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Abstract—It is known that power electronic circuits like dc-dc
converters are highly nonlinear systems, and that period doubling
and Neimark-Sacker bifurcations are common sources of insta-
bility in such systems. It has also been shown that these two types of
bifurcation may interact, giving rise to interesting dynamical phe-
nomena. In this paper we show that in a current mode controlled
dc-dc converter, periodic, quasi-periodic, and saturation behavior
can coexist for the same parameter value, and there can be com-
plex interactions between them. Furthermore, abrupt exit to satu-
ration mode can be triggered by a torus-torus collision. Finally, we
report the first observation of three-frequency quasi-periodicity in
a power electronic system.

Index Terms—Dc-dc converters, fast scale instability, power elec-
tronics, slow scale instability.

I. INTRODUCTION

P OWER electronic circuits are normally designed to op-
erate in a periodic steady state. The region in the param-

eter space where this behavior can be obtained is delimited by
various instability conditions. The nature of these instabilities
has been recently understood in terms of nonlinear dynamics.

In this approach, the periodic orbit is sampled in synchro-
nism with the clock signal (called the Poincaré section), thus ob-
taining a discrete-time model or a map [1], [2]. The fixed point
of the map signifies the periodic orbit, and its stability is given
by the eigenvalues of the Jacobian matrix, computed at the fixed
point. There are two basic ways in which such a periodic orbit
may lose stability.

1) When an eigenvalue becomes equal to . The bifurca-
tion is called a period-doubling bifurcation, which results
in a period-2 orbit. This instability is not visible in an aver-
aged model, and so it is also called a “fast-scale” instability
[3]–[13].
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2) When a pair of complex conjugate eigenvalues assume
a magnitude of 1. This bifurcation is called a Neimark-
Sacker bifurcation, which results in the onset of a slow si-
nusoidal oscillation in the state variables. The orbit rests
on the surface of a torus. This instability can be predicted
using the averaged model, and so it is also called the “slow-
scale” instability [14]–[22].

In [23], [24], Chen, Tse, and others showed that dynamical
behaviors resulting from these two types of bifurcations can
interact, giving rise to interesting dynamics. In this paper we
further investigate this phenomenon using the technique devel-
oped in [25]–[27]. In these earlier papers we used the mon-
odromy matrix to determine the stability of a limit cycle and
to design a supervising control law that guarantees a stable op-
eration. In this paper we report the creation of a two-loop torus
through a Neimark-Sacker bifurcation occurring on a period-2
orbit. There are complex interactions between periodic orbits,
tori, and a saturation behavior, in which unstable tori play an
important role. We have detected the unstable tori, and have
demonstrated that the sudden departure from stable torus to a
saturation behavior is caused by a collision between a stable and
an unstable torus.

Also, in this system, under certain parameter choices a
peculiar phenomenon is observed, in which a third frequency
is generated and the waveform is modulated by this frequency.
We find that this is not a beat phenomenon earlier reported
in literature. In fact, the generation of the third frequency
is the result of an instability of the torus, which is like a
Neimark-Sacker bifurcation of the torus. This structurally
stable three-frequency quasi-periodicity is generally very rare
in nature, because small perturbations can destabilize the torus
[28]. It is surprising to encounter this behavior in an electrical
system, and this paper reports the first such observation. This
phenomenon has been previously reported only in mechanical
vibro-impacting systems [29]. For a more detailed exposure on
torus bifurcations, see [30], [31].

The paper is organized as follows. In Section II we de-
scribe the system under study and its mathematical model. In
the subsequent sections we present the bifurcation analysis
of the system. We present the observation of a subcritical
Neimark-Sacker bifurcation in Section III. The collision be-
tween a stable torus and an unstable torus, and the abrupt exit
to the saturated behavior is investigated in Section IV. The
observation of the Neimark-Sacker bifurcation of the torus and
the onset of three-frequency quasi-periodicity is reported in
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Fig. 1. Schematic diagram of the current mode controlled boost converter. The
nominal parameter value taken in this study are � � ��� � �� V, � �

�� � �� �, � � �	� �
, � � ���� �, � � ��� ��, � � ���� �,
� � ����� �, � � ���� �, � � �� �, � � ��� V, � � �� k�,
� � 	�� k�, � � �� k�, � � ��� nF, � � �����V, 	 � ��� V
�.

Section V. We have used the second-order Poincaré map [31],
[32] to investigate such instabilities of a quasi-periodic orbit.
In this technique a second Poincaré section is placed in the
discrete-time state space to investigate the stability of a torus.
The results of the application of this method is presented in
Section VI.

II. THE BOOST CONVERTER AND ITS MATHEMATICAL MODEL

The schematic diagram of the current mode controlled boost
converter is shown in Fig. 1. The switch is turned on by a
free running clock. When the switch is on, the inductor cur-
rent rises, and it is switched off when reaches a reference
value . This reference current signal is generated through
output voltage feedback, using a PI controller and a compensa-
tion ramp.

Considering the state vector , the mathemat-
ical model is given by [23], [24]

for and
for and

(1)

with

and , , , ,
, is the switching resistance, internal

resistance of the inductor, is the resistance of the capacitor,
and is the diode resistance.

In the normal operating condition, the state variables of the
converter follow a period-1 orbit. But, with the variation of the
external parameters like the input voltage or the load resistance,
this orbit may become unstable, and other dynamical modes
may come into operation.

Fig. 2. Two-parameter bifurcation diagram.

It has been shown earlier [25]–[27] that the stability of such
an orbit can be assessed by computing the state transition ma-
trix over a complete clock cycle (called the monodromy matrix),
which, in turn, is composed of the state transition matrices over
the ON and OFF periods and those across the switching events
(called the saltation matrices). The orbit is stable if the eigen-
values of the monodromy matrix are inside the unit circle.

It has to be noted that the stability analysis presented in this
paper is based on the eigenvalues of the invariant sets (limit
cycles, fixed points, and tori) and not on a normal form rep-
resentation of the system [30]. We chose this approach as it is
considered to be more common in power electronic circuits [1],
[33].

In the two-dimensional parameter plane ( versus ) the
positions of the bifurcation lines corresponding to fast-scale
and slow-scale instabilities of the period-1 orbit are shown in
Fig. 2. It is seen that there exists a region where the nominal
period-1 orbit is stable. It is bounded by a line representing the
onset of a fast-scale instability and a line representing the onset
of a slow-scale instability. If we vary the parameter across the
second line, we find that the post-instability behavior diverges,
and the system goes into saturation. There is however a region
where the period-2 behavior undergoes the Neimark-Sacker bi-
furcation, and there is interaction between a fast-scale and a
slow-scale bifurcation. In this paper we mainly focus on the dy-
namics resulting from this interaction.

III. SUBCRITICAL NEIMARK-SACKER BIFURCATION

From Fig. 2 we expect that at , if the param-
eter is slowly reduced, a stable fixed point would undergo a
Neimark-Sacker bifurcation. In this section we probe this phe-
nomenon closely.

As the parameter is reduced, the eigenvalues of the pe-
riod 1 orbit were calculated using the technique developed in
[25]–[27] and are shown in Table I. It shows that a complex con-
jugate pair of eigenvalues went out of the unit circle at

V, which marks a Neimark-Sacker bifurcation. But for
V, the saturation behavior also exists as a coex-

isting attractor which could be reached from a set of initial con-
ditions (see Fig. 3). The basins of attraction of the two attractors
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Fig. 3. Time response for � � �� V and � � ���� V, showing the exit to
the saturation behaviour.

Fig. 4. The white area corresponds to the region of attraction of the period-1
orbit, while the basin of attraction of the saturated behavior is represented by
black. (a) � � ��� V. (b) � � ���� V.

TABLE I
FLOQUET MULTIPLIERS OF THE PERIOD 1 ORBIT FOR � � �� �

are shown in Fig. 4. In order to draw the region of attractions we
fixed the value of the 3rd state to a constant value. This value was
found by locating the plane where the invariant torus lies (using
a simple equation ) and then choosing the
initial conditions from the plane. While operating in the stable
period-1 orbit, if the state is perturbed (due to noise or other
means) beyond its basin of attraction, the converter would op-
erate in a saturation mode even though the parameter values in-
dicate that the period-1 behavior is stable.

These two stable behaviors are separated in the state space
by an unstable torus (a closed loop in discrete time) that is born
at V in a subcritical Neimark-Sacker bifurcation.
The situation becomes clearer when we plot the bifurcation di-
agram including the unstable orbits (Fig. 5). As the parameter
is reduced, the unstable torus collapses onto the stable period 1
orbit marking the onset of a subcritical Neimark-Sacker bifurca-
tion. This explains why, as the paremeter is smoothly reduced,
the orbit abruptly jumps from the period-1 stable behavior to the
undesirable saturated behavior at V.

Fig. 5. Bifurcation diagram for � � �� � showing the unstable torus col-
lapsing to the stable period 1 attractor at � � ����� V.

IV. COLLISION BETWEEN TORI

According to Fig. 2 for if the parameter is
reduced continuously, we expect to go from period 1 to period
2 through a period doubling bifurcation. As the parameter is
further reduced, at some point there will be a slow-scale bifur-
cation. The period-2 orbit may bifurcate further (leading to pe-
riod-4, period-8, or higher periodic orbit), before the slow-scale
bifurcation occurs. In this section we focus on this sequence of
events, and the resulting global dynamics.

A typical bifurcation diagram in this range is shown in Fig. 6.
As the parameter is reduced, there is a period doubling bifur-
cation at V (The duty ratio is 0.8575 and the
eigenvalues are and ), followed by
a Neimark-Sacker bifurcation of the period 2 orbit at

V. At that parameter value, the duty ratios of the two
cycles in a period are 0.9715 and 0.7441, and the eigenvalues
of the period-2 orbit are 0.9969, and with
modulus 1.0000. Following the latter bifurcation, the situation
in the discrete-time state space is as follows. There is an un-
stable period-1 fixed point with a stable two-dimensional man-
ifold and an unstable one-dimensional manifold. The unstable
manifold reaches out to the two unstable period-2 points. Each
of these points has a stable one-dimensional manifold and an un-
stable two-dimensional manifold on which the stable quasi-pe-
riodic behavior lies. Thus, each point of the period-2 orbit is
surrounded by a closed loop representing the torus. The situa-
tion is depicted in Fig. 7, obtained by placing an initial condi-
tion very close to the stable two-dimensional manifold of the
unstable period-1 fixed point, and observing the iterates.

The torus created at this bifurcation expands fast and soon the
expansion is arrested as it hits a nonsmoothness boundary. So
far all the bifurcations were smooth in nature, and there was one
switching cycle in each clock cycle. At this point cycles begin
to be skipped without switching (see Fig. 8).

As the parameter is further reduced, at V
the unstable period-2 orbit becomes stable at a border colli-
sion (see Fig. 9), i.e., for V every clock cycle
contains a switching while for V every alter-
nate cycle is skipped without switching. Hence in the range

we have an unstable period-1 fixed point,
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Fig. 6. Bifurcation diagram for � � �� �.

Fig. 7. System’s response at � � ������ V, � � �� � starting from an
initial condition close to the stable manifold of the period-1 fixed point.

Fig. 8. Waveform of the control signal showing the border collision (onset of
skipped cycles) that arrested the expansion of the quasi-periodic orbit; � �

������ V, � � �� �.

a stable period-2 fixed point, a stable torus, the saturation at-
tractor, and 2 unstable tori—one that separates the stable pe-
riod-2 orbit from the stable torus and one that separates the
stable torus from the saturation attractor. These orbits and the
basins of attraction are shown in Fig. 10.

An interesting event unfolds as the parameter is reduced fur-
ther, to around V, when the orbit diverges to
the saturation attractor. Our investigation revealed that as the

Fig. 9. The waveforms of � and the control voltage� �� at� � ���: (a)
the waveform of the unstable period-2 orbit for � � �����V (obtained by lo-
cating the unstable fixed point of the Poincaré map by the technique described
in [34]), (b) the waveform of the stable period-2 orbit for � � ����� V,
showing the border collision (onset of skipped cycles) that stabilized the un-
stable period-2 orbit. The eigenvalues jumped from 0.995689 and ��		
��
�
���
����� (modulus 1.000653) to ���	
���
 and ��		��
�� ���
��	��

(modulus 0.998341) as a result of the border collision.

Fig. 10. Regions of attraction for � � �� �, (a) � � ����: a stable pe-
riod 1 orbit, a saturation attractor, and an unstable torus whose stable manifold
forms the basin boundary, (b) � � �����: a stable period-2 orbit, a saturation
attractor, and an unstable torus forming the basin boundary, (c) � � ����: a
stable period-2 fixed point, a stable torus, the saturation attractor and two un-
stable tori dividing the basins of attraction, (d) � � ����
�: as before but just
before the torus-torus collision. The attractors in (a) and (b) are represented by
their � -return maps while in (c) and (d) by their �� -return maps.

parameter approaches this value, the second stable torus and
the unstable torus approach each other and at that parameter
value they merge and disappear. This event is reminiscent of
a saddle-node bifurcation, where the participating orbits are a
stable torus and an unstable torus. After this event, any initial
condition outside the first unstable torus diverges to the satura-
tion attractor.

V. THREE-FREQUENCY QUASI-PERIODICITY

Based on Fig. 2 we do not expect any qualitative change in
the bifurcation behavior in the range from (the
codimension-2 bifurcation point) and . Yet, when the
one-parameter bifurcation diagram is plotted along the section

(Fig. 11), we see an interesting phenomenon at
V, just before the torus-torus collision. Looking at

the two-dimensional -sampled trajectory (Fig. 12) we see that
at V there are two loops around the two points of
the unstable period-2 orbit. When the parameter is reduced to

V, the discrete-time picture itself takes the shape
of a torus. The spectrum (Fig. 13) reveals that at this point a
third frequency component is added, and hence the behavior is
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Fig. 11. Bifurcation diagram for � � ���� �.

Fig. 12. Trajectories for � � ����� V (in black) and � � ����� V (in
gray) sampled every � seconds.

Fig. 13. Frequency spectra for � � ���� �, (a) for � � ����� V and (b)
for � � ����� V.

a three-frequency quasi-periodicity with two loops. Such a dy-
namical behavior is extremely rare in nature, and to our knowl-
edge this is the first time it has been found in an engineering
system.

As the parameter is further reduced, the three-frequency torus
is destroyed when it collides with the unstable torus, as shown
in Fig. 14.

VI. INVESTIGATION USING A SECOND POINCARÉ SECTION

In order to investigate the phenomena reported in Sections IV
and V, we adopt the technique of second Poincaré section
[35]–[37]. The system is time driven with periodicity , and
the objects under study are two-loop tori. In order to concentrate
on one of them, we sample the trajectory at every seconds,
thus obtain points on the Poincaré section that form one loop.
Our intention is to study the stability and bifurcation of this
quasi-periodic behavior.

Fig. 14. Regions of attraction for � � ���� � and (a) � � �����V and (b)
� � ����	 V and � � ����� V, sampled at �
.

Now we place a “second Poincaré section” (say, at
A) to intersect the closed curve on which the

points of the -sampled quasi-periodic orbit fall (Fig. 15).
Thus, the procedure involves a combination of a stroboscopic
section obtained using the map, and a standard Poincaré
section. Since the points in general would not fall on this plane,
we take three points before and three points after the crossing,
and use a spline interpolation. We thus obtain the point where
the curve passing through the discrete-time trajectory intersects
the second Poincaré section. For the stable quasi-periodic orbit,
this procedure yields a fixed point in steady state.

Now we assume that the dynamics on this second Poincaré
section, in the neighborhood of the fixed point, is given by a
linear equation of the form

where represents the deviation from the fixed point. In order to
assess the stability of the quasi-periodic orbit, we need to eval-
uate the Jacobian matrix at the fixed point. If we place the
second Poincaré section on a point of the quasi-periodic drift
ring, the iterates starting from that point go around the loop and
cross the same point 83 iterates later. In order to calculate the
stability of the whole quasi-periodic orbit, we have to multiply
the state transition matrices across each of these 83 clock cy-
cles. The state transition matrix across a whole clock cycle is
called a “monodromy matrix” which is the product of the ex-
ponential matrices for the ON and OFF periods and the saltation
matrices across the switching events [25], [26] occurring in that
cycle. We calculated the time durations spent in the ON and OFF

phase in each cycle, and thus calculated the monodromy ma-
trix in each cycle. The product of the 83 monodromy matrices
gives the local linear approximation around the fixed point on
the second Poincaré section. The eigenvalues of this Jacobian
matrix gives the stability of the fixed point.

Table II shows the eigenvalues thus obtained, as the param-
eter is reduced to the bifurcation value. It is clearly seen that
the eigenvalues are complex conjugate, and the magnitude ap-
proaches unity as the parameter value of V is
approached.
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Fig. 15. The twice sampled state space, once at �� and once when � � ���A.
Top: when the torus is stable, for � � ����� V, bottom: when the three-
frequency torus develops, for � � ����� V.

TABLE II
EIGENVALUES OF THE FIXED POINT ON THE SECOND POINCARÉ SECTION. IT

SHOWS THAT THE NEIMARK-SACKER BIFURCATION OF THE TORUS OCCURS AT

� � ����� V

In order to check the result, we gave a purturbation in the ini-
tial condition. Since the torus is now stable, the iterates will go
around the torus and will move progressively closer to it. We
record the subsequent intersections with the second Poincaré
section, which are shown in Fig. 16. Using the positions of two
such piercing points, one can obtain the matrix , and its eigen-
values. The eigenvalues obtained this way are very close to the
ones shown in Table II. Therefore we conclude that, as is
reduced, the complex conjugate eigenvalues approach a mag-
nitude of unity, and at the bifurcation point, the magnitude be-
comes unity.

Fig. 15 shows that before the onset of this instability, the
second Poincaré section could see one point. After the onset of
this instability a loop develops. This suggests that a Neimark-
Sacker type bifurcation took place on the already existing torus.

In case of the torus-torus collision described in Section IV, we
applied the method of second Poincaré section. In this case there
is no rotation, and the iterates approach the fixed point along a
linear path (which indicates that the eigenvalues should be real
and positive). The Jacobian matrix was again calculated as a

Fig. 16. Second Poincaré points. (a) � � ����� V, (b) � � ����	 V.

TABLE III
EIGENVALUES OF THE FIXED POINT ON THE SECOND POINCARÉ SECTION, AS

THE TORUS-TORUS COLLISION IS APPROACHED

product of 84 monodromy matrices, and the resulting evolution
of the eigenvalues is tabulated in Table III.

From this table it is clear that one eigenvalue approaches
as the parameter approaches the bifurcation value. Thus, this
bifurcation is torus equivalent of the saddle-node bifurcation,
at which a node and a saddle on the second Poincaré section
merge and disappear. In the state space we observe the merging
of a stable torus and an unstable torus, and the disappearance of
both.

VII. PROPAGATION OF NEIMARK-SACKER BIFURCATIONS

Another interesting phenomenon is noticed if the eigenvalues
of the orbits are calculated along the bifurcation diagrams in
Figs. 5, 6, and 11. We find that where the unstable period-1 orbit
goes through a Neimark-Sacker bifurcation (i.e., two complex
conjugate eigenvalues assume a magnitude of 1), the higher pe-
riodic orbits that had resulted from the period doubling bifur-
cations also undergo a similar event (of course there is a possi-
bility that the two phenomena do not occur at the same instant
as our analysis is restricted due to numerical inaccuracies). For
example, in the case of Fig. 11 ( ), the period-1 orbit
bifurcated into a period-2 orbit at V. Following the
unstable period-1 orbit, we find that at V the Flo-
quet multipliers assume the values ,
(the absolute value and phase of the complex multipliers are 1
and 0.0375 radians respectively). At the same parameter value,
if we calculate the Floquet multipliers of the period-2 orbit, we
find them to be , (the absolute value
and phase of the complex eigenvalues are 1 and 0.0754 radians
respectively). At this point we see the onset of another two-loop
torus. This implies that the instability of the period-1 orbit along
the eigenplane associated with the complex eigenvalues propa-
gates to the period-2 orbit, and induces a similar instability in
that orbit also. If the period-2 orbit had further bifurcated before
the onset of the Neimark-Sacker bifurcation, the same phenom-
enon would be seen in the resulting high-periodic orbit.

VIII. CONCLUSIONS

We have investigated the dynamics of a current mode con-
trolled boost converter which exhibits both fast-scale and slow-
scale instabilities. We focused our attention on the parameter
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ranges where the dynamics resulting from these two types of
instabilities interact.

In this system there is a range of the parameters where the
dynamics abruptly change from a period-1 behavior to a satu-
ration behavior at a bifurcation point. We have shown that this
behavior is caused by a subcritical Neimark-Sacker bifurcation.

In another parameter range, a fast-scale (period doubling) bi-
furcation is followed by a supercritical Neimark-Sacker bifur-
cation occurring in the period-doubled orbit. This results in a
two-loop torus. Subsequently the unstable period-2 orbit be-
comes stable through a border collision bifurcation. In that situ-
ation there are three attractors: the two-loop torus, the period-2
orbit, and the saturation attractor. These three stable behaviors
are enclosed in their own basins of attraction, which are sep-
arated by two unstable tori. As the parameter is varied, a pair
of stable and unstable tori collide and disappear. The observ-
able signature of this event is an abrupt exit to the saturation
behavior.

We have also demonstrated a new type of dynamics where a
third frequency is spontaneously generated in the system, and
the waveform is modulated by this slow frequency component.
This three-frequency quasi-periodicity is an extremely rare phe-
nomenon in nature, and has been reported for the first time in an
engineering system.

In investigating the stability of quasi-periodic orbits, and in
understanding the bifurcations occurring on the tori, we have
adoped the method of second Poincaré section. In this approach
we place a second Poincaré section to intersect the closed loop
on which the points obtained through stroboscopic sampling lie.
In that plane, the quasi-periodic orbit would be represented by a
fixed point. We have presented a method of obtaining the Jaco-
bian matrix at the fixed point. Calculation of the eigenvalues of
the Jacobian matrix indicates that the generation of the three-fre-
quency quasi-periodicity is caused by another Neimark-Sacker
type bifurcation (complex conjugate eigenvalues reaching the
unit circle) occurring on the torus, while the collision of the
stable and unstable tori is akin to the saddle-node bifurcation
(one eigenvalue reaching ) where the participating orbits are
tori instead of fixed points.

Finally, we have shown that a Neimark-Sacker bifurcation
can propagate from a period-1 orbit to the orbits that result from
period-doubling of that orbit.
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