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ABSTRACT 

This paper presents two different methods to control a Magnetic Suspension System (MSS).  The first 
control method uses a Jacobian linearisation of the MSS around an Equilibrium Point (EP), with a 
classical Pole Placement (PP) controller.  The second method uses Input State Linearisation (ISL) of the 
nonlinear model followed by a PP controller.  Robustness tests on both methods are described. The 
advantages and the disadvantages of each method are indicated and methods of further improvement 
suggested.  

INTRODUCTION 

The basic characteristic of a MSS is that it can suspend objects without any contact.  A classical MSS 
(Fig. 1) consists of an electromagnet and a steel ball.  The resultant force on the ball is the difference 
between the electromagnetic force, which comes from the magnet, and the force of gravity.  In the 
idealised case where the resultant force is zero the ball would balance at a distance xe from the magnet 
(this is called the EP).  Unfortunately because of disturbances, which cannot be modelled exactly, the ball 
would either move towards to the electromagnet and strike the coil or would fall to the ground; thus the 
system is unstable if the current is constant and there is no feedback.  Additionally the electromagnetic 
force is a function of the square of the current in the coil.  Thus the system is also nonlinear as well as 
being unstable.  

In Fig. 1 i is the current at the coil, u is the voltage supply to the 

 

 

coil, R is the resistance of the coil, L is the inductance of the coil, 
x is the distance of the steel ball from the electromagnet, m is the 
mass of the steel ball, B is the gravitational force, f is the 
electromagnetic force applied to the steel ball. The force f, the 
current i, the voltage u and the distance x are all functions of 
time.   

EQUATIONS OF THE MSS 

The resultant force on the ball, assuming simple Newtonian 
dynamics with negligible friction, can be expressed as: 
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Fig. 1  Schematic of a MSS 
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where W is the energy of the electromagnet and g is the acceleration due to  gravity.  According to [1] the 
inductance function can be modelled in the following exponential form: 
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where 1)( LL =∞ , 01)0( LLL += , a  is a length constant.  Thus using eqn. 2 in eqn. 1 gives: 
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and: 
dt
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Using eqn. 2 with eqn. 4 gives: 
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The states of the system are: ixxxxx ===
•

321 ,, , the input of the system is u  and the output is x.  

Also the ratio 
ma
L

2
0 is constant and hence for simplicity it can be replaced by a constant gain k.  Hence 

the nonlinear system is defined by: 
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The parameters that define the model were taken from [1] and are: coil inductance L1 0.349 H, coil 
inductance L0 0.229 H, constant α 6.66 mm, mass of the ball m 0.8 kg, acceleration of gravity g 9.81 m/s2 
and coil resistance R 4.3 Ohm. 



 

JACOBIAN LINEARISATION AND POLE PLACEMENT 

The Lyapunov linearisation method allows a nonlinear model to be simplified (linearised) around an EP.  

The EPs of a system can be found by setting 0=
•
X  hence: 
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For simplicity the parameters ie and xe will be written as I and d respectively.  So the linearised model 
around the EP (d,0,I) is: 
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The linearised system can be represented in the usual state space form by the matrices A, B, C (D=0, 
since there is no direct input-output coupling).  Using the variables from [1] and for d=1cm these matrices 
are: 
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This linearised system can be used to investigate several control laws.  Since a state space 
representation is used the choice of the PP control law was obvious as the system is controllable.  The 
closed loop system is BKAACL −= , BFBCL =  and CCCL = , where K will be found from the PP 
control law and F from the error criteria.  The desired pole locations were chosen to be [-1 –2 –3].  With 
the use of Matlab the state gain vector was found to be K=[-258.1  -32.34   -1.9], the closed loop matrices 

were found to be: 
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CLB .  Finally the gain matrix F, using 

trial and error methods, was found to be -0.00175. 
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Fig. 2  Step response of the Jacobian linearised system with pole placement control law 

INPUT STATE LINEARISATION 

Theory Background 

The previous method, even though it is straightforward, has a very big drawback.  This comes from the 
fact that the whole operating region of the system must be suppressed around the EP.  The system may 
not work at all outside this region since the linear controller will be unable to compensate the 
nonlinearities that will appear as soon as the system moves far away from the EP.  There are various 
ways to overcome this problem.  One method that has been used in many difficult problems is ISL.  This 
powerful method is based on use of a transformation of the states and a transformation of the input; to 
describe the system in a linear way.  Then a simple linear controller can be applied.  For more detailed 
information about this method see [2].  

According to [2] the basic steps of the ISL are: 

1. The Single Input Single Output (SISO) system must be represented by the state equations: 
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 i.e. to be in a companion form.  This means that the input signal appears 
only in its natural form and not via its derivatives, also f and g represent smooth vector fields, i.e. 
are continuous and their high derivatives exist.  If the system is not in this form then some kind of 
transformation must be applied. 

2. Construct the vector fields: gadgadg n
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3. Check if the controllability and involutivity conditions are satisfied. The term involutivity means: 
that from a set of vector fields if the lie bracket of two is taken then the resultant vector field can 
be expressed as a linear combination of the original set of the vector fields. 
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7. Calculate the new linear control law v. 



 

ISL and MSS 

The vector fields f, g are: 
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According to [3] the system can be input state linearised if a<<x.   

Hence: a
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where v is the new linear control law.  Since the system is controllable (a requirement for the ISL) a pole 
placement control law was chosen. 

The system now can be described as BvAzz +=
•
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control law placed the closed loop poles at [-1 -2 -3].  Typical step responses are shown in Fig. 3 and 4. 
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 Fig. 3  Step response for input 0.1m with ISL Fig. 4  Step response for input -0.1m with ISL 

Figs. 3-4 show that when the input signal changes sign the output does also (not a practical 
consequence, this simply reflects the symmetry of the assumed model).  So the system exhibits linear 
behaviour.  Also the error was very small in all these cases.  

ROBUSTNESS 

The two compensating methods above have been checked for their robustness.  Two tests have been 
applied for that.  In the first the parameter sensitivity was checked and in the second the performance of 
the system in the presence of noise signals evaluated.  

Jacobian Linearised System  

The parameter that was changed was the mass.  The variation was –30% & +30% of the nominal value. 
The behaviour of the system showed very good robustness against the mass change, see Fig. 5. 
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Fig. 5  Jacobian linearised system’s sensitivity to mass changes 

Input State Linearisation 

The same tests were done for the system using ISL.  The response of the system due to mass changes 
was not as satisfactory as before, Fig. 6.  Finally the system using ISL was checked for disturbance 
rejection.  A white noise signal was added to simulate the effect of an external unmodelled force.  As can 
be seen in Fig. 7 the output depends a lot on the noise power.  The idea of input state linearisation is 
based on accurate modelling of the system.  Since the disturbance force is not modelled in the systems 
equations it is natural that the system’s noise rejection is poor. 
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 Fig. 6  System’s sensitivity to mass changes with ISL Fig. 7  Disturbance rejection with ISL 

CONCLUSIONS 

A system, which is both highly nonlinear and open loop unstable, was investigated using two different 
compensating methods.  The first applied simple Jacobian linearisation and in the second an ISL scheme 
was used; a pole placement control law followed both linearisation techniques.  The simulation results 
showed that the system using ISL could have a very wide operation region.  Hence it overcame the 
classical problem that the Jacobian linearisation may have, where such a linear controller cannot 
satisfactorily control the system outside a small region near the EP.  The problem with the ISL is that the 
model has to be very accurate.  In the presence of noise the system with ISL can show poor behaviour.  
Both compensation schemes can be very good depending on the application.  If the application requires a 
small operating region and parameter variations such as mass or electrical resistance changes are likely 
to be small then the Jacobian technique can be good.  If the system needs to have a wide operating 
region then the ISL is better assuming that its model is accurate.  To further improve the behaviour of the 
ISL scheme adaptive robust techniques can be used.  
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