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Abstract: Higher order converters, without an external voltage control loop, have been known not to 
exhibit a fast-slow scale bifurcation interaction, as the slow-scale bifurcation has generally been believed 
to be caused by parameter changes in the outer loop. In this paper, it is shown that a current-mode 
controlled Ćuk converter can exhibit an interaction between fast-scale and slow-scale bifurcations even in 
the absence of this closed outer voltage control loop. The phenomenon is probed using an approach based 
on the system’s monodromy matrix that does not only predict this instability but also provides a 
systematic method for the development of new control strategies to avoid the onset of this bifurcation. 
Analytical and numerical results prove that the new controller greatly extends the stable region of 
operation of the converter. 
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1. INTRODUCTION 

Current mode controlled dc-dc converters are inherently 
nonlinear, non-smooth time varying systems. Their nonlinear 
behavior has been extensively studied in various publications 
(Banerjee et al., 2001; di Bernardo et al., 1998; Fossas and 
Olivar, 1996). The literature shows that two different types of 
nonlinearities can occur, slow scale (El Aroudi et al., 1999) 
and fast scale (Banerjee and Chakrabarty, 1998; Chakrabarty 
et al., 1996) bifurcations. These bifurcations had been 
separately investigated as the outer voltage loop which had 
generally been believed to cause the slow-scale bifurcation is 
much slower than the inner current loop which causes the 
fast-scale bifurcation and the two loops were believed not to 
interact with each other. However, it has recently been 
demonstrated (Chen et al., 2007) that the two mechanisms 
responsible for the fast-scale and slow-scale bifurcations can 
actually interact. 
Higher order dc-dc converters, such as the Ćuk converter, 
have a significant advantage over other inverting topologies 
since they enable low voltage ripple on both the input and the 
output sides of the converter. For such higher order dc-dc 
converters operating under cascade control, both fast-scale 
bifurcation and slow-scale bifurcation  have been reported 
(Tse, 2003). These studies had suggested that the fast-scale 
bifurcation occurs in the presence of an inner current loop, 
while the slow-scale bifurcation occurs in the presence of the 
outer voltage control loop.  
In this paper, we observe that a slow-scale bifurcation can 
still occur in a Ćuk converter operating without an outer 
voltage loop after the system goes into chaos as a result of 
increasing the reference current. We will study and stabilize 
this phenomenon, ignored in previous studies, using an 

approach based on the system’s state transition matrix over a 
full cycle (Leine et al., 2000). This method has previously 
been used by the authors to control the fast-scale bifurcation 
in simple low-order dc-dc converters (Giaouris et al., 2007; 
Giaouris et al., 2006) with fruitful results. In this paper, the 
analysis is extended to show that a Ćuk converter may exhibit 
a fast-slow scale interacting bifurcation even in the absence 
of the output voltage feedback signal. Based on the analysis, 
novel controllers to avoid the interacting bifurcation are 
proposed and validated. Using this controller it is possible to 
achieve a bigger operating region where the converter can 
operate. The practical significance of that approach is that we 
can use this methodology to design new smaller and hence 
cheaper converters with big operating regions. This line of 
work along with its experimental validation will be presented 
at a future publication. 
 
2. ĆUK CONVERTER OPERATING UNDER OPEN LOOP 
CURRENT-MODE CONTROL  

2.1 Principles of operation 

The fourth order, open loop current-mode controlled Ćuk 
converter is shown in Fig. 1. Unlike other simple low order 
converters, the Ćuk converter can operate in continuous 
conduction mode and in a number of discontinuous modes. 
For simplicity, we will focus on operation in the continuous 
conduction mode. The reference current Iref compared with 
the sum of the inductor currents i1+i2 generates the ON-OFF 
driving signal for the switch ST. As the sum of the inductor 
currents i1+i2 reaches the value of the reference current Iref, ST 
is turned OFF, and remains OFF until the start of the next 
clock cycle.  

     



 
 

 

Converter operation is governed by two sets of linear 
differential equations related to the ON and OFF states. The 
ON state equations of the system can be written as: 
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Fig. 1. Ćuk converter with open loop current-mode control  
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and when the switch is turned OFF:  
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The state variables of the system are the output voltages and 
inductor currents (v1= x1, v2= x2, i1= x3, i2= x4).  
In matrix form this may be written as: 

UBXAX 11 +=&         ST is ON and D is OFF  

UBXAX 22 +=&          ST is OFF and D is ON  

where X= [v1 v2 i2 i1]T, U is the converter input voltage Vin,  
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The control equation can be expressed as: 
021 =−+ refIii  (3) 

2.2 Bifurcation behaviour 

With the circuit parameters fixed at Vin=15V, T=200μs, 
L1=L2=L=16mH, C=4.7μF and R=75Ω, numerical simulation 
can be performed using the above equations. A typical 

bifurcation diagram is shown in Fig. 2, using Iref as the 
bifurcation parameter. For values of Iref below 0.5A, the 
system is attracted to the period-1 orbit, as can be seen in Fig. 
3. At Iref=0.5A the system loses stability and gives way to a 
period-2 orbit (fast-scale bifurcation), as shown in Fig. 4. If 
the value of Iref is further increased, the system is stroked by a 
border collision at Iref=0.59A before it goes into chaos (Fig. 
5). A detailed study of this behaviour was given in (Tse, 
2003) up to a value of Iref=0.74A, ignoring values of Iref 
beyond this point where the interacting bifurcation is 
observed at Iref=0.75A, as shown in Fig. 6.  

i 1+
i 2 

(A
)

Iref (A)  
Fig. 2. Bifurcation diagram of the Ćuk converter with open loop current-
mode control  
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Fig. 3. Sum of the inductor currents; period-1 orbit with Iref=0.4 A.   
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Fig. 4. Sum of the inductor currents; period-2 orbit with Iref =0.5 A.   

     



 
 

 

 
Fig. 5. Sum of the inductor currents; chaos with Iref =0.7 A.   
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Fig. 6. Sum of the inductor currents; fast-slow scale bifurcation with 
Iref=0.75A. 

3. STABILITY ANALYSIS OF THE OPEN LOOP 
CURRENT-MODE CONTROLLED CUK CONVERTER 

3.1 Derivation of the monodromy matrix  

The stability of the converter circuit can be analyzed by 
deriving the eigenvalues of the monodromy matrix (Floquet 
or characteristic multipliers) of the system. To study the 
stability of the period-1 orbit, it is sufficient to consider t 
varying from 0 to T. Fig. 7, shows that the period 1 orbit in 
the state space crosses the switching hypersurface at dT 
(when the switch is turned OFF); d is the duty cycle and T is 
the switching period. The monodromy matrix W of the 
system for one cycle can be expressed as: 

dTdT eeT 12 AA SW ××= − )1()0,(  (4) 

where S is the saltation matrix at dT, and can be obtained by 
using the following formula (Giaouris et al., 2008):  
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Fig. 7. Period 1 orbit  
 
where h is the switching condition, n is the normal vector to 
h, t is the switching time, and f+ and f- are the two vector 
fields before and after the switching hypersurface. Since the 
switching equation (3) is not a function of time, the derivative 
of h with respect to time is zero (∂ h/∂ t=0). 
The switching hypersurface h at the OFF switching is given 
by: 

( )( ) ( ) ( ) refIdTxdTxdTXh −+= 43,  (6) 

so that  , and the two vector fields before and 
after the switching are: 
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The stability of the system can be determined by calculating 
the eigenvalues of the monodromy matrix W: 

[ ] 0det =− W1λ  (7) 
To evaluate W, and hence the stability of the system, the 
values of the state vectors X(0) and X(dT) need to be 
numerically calculated (Daho et al., 2008) . 

3.2 Evaluation of the eigenvalues  

In this section, we will focus on the evolution of the 
eigenvalues as Iref is varied. If all the Floquet multipliers are 
inside the unit circle, the system is stable. Any crossing of the 
eigenvalues from the interior to the exterior of the unite circle 
indicates a loss of stability, i.e. a bifurcation occurs at that 
crossing point. A fast-scale bifurcation occurs when a 
negative real eigenvalue moves out the unit circle and a slow-
scale bifurcation occurs when a complex eigenvalue moves 

     



 
 

 

out the unit circle. An interacting bifurcation occurs if both 
conditions are satisfied. Results (obtained using the same 
parameters given in section 2.2) are shown in Table 1. A fast-
scale bifurcation occurs at Iref =0.5A and an interacting 
bifurcation at Iref=0.75A. This is in good agreement with the 
simulation results produced in the previous section 

Table 1. Floquet multiplier of the Ćuk converter 

3.3 Bifurcation lines in Iref and R parameter space 

In this section, we obtain the bifurcation lines for the fast-
scale bifurcation and the slow- scale bifurcation in the Iref and 
R parameter plane. The load resistance R is varied in the 
range (50Ω-75Ω) and for each value we calculate the critical 
value of Iref for which either, a slow-scale or a fast-scale 
bifurcation occurs (other parameters being fixed). The two 
bifurcation lines are shown in Fig. 8, where the two lines 
define regions of stable operation, fast-scale unstable 
operation, and interacting bifurcation operation. Such 
bifurcation lines provide essential information for the 
designer allowing the selection of  system parameters in an 
informed manner. At this point it has to be noted that Fig. 8 
indicates that there is no point where the two bifurcation lines 
intersect, i.e. we always have first a fast scale and then a slow 
scale bifurcation. Other systems have shown to exhibit a true 
interaction where the two lines intersect, i.e. at the same 
value of the bifurcation parameter we have one real 
eigenvalue at -1 and two complex on the unit circle.   

4. CONTROL OF THE FAST-SLOW SCALE 
BIFURCATION VIA THE MONODROMY MATRIX 

From equation (4), it is clear that the saltation matrix S plays 
an important role in determining the eigenvalues of the 
monodromy matrix, and hence the stability of the system. 
This leads to the possibility of altering the stability properties 
of the system by changing the parameters of S. 
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Fig. 8. Bifurcation lines in the R-Iref parameter plane 

Equation (5) shows that the saltation matrix S depends on the 
two vector fields f+ and f- (which cannot change) and the 
switching manifold h. We can either alter h to change the 
normal vector n (changing the slope of the switching 
manifold), or we can simply add a time varying component 
that will change the term ∂ h/∂ t to a non-zero value. By 
monitoring the bifurcation variable we can make these small 
changes and we can therefore force the eigenvalues to remain 
inside the unit circle by changing the saltation matrix S. 
Based on this simple idea, two methods are proposed in this 
section to control the fast-scale and the interacting bifurcation 
in the open loop current-mode controlled Ćuk converter and 
guarantee stability over a substantially wider range of the 
bifurcation variable. 

4.1 Changing the length of the normal vector  

This control method is based on the idea of changing the 
normal vector n by adding a component to the current 
feedback signal. This will change the third and the forth 
coordinate of the normal vector n since we are using i1+i2 as 
a current feedback signal. In this case, the switching 
hypersurface h can be expressed as: 
 ))()(()1())(,( 43 dTxdTxadTh +×+=X   (8)    

And the normal vector n to the switching hypersurface h is 
[ ] TaaTh ++=∇= 1100),(Xn  

It is obvious that the eigenvalues of the monodromy matrix 
will be a function of the parameter a. A controller may now 
be designed to place the eigenvalues inside the unit circle (in 
this case at a circle of radius -0.9750). This can be achieved 
by solving the nonlinear equation. 
|eig(W(T,0,X(0)|-0.9750=0 (9) 

The numerical solution of this equation is plotted in Fig. 9. A 
look-up table can now be used to propose a supervising 
controller that adjusts the value of a depending on the value 
of Iref. Figures 10 and 11 show the action of this controller to 
stabilize the system at Iref=0.5A, where the system would 
normally be affected by the fast-scale bifurcation, and at 
Iref=0.75A, where the system would normally be affected by 
the fast-slow scale bifurcation. It is clear that instability is 
avoided in both cases and the system settles down to the 
stable period-1 limit cycle after a small transient.  

Eigenvalues 

Iref 
Real Eigenvalues 

Modulus 
(Complex 
Pair) 

Remarks 

0.4 -0.8510 0.9548 0.9931 Stable  
0.49 -0.9944 0.9545 0.9945 Stable 
0.5 -1.0092 0.9545 0.9952 Period-2 

0.55 -1.0836 0.9543 0.9962 Period-2 

0.6 -1.1547 0.9542 0.9971 Chaotic 
motion 

0.65 -1.2231 0.9540 0.9981 Chaotic 
motion 

0.7 -1.2890 0.9538 0.9991 Chaotic 
motion 

0.75   -1.3526 0.9537 1 Interacting 
bifurcation 

0.8 -1.4142 0.9535 1.0009 Interacting 
bifurcation 
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Fig. 9. Values of a to maintain stability.  
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Fig. 10. Time response showing the action of the first controller to stabilize 
the system at Iref=0.5A where the system is normally unstable as a result of a 
fast-scale bifurcation. 
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Fig. 11. Time response showing the action of the first controller to stabilize 
the system at Iref=0.75A where the system is normally unstable as a result of 
a fast-slow scale bifurcation. 

4.2 Adding a sinusoidal signal to Iref  

In this method, a small sinusoidal signal is added to the 
reference current such that Iref = Iref (1+Asin(ωst)., where ωs is 
the perturbation frequency set to the converter switching 

frequency (ωs=2π/T). This will affect the time derivative of 
h. 

( )( )tAIdTxdTxdTh sref ωsin1))()(())(,( 43 +−+=X
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The value of A to maintain stability can again be calculated 
by solving the following nonlinear transcendental equation. 
eig(W(T,0,X(0)|-0.9250=0  (10) 
The numerical solution of this equation is plotted in Fig. 12.  
Figs. 13 and 14 show the action of this controller to stabilize 
the system at Iref=0.5A, where the system would normally be 
affected by the fast-scale bifurcation, and at Iref=0.75A, 
where the system would normally be affected by the fast-
slow scale bifurcation. In both cases, the instability is 
avoided.  
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Fig. 12. Values of A to maintain stability. 
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Fig. 13. Time response showing the action of the second controller to 
stabilize the system at Iref=0.5A where the system is normally unstable as a 
result of a fast-scale bifurcation. 
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An open loop current-mode controlled Ćuk converter has 
been studied to demonstrate that higher order dc-dc 
converters operating with an inner current control loop can 
induce fast-slow scale bifurcation in the absence of an outer 
voltage closed loop. The phenomenon has been analyzed 
using the complete-cycle solution matrix (the monodromy 
matrix) of the system. Based on the expression for the 
saltation matrix of the system, we have proposed two 
possible controllers to control the fast and fast-slow scale 
bifurcations that normally occur in this circuit. Both 
controllers provide good results without adding any 
complicated control law.  
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