Without loss of generality, it is assumed
that the origin is a fixed point of the fuzzy system (11).
For the buck converter, the fixed point mentioned above
is the fixed point of limit cycle with a stroboscopic map [15] ¤

Let the fixed parameter values as mentioned in Figure
2, for a specified desired current Iref = 0.42, which is the
stable period-1 operation of the converter as apparent from
the bifurcation diagram in Figure 6, the system converges
exponentially to the stable limit cycle, which will be verified
by solving LMI problem.

P̃1 =




43.8488 41.3433 −93.4600 0 0
41.3433 42.5052 −90.0070 0 0
−93.46 −90.00 810.9474 0 0

0 0 0 1.33 −833.36
0 0 0 −833.36 2.08




(25)

P̃2 =




1.0210 0 −1.8009 0 0
0 1.6300 0 −0.0050 −24.44

−1.8009 0 269.87 0 0
0 −0.0050 0 554.86 −0.14
0 −24.44 0 −0.147 949.35




(26)
with the optimal value of α = 0.36 and β = 0.43. If the value
of reference current is intentionally changed to Iref = 0.5, the
LMI problem founds infeasible and no optimal value of α and

1The proof of this theorem is out of the scope of this paper and it will
present in later publications.
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β can be found. Actually, the infeasibility of LMI problem,
can detect the edge of unstable period doubling bifurcation as
for all the values of Iref < 0.5, the LMI problem can found
a feasible solution with the optimum value of β. This readily
determine the range of the stable period-1 operation of the
converter without using nonlinear discrete mapping approach.

Letting the fuzzy state space to be partitioned into flexible
detached region is of prime importance in finding the actual
stability of the nonsmooth system like the example Ćuk
converter. An attempt to let the overall Lyapunov function V
measure the system’s energy for the entire fuzzy state space
means a common Lyapunov function for all discrete states has
to be sought. Then, the neighboring region Λqr are all empty
and and the system will be stable regardless of the switchings.
However, as can be noticed from table below, searching for the
feasible solution to the LMI problem is not possible even for
the stable period-1 excursion of the converter. Partitioning the
fuzzy state space into more regions may end up in different
optimal value of β, although it can accurately show the
stable region of the converter and the operating point when
bifurcation occurs by the LMI feasibility problem. Deciding a
suitable region partitioning is optional. Nevertheless, it should
be avoided to make numerous partitions or a partitioning
so complex as in practice, verifying the stability conditions
in the LMI problem turns out to be impossible for heavy
computational burden.

Number of LMI Optimum Numerical
Partitions in F feasibility value of β complexity

1 not feasible N/A low
2 feasible 0.4330 low
4 feasible 0.4540 medium
8 feasible 0.4540 medium
16 feasible 0.6450 high
32 not feasible N/A very high

V. CONCLUSION

The Takagi-Sugeno fuzzy modeling approach proposed in
this paper is specifically synthesized to incorporate the typical
switching events of power electronic converters. Application
on the example Ćuk converter, showed the prowess of new TS
fuzzy modeling approach to capture all nonlinear phenomena
occurs at the clock cycle like fast-scale bifurcation and chaos.

A rigorous mathematical stability analysis based on the
piecewise Lyapunov function candidates introduced to delve
into the stability of limit cycles. All stability conditions
formulated in Linear Matrix Inequalities (LMI) conditions
to evidently predict the onset of unstable period-doubling
bifurcation. Presented nonsmooth Lyapunov theory seems es-
sential to tackle the discontinuous dynamics of the new TS
fuzzy model of the converter. Fuzzy state-space partitioning to
relaxed, detached regions reduce the possibility of conservative
LMI formulation to bare minimum although a suitable region
partitioning is ad-hoc to each case. The proposed stability
analysis is a new way to get an insight of all the fast-scale
instabilities of the converter over and above the traditional
discrete nonlinear mapping normally employed for specially
high-ordered systems.

This paper demonstrates another successful attempt of the
proposed modeling and stability analysis approach on power
electronic circuits. Not only the whole approach can be
extended to tackle the nonsmooth mechanical systems with
state jumps, it is also a solid bedrock to coin new switching
fuzzy model-based controllers to preserve the stable period-1
behavior of the power electronic circuits for large range of
parameter variation.
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