
ww.sciencedirect.com

i n t e r n a t i o n a l j o u r n a l o f h yd r o g e n e n e r g y x x x ( 2 0 1 2 ) 1e1 1
Available online at w
journal homepage: www.elsevier .com/locate/he
Nonlinear stability analysis and a new design methodology
for a PEM fuel cell fed DCeDC boost converter
Damian Giaouris a,b,*, Fotis Stergiopoulos b,c, Chrysovalantou Ziogou b, Dimitris Ipsakis b,
Soumitro Banerjee d, Bashar Zahawi a, Volker Pickert a, Spyros Voutetakis b,
Simira Papadopoulou b,c

a School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne NE1-7RU, UK
bChemical Process Engineering Research Institute (C.P.E.R.I.), Centre for Research and Technology Hellas (CE.R.T.H.), P.O. Box 60361,

57001 Thermi-Thessaloniki, Greece
cDepartment of Automation, Alexander Technological Educational Institute of Thessaloniki, P.O. Box 141, 57400 Thessaloniki, Greece
d IISER-Kolkata, Mohanpur Campus, Nadia 741252, India
a r t i c l e i n f o

Article history:

Received 23 January 2012

Received in revised form

31 August 2012

Accepted 1 September 2012

Available online xxx

Keywords:

PEM fuel cell

Boost converter

Nonlinear stability analysis

Bifurcation

Chaos
* Corresponding author. Chemical Process
(CE.R.T.H.), P.O. Box 60361, 57001 Thermi-Th

E-mail addresses: damian.giaouris@ncl.a

Please cite this article in press as: Giaour
cell fed DCeDC boost converter,
j.ijhydene.2012.09.002

0360-3199/$ e see front matter Copyright ª
http://dx.doi.org/10.1016/j.ijhydene.2012.09.0
a b s t r a c t

The dynamical behaviour of a fuel cell feeding a boost converter is studied in this paper. A

nonlinear model of the combined system is derived including the effect of the switching

action of the converter. Using Filippov’s theory, it is possible to analytically study the

bifurcation patterns of the system and to demonstrate that the system loses stability

through a period doubling bifurcation. To overcome this instability, we inject a high

frequency sinusoidal signal into the system that forces the system to remain stable while

at the same time retaining its basic slow scale properties (like the steady state error). This

controller is simple to implement and does not require any special hardware. The stability

analysis and new controller design method presented in this paper allow for the re-design

of the converter to stabilize circuit operation with a substantially reduced inductor size,

reducing the size and cost of the converter while maintaining its average currents and

voltages and other circuit steady-state behaviour characteristics. The results are confirmed

by using numerical and analytical tools.

Copyright ª 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

reserved.
1. Introduction more, they are suitable for both stationary and mobile
Fuel Cells (FCs) open a path to integrated energy systems

since they are able to simultaneously address environ-

mental challenges and major energy issues. FCs have

received significant attention in the past 15 years and are

expected to play an increasingly important role in future

power generation facilities due to their flexibility to adapt to

intermittent and diverse renewable energy sources. What’s
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applications.

Existing categories of FC systems are mainly based on the

type of electrolyte used and the operating conditions. In

recent years there has been an increasing interest in utilizing

Proton Exchange Membrane (PEM) FC systems for small

portable, mobile or stationary applications. This type of FC is

currently considered to be in a relatively more developed

stage. PEMFCs utilize hydrogen and air to produce electricity
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Nomenclature

Aon, Bon State and input matrices during the on interval

Aoff, Boff State and input matrices during the off interval

a Gain of high frequency injection controller

C Boost converter capacitance, F

CAct Fuel cell capacitance, F

cO2 Oxygen concentration, mol/cm3

D Equilibrium of duty cycle

E Eigenmatrix of the monodromy matrix

ENerst Open circuit fuel cell voltage, V

f General vector field

fon, foff Vector fields

h Scalar function of S

Kp, Ki PI gains

k Number of fuel cells

iL Output current of the fuel cell, A

Iref Steady state reference current, A

Jon, Joff Jacobians of foff and fon
n Normal vector of S

L Boost converter inductance, H

R Boost converter load, U

RAct Fuel cell activation losses, U

ROhm Fuel cell Ohmic losses, U

S Electronic switch

T Switching period, s

Te FC temperature, K

tk, k ˛ N Time instances, s

ton Interval where S is closed, s

VAct Activation voltage drop, V

VCell Fuel cell output, V

Vin Input voltage, V

VOhm Ohmic voltage drop, V

Vref Demanded output voltage, V

vc Output voltage of boost converter, V

vep Equilibrium of input voltage, V

x State vector

x0 Initial state vector

xep Equilibrium of state vector

xk, k ˛ R State variables

Greek symbols

d Small perturbation

DiL Inductor current ripple, A

Dvc Output voltage ripple, V

Df (t, t0, x0) Perturbation vector

L Jordan canonical form of the monodromy matrix.

xk, k ˛ N Constants

S Switching manifold

f (t, t0, x0) General solution

F (t, t0) State transition matrix

F (T þ t0, t0) Monodromy matrix

j Angle of high frequency injection controller
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and water. They have high power density, use solid electro-

lyte, have a long stack life and enjoy low degradation rates.

The control of critical operating parameters such as the input

flows of air and hydrogen, pressure and operating tempera-

ture, the management of water and the choice of the oper-

ating region lead to different characteristics for the system in

terms of its profitability, effectiveness and safety.

In order to regulate the FC voltage output level, a power

converter is necessary. Various converter topologies have

been proposed depending on the application [1] with a boost

converter being a popular choice [2]. The nonlinear behaviour

of power converters has been extensively studied in

numerous publications [3e5,13], which clearly demonstrate

that the switching action required to step up the input voltage

can cause various instabilities (called bifurcations) and can

render the system behaviour unstable or even chaotic. More

specifically, the switching action places a hyper-surface in the

state space that forces the state trajectory to change when it

crosses or touches this surface. This induces a number of

nonlinear phenomena that are common to other nonlinear

systems like period doubling bifurcations or the ones specific

to nonsmooth systems like border collisions [5].

In this paper we study the interaction of these

phenomena with the nonlinear behaviour of the FC which

may cause the system to behave in an unpredictable or

chaotic manner. This can have a direct effect on the life time

of the FC as the resulting current ripple which increases

when the converter becomes unstable, can damage the

membranes of the FC [22]. In the past it was believed that the

slow behaviour of the FC does not interact with the fast scale
Please cite this article in press as: Giaouris D, et al., Nonlinear sta
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nonlinearities of the converter. However, it has been recently

demonstrated [6,20] that it is possible for the voltage/current

controlled boost converter to exhibit slow scale bifurcations

[3] and these may interact with the slow scale dynamics of

the FC.

As the industry demands more efficient systems with

complicated multilevel and bidirectional power converters, it

is imperative to study and understand these nonlinearities

with the aim of avoiding them. The main goal of this paper is

to provide the necessary tools to analytically study the

combined system, to describe the nonlinear behaviour of the

combined system, and to offer a robust but easy to implement

control algorithm that guarantees a fast and stable response.

Furthermore, we show that it is possible to reduce the

inductance of the power converter by almost 50% using the

proposed method, and still to have a stable system. This

makes the system fast, light, cheap, and stable.

The paper is organized as follows: in Section 2 the system is

described with emphasis on the boost converter and its basic

properties. The full nonlinear model of the boost converter,

the FC, the voltage PI controller and the current peak

controller are derived in this section. In Section 3 we present

briefly the stability analysis of its orbits, while in Section 4 we

use the derived nonlinear and nonsmooth model with the

aforementioned theory to analytically study the stability of

the combined system. In the last section we propose a new

supervising controller that stabilizes the system and this

allows us to re-design the converter with a smaller inductance

that can greatly improve the speed, cost, and weight of the

combined system.
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Table 1 e Parameters of the electrochemical model.

Electrochemical parameters

Parameter Value

x1, x2, x3, x4 1.3205, �3.12∙10�3, 1.87∙10�4, �7.4∙10�5

x5, x6, x7 3.3∙10�3, �7.55∙10�6, 7.85∙10�4

Fig. 1 e Fuel cell equivalent circuit allowing for the double

charge phenomenon.
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2. System description

2.1. Fuel cell

Typical characteristics of FC are normally expressed in the

form of a polarization curve, which is a plot of cell voltage

versus cell overall current density. To determine the volta-

geecurrent relationship of the cell, the cell voltage has to be

defined as the difference between the ideal Nernst voltage and

a number of voltage losses, which include the activation,

Ohmic and concentration losses (which are ignored in this

paper as we work in a region where they are negligible). The

equation that takes into consideration the above voltage drops

expresses [7] the output cell voltage as:

VCell ¼ ENernst � VAct � VOhm (1)

where VCell is the FC output cell voltage, ENerst is the FC Open

Circuit Voltage (OCV) and VAct, VOhm are voltage drops that are

functions of the current drawn from the FC.

Generally, the open circuit voltage depends on a number of

factors like the temperature and the partial pressures of the

gasses (air, H2) but in this paper we assume that it is constant

at 1.236 V [7], calculated at constant temperature and pressure

conditions (65 �C, 1 Bar).

The activation drop is caused by the slowness of the

reactions taking place on the surface of the electrodes. A part

of the generated voltage is lost due to the chemical reaction

that transfers the electrons to or from the electrodes. The

activation losses are described by the Tafel equation [8]:

VAct ¼ x1 þ x2Te þ x3TelnðiLÞ þ x4Teln
�
cO2

�
(2)

The form of (2) is considered to be a parametric equivalent

of the general ButlereVolmer equation used to describe

reaction kinetics at electrodes. This form has been derived

from J.C. Amphlet et al. [21] and simplifies experimental

validation by lumping all constant parameters of the fuel cell

to xi’s. The only limitation of this equation is the fact that it is

defined at all positive values of current in the operating range

but not at zero current.

At some point, Ohmic and concentration losses prevail and

the activation overvoltage is considered to be negligible at

higher currents.

This description for the activation overvoltage takes into

account the concentration of oxygen at the catalyst layer and

various experimentally defined parametric coefficients.

At a later stage of the fuel cell operation, as current density

rises, Ohmic voltage drops (VOhm) prevail. They are derived

from the membrane resistance to the flow of electrons

through the material of the electrodes and the various inter-

connections, as well as by the resistance to the flow of protons

through the electrolyte:

VOhm ¼ ðx5 þ x6Tþ x7iLÞiL (3)

In the above equations xk, (k ¼ 1.7) represent experimen-

tally defined parametric coefficients whose values can vary

from stack to stack. The values of these parameters used in

this work are presented in Table 1 [7].
Please cite this article in press as: Giaouris D, et al., Nonlinear sta
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The FC behaviour can also be modelled by an electrical

equivalent circuit. This representation is based on the charge

double layer phenomenon, which suggests that sudden

changes in the current output of the FC do not imply sudden

changes in its output voltage; instead there is a considerable

time delay of a few seconds [9].

The resulting equivalent electric circuit of the FC is shown

in Fig. 1 [9], where ROhm represents the Ohmic losses, RAct the

activation losses and CAct is included to represent the double

charge phenomenon. Using simple circuit theory techniques

the equations for the activation and the Ohmic voltage drops

are obtained:

RActðiLÞ ¼ VAct

iL
¼ x1 þ x2Te þ x3TelnðiLÞ þ x4Teln

�
cO2

�
iL

(4)

ROhmðiLÞ ¼ VOhm

iL
¼ x5 þ x6Te þ x7iL (5)

Experimentally, it has been observed that the capacitance

CAct is given by:

CActðiLÞ ¼ 1
3RActðiLÞ (6)

Thus the nonlinear dynamical model that describes the FC

is given by:

dVAct

dt
¼ 1

CActðiLÞ
�
iL � VAct

RActðiLÞ
�

(7)

Therefore the overall produced voltage is calculated as:

VCell ¼ Enerst � VAct � iLROhmðiLÞ (8)

In order to assess the validity of the proposed model,

a small-scale fully automated FC unit was used to generate

experimental data under various conditions. The proposed

model has been validated against experimental plant data
bility analysis and a new design methodology for a PEM fuel
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Fig. 3 e Schematic diagram of the boost converter.
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generated by the PEM fuel cell [7]. Fig. 2a illustrates the steady-

state output of the model against the real behaviour of the FC.

The graph shows that the model is reasonably accurate in the

steady state. The voltagewill slowly change as described by (6)

and (7) during transients, i.e., when the FC current changes. If

there is a step increase in current, the voltage will immedi-

ately drop (due to the term iL ROhm) and then it will continue to

decrease exponentially until it reaches a steady state (Fig. 2b).

Both models (the one presented in [7] and the simplified one

used here) showed exactly the same qualitative response with

minor quantitative differences. For example when the current

changes from 4 A to 6 A the model presented in [7] showed an

immediate drop from 0.72 V to 0.68 V and after 2 s it converged

to 0.6768 V while in the simple model the initial drop is from

0.71 V to 0.67 V and after 2 s it converged to 0.667 V.

As seen in Fig. 2, the single cell voltage is usually very small

and FCs are therefore connected in series to achieve the

desired output voltage. A series connection of cells is referred

to as an FC stack and in this paper it is assumed that 30 single

cellswillmake one FC stack giving an overall output voltage of:

VinðtÞ ¼ 30$VCellðtÞ (9)

2.2. Boost converter

2.2.1. General description
Themain function of a boost converter (Fig. 3) is to step-up the

voltage produced by the FC stack. When the switch S is closed

(for ton s), the current iL flows through the switch and the

inductor L. Mathematically this is described [10,11] by the

equation:

diL
dt

¼ 1
L
Vin (10)

During the ON state, the inductor current will rise

increasing the energy stored in the inductor:

EL ¼ 1
2
Li2L (11)

During this interval, the capacitor will discharge through

the load reducing the capacitor voltage vc:

dvc

dt
¼ � 1

RC
vc (12)
Fig. 2 e VeI curve of the FC, with red trace showing the results

experimentally obtained results [7]. The curve was produced fo

65 �C.
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When the switch is OFF (for toff s), the energy stored in the

inductor is delivered to the load while at the same time,

charging the capacitor:

diL
dt

¼ 1
L
ðVin � vcÞ (13)

dvc

dt
¼ iLR� vc

RC
(14)

By repeating the above pattern periodically (at period T ) it is

possible to step up the input voltage to a required level. The

ratio between ton and T is the duty cycle d:

d ¼ ton
T

(15)

Assuming that the inductor current never falls to zero (a

mode of converter operation referred to as continuous

conduction mode or CCD), the relationship between the input

and output voltage is given by:

vc

Vin
¼ 1

1� d
(16)

Hence the overall state space model of the boost converter

is given by the following piecewise smooth model:

_x ¼
�
_x1

_x2

�
¼
�
fon; when S is on : t˛½0; ton�
foff ; when S is off : t˛½ton;T� (17)

where fon ¼

2
6664
�x1

RC

Vin

L

3
7775; foff ¼

2
66664
x2R� x1

RC

Vin � x1

L

3
77775;
of the equivalent circuit; with the blue dots denoting the

r fixed pressure and temperature conditions at 1 bar and
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with x1 being the output capacitor voltage and x2 the inductor

current.

Since the model of the converter is linear before and after

the switching it can also be written as:

_x ¼
�

Aonxþ BonVin; S ¼ on
Aoffxþ BoffVin; S ¼ off

(18)

where

Aon ¼
2
4� 1

RC
0

0 0

3
5; Aoff ¼

2
664� 1

RC
1
C

�1
L

0

3
775; Bon ¼ Boff ¼

2
64 0

1
L

3
75 (19)

2.2.2. Conventional converter design
Conventional practice is for the parameters of the converter to

be chosen based on a number of design specifications such as

the desired switching frequency as well as an acceptable peak

to peak current and voltage ripple content for a given appli-

cation [10,11]. Higher switching frequencies result in smaller

inductance and capacitance, better converter performance,

but also in higher switching losses. The design process is

inevitably a compromise. In this work the switching

frequency was chosen to be 10 kHz. This is sufficient for our

system as the FC time constant is of a few seconds. Other

design criteria based on FC operational requirements were as

follows:

1. Allowed current and voltage ripples of 0.4 pu and 0.1 pu,

respectively

2. An operating duty cycle in the range 0.4e0.5 with Vin

varying between 30 V and 36 V.

3. A load resistance of 50 Ohms.

Using the standard equations for a boost converter, the

Voltage Ripple (VR) and Current Ripple (CR) contents are given

by: VR ¼ TðVout � Vin=RCÞ and CR ¼ ð1=LÞVinDT, giving design

values of L ¼ 1.8 mH, C ¼ 8 mF.

In practice, these values are usually increased (with

a direct adverse effect on the size and cost of the converter) to

avoid the presence of subharmonics [3,12]. In this paper

a supervising control law will be used instead to guarantee

stable operation that does not require this size increment,

thus reducing the size, weight and cost of the converter.

2.2.3. Control strategy and the average model of the boost
converter
In order to study the system, a simple mathematical model

that relates any changes to the duty cycle and input voltage to

the output voltage and current is needed [10,11]. To derive

this, the standard method of state space averaging (suitable

for any piecewise smooth system) is normally employed. The

average state spacemodel is obtained by taking the average of

the state and input matrices:

_x ¼ �AondþAoffð1� dÞ�xþ �Bondþ Boffð1� dÞ�Vin

Or : _x ¼ Axþ BVin (20)

where A ¼ AondþAoffð1� dÞ ¼

2
664 � 1

RC
1
C
ð1� dÞ

�1
L
ð1� dÞ 0

3
775 (21)
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and B ¼ Bondþ Boffð1� dÞ ¼

2
64 1

1
L

3
75 (22)

At the steady state, when the input voltage and duty cycle

are vep and D respectively, the equilibrium state is:

_x ¼ Axþ BVin ¼ 00xep ¼ �A�1Bvep (23)

Bymaking small changes to the duty cycle and input voltage

we impose small variations on the state vector:

x ¼ xep þ ~x; v ¼ vep þ ~v; d ¼ Dþ ~d (24)

By substituting (24) into (19) and using (23) we get the line-

arised average state space equation that describes small

perturbations around the equilibrium point:

_~x ¼ A~xþ Bv~vþ Bd
~d ¼ A~xþ ½Bd B �

�
~d
~v

�
(25)

where Bd ¼
�
Aon �Aoff

�
xep þ

�
Bon � Boff

�
vep

Assuming that we observe both states, the overall transfer

function is given by:

GðsÞ ¼ ðsI� AÞ�1½Bd B �

¼ 1

s

�
sþ 1

RC

�
þ 1
LC

ð1� DÞ2

�

2
6664

�s
vep

RCð1� DÞ2 þ
1
C

vep

L
1
LC

ð1� DÞ
1
L

vep

RCð1� DÞ þ
�
sþ 1

RC

�
vep

Lð1� DÞ
1
L

�
sþ 1

RC

�
3
7775 (26)

Hence we deduce that the relationship between small

changes in the duty cycle and the output voltage is:

G~vout ~d
ðsÞ ¼ ~voutðsÞ

~dðsÞ
¼ vep

�s
1

RCð1� DÞ2 þ
1
LC

s2 þ s
1
RC

þ 1
LC

ð1� DÞ2
(27)

In order to compensate for various disturbances and

parameter variations, a closed loop control strategy is

required. This means that the duty cycle will depend on the

difference between the actual and demanded output voltage.

However, we can see from (27) that there is a non-minimum

phase zero in the transfer function between the duty cycle

and the output voltage; for that reason an inner peak current

control loop is added to improve the transient behaviour of

the converter (Fig. 4).

In practical applications, the output voltage is measured

through a high precision voltage divider, which in this work is

modelled as a simple gain absorbed within the PI gains. A

ramp compensator is added in the output of the PI controller

to avoid the appearance of subharmonics in the system [14].

However, this adds a steady state error, which is considerable

at high current ripple values. In the following sections, a new

andmore efficientmethodwill be proposed that does not have

this drawback, based on the stability analysis of the system

presented in Section 3. Before the overall transfer function of

the system can be derived, the inner current loop needs to be

modelled. Fig. 5 [15], shows that a simple gain can represent

the inner peak current control loop as follows:
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Fig. 4 e Current programmed boost converter.
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TmðsÞ ¼
~dðsÞ
~irefðsÞ

¼ D
DiL

(28)

Hence the overall transfer function is given by:

~voutðsÞ
~vrefðsÞ ¼ G

~vout~vref
ðsÞ ¼

G~vout~iref
ðsÞGcðsÞ

1þ G~vout~iref
ðsÞGcðsÞ (29)

where Gc(s) is the PI controller transfer function given by:

GcðsÞ ¼ Kpsþ Ki

s
(30a)

and the overall transfer function is:

G~vout~iref
ðsÞ ¼ D

DiL
vep

�s
1

RCð1� DÞ2 þ
1
LC

s2 þ s
1
RC

þ 1
LC

ð1� DÞ2
(30b)

Using the previously determined converter parameter

values and taking into account the effect of the peak current

controller and the voltage divider while trying to avoid any

wind-up problems or saturation of the duty cycle, the PI gains

were chosen at Kp ¼ 0.01, Ki ¼ 0.035 giving a closed loop pole

location at 103 � (�0.62 � 6.09i) and �1.116; these values will

ensure zero steady state error and good overall transient

performance.
Fig. 5 e The effect of the inner peak current loop.
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3. Proposed stability analysis method

3.1. Smooth orbits

In this section, basic stability analysis concepts are defined

and extended to piece-wise smooth systems before the full

nonlinear stability analysis of the boost converter including

the FC and the PI controller is presented and validated in

Section 4, using both analytical and numerical tools.

If we assume that we have a generic initial value problem:

dxðtÞ
dt

¼ fðxðtÞ; tÞ; xðt0Þ ¼ x0 (31)

then, according to Poincaré, the stability of a specific solution

f (t, t0, x0) can be tested by adding a small perturbation, i.e.

x (t0) ¼ x0 þ d and then monitoring the evolution of the

perturbation vector:

d
dt
Dfðt; t0; x0Þ ¼ vfðxðtÞ; tÞ

vxðtÞ
				
xðtÞ¼fðt;t0 ;x0Þ

Dfðt; t0; x0Þ (32)

where Df (t, t0, x0) ¼ f (t, t0, x0 þ d) � f (t, t0, x0). The orbit is

called stable (with respect to some norm) if the perturbed orbit

remains “close” to the original one. The solution of (32) is

given by:

Dfðt; t0; x0Þ ¼ vfðt; t0; x0Þ
vx0

Dfðt0; t0; x0Þ ¼ Fðt; t0ÞDfðt0; t0; x0Þ (33)

where Fðt0; t0Þ is the state transition matrix of ð32Þ
with the property that Fðt0; t0Þ ¼ I: (34)

Practically the orbit is stable when the limit of the pertur-

bation vector tends to zero as t / N.

In order to find the state transition matrix F (t, t0) we have

to use the fundamental theorem of calculus and consider the

original vector field:

fðt; t0; x0Þ ¼ x0 þ
Zs¼t

s¼t0

fðfðs; t0; x0Þ; sÞds (35)

By differentiatingwith respect to x0 and thenwith respect to

t we get (36), which is a matrix differential equation that can

be solved to determine F(t,t0):

vfðt; t0; x0Þ
vx0

¼ Iþ
Zs¼t

s¼t0

vfðfðs; t0; x0Þ; sÞ
vfðs; t0; x0Þ

vfðs; t0; x0Þ
vx0

ds (36)

d
dt

�
vfðt; t0; x0Þ

vx0

�
¼ vfðxðtÞ; tÞ

vxðtÞ
				
xðtÞ¼fðt;t0 ;x0Þ

vfðt; t0; x0Þ
vx0

(37)

If f (t, t0, x0) is a periodic orbit of period T, then it can be

proved [16] that:

DfðkTþ t0; t0; x0Þ ¼ FkðTþ t0; t0ÞDfðt0; t0; x0Þ (38)

where F (T þ t0, t0) is the monodromy matrix of the periodic

orbit. Thus, the monodromy matrix is nothing but the state

transition matrix over a whole period T.

By using the Jordan canonical form L (t) of the Modoromy

matrix, (37) can be written as:
bility analysis and a new design methodology for a PEM fuel
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DfðkTþ t0; t0; x0Þ ¼ ELkðtÞE�1Dfðt0; t0; x0Þ (39)

where E is the eigenmatrix of the Monodromy matrix.

From (38) is it clear that if the eigenvalues of the mono-

dromy matrix (also called the Floquet multipliers) have

magnitudes less than 1, then the periodic orbit is stable [17].

There are 3 basic scenarios where the periodic orbit losses

stability [5,17], depending on the location of the Floquet

multipliers:

1. One eigenvalue becomes 1; this is referred to as a saddle

node bifurcation.

2. One eigenvalue becomes �1; this is referred to as a period

doubling bifurcation.

3. Two complex eigenvalues cross the unit circle; this is

referred to as a NeimarkeSacker bifurcation.

3.2. Nonsmooth orbits

The aforementioned methodology cannot be directly applied

to our system as its vector field is piecewise smooth and hence

(35) does not hold. To better understand this issue assume the

scenario depicted in Fig. 6, where a two dimensional state

space is divided into two areas through a surface S (called the

switching manifold):

R2 ¼ V�WSWVþ (40)

In the area V_ the system is described by f1 (x(t), t) and in Vþ
by f2 (x(t), t):

_xðtÞ ¼
�
f1ðxðtÞ; tÞ x˛V�
f2ðxðtÞ; tÞ x˛Vþ

(41)

The surface S is defined by a scalar function h (x(t), t) and the

normal vector to S is:

n ¼ VhðxðtÞ; tÞ (42)

For simplicity, we assume in this work that at the point of

switching there is no jump in the state vector (these systems

are called Filippov systems or systems with degree of

smoothness 1 [5,18]). If we assume that at t ¼ t0, we have an

orbit that starts from the point x0 ˛ V�, and at t1 ¼ tS crosses

the switching surface at the point xS ˛ S, before it continues

into Vþ. To study the stability of this orbit we add a perturba-

tion at x0 and we observe the perturbation vectors. The per-

turbed orbit crosses S at t2 ¼ t1 þ Dt, where Dt may be positive

or negative but most likely it is going to be nonzero. In this
Fig. 6 e Concept of the saltation matrix.
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paper and without loss of generality we assume that it is

positive, i.e. the new orbit crosses the switching manifold at

a later instant than the original one. As with the smooth case,

we need to model the perturbation vectors but the analysis

breaks down during the interval [t1, t2] (it has to be noted that

this small interval depends on the initial point x0 and on the

initial perturbation d). Mathematically the orbit at the point xS
is not differentiable with respect to x. There are several ways

to overcome this problem including the discontinuity map

method [5], but in this paper we follow the methodology

proposed by Filippov [16e18] where the perturbation vector at

t¼ t1 ismapped to the perturbation vector at t¼ t2. Thismap is

called the Saltation or jumpmatrix and is derived using a local

approximation of the orbits and the surface S near the point of

switching [16]:

Dfðt2; t0; x0Þ ¼ SDfðt1; t0; x0Þ (43)

where S ¼ Iþ

 
lim
t/t�

S

f1ðxðtÞ; tÞ � lim
t/tþ

S

f2ðxðtÞ; tÞ
!
nT

nT lim
t/tþ

S

f2ðxðtÞ; tÞ þ vhðxðtÞ; tÞ
vt

				
t¼tS

(44)

Hence the monodromy matrix is given by:

Fðt0 þ T; t0Þ ¼ Fðt0 þ T; tSÞ$S$FðtS; t0Þ (45)

where Fðt0þT;tSÞ ¼ vfðt;tS;xSÞ
vxS

and FðtS;t0Þ ¼ vfðt;t0;x0Þ
vx0

(46)

Unfortunately, in most cases we cannot find the two state

transition matrices given in (46) in closed form (unless the

vector fields before and after the switching are linear [12]) and

hence we have to use numerical methods. In both cases we

have to use (37) whichmeans that we need to find the Jacobian

matrices of the two vector fields evaluated along the orbit.

These two Jacobian matrices are numerically calculated from

(37) using Maple for the intervals before and after the

switching, taking into account that a state transition matrix is

the identity matrix at the beginning of each interval. In this

paper, a brute force numerical approach is used and hence

these two Jacobian matrices can be calculated only when the

orbit is stable, by simulating the system for one clock cycle

and using the numerical values of the state vector in (37) and

(44). As a parameter changes and the orbit becomes less

stable, i.e. we get closer to a bifurcation point; the Floquet

multipliers approach the unit circle. Alternately the method

first presented in [19] by one of the co-authors of the paper

could have been used.
4. Stability analysis of the overall system

In this section we will use the previously outlined analysis to

determine the stability of the overall system. The mathe-

matical model of the system is of 4th order, with 2 states (x1,

x2) representing the boost converter (18) and (19), one state (x3)

the FC (7) and (8) and another state (x4) the output of the

integrator in the external PI controller (30a). Hence the vector

fields before and after the switching are:
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of Hydrogen Energy (2012), http://dx.doi.org/10.1016/

http://dx.doi.org/10.1016/j.ijhydene.2012.09.002
http://dx.doi.org/10.1016/j.ijhydene.2012.09.002


Table 2 e Results of the combined system FC/Converter.

Vref, V Floquet multipliers of the period 1 orbit

39 �0.929 0.2506 1.000 0.9997

40 �0.9913 0.2644 1.000 0.9997

40.1 �0.999 0.2644 1.000 0.9997

Fig. 7 e Bifurcation diagram.
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fon ¼

2
66666666666664

�x1

RC

kðE� x3 � x2RrÞ
L

1
CActðx2Þ

�
x2 � x3

RActðx2Þ
�

Vref � x1

3
77777777777775

and

foff ¼

2
6666666666664

x2R� x1

RC

kðE� x3 � x2RrÞ � x1

L

1
CActðx2Þ

�
x2 � x3

RActðx2Þ
�

Vref � x1

3
77777777777775

(47)

The switching manifold is given by the scalar equation:

hðxðtÞ; tÞ ¼x2 � Iref ¼ x2 �
�
Kpeþ Ki

Z
edt

�

¼ x2 �
�
Kp

�
Vref � x1

�þ Ki

Z
Vref � x1dt

�
0hðxðtÞ; tÞ

¼ x2 � KpVref þ Kpx1 � Kix4 ð48Þ

Thus the normal vector is given by

n ¼ 
Kp 1 0 �Ki

�T
(49)

And the saltation matrix is:

S ¼ Iþ

2
666666664

Kp
x2R

RC

x2R

RC
0 �KI

x2R

RC�Kpx1

L
�x1

L
0

KIx1

L
0 0 0 0
0 0 0 0

3
777777775
�
�
Kp

�x1

RC
þ kðE� x3 � x2RrÞ

L

� KI

�
Vref � x1

��
(50)

The two Jacobians are found to be:

Joff ¼

2
66666666664

� 1
RC

1
C

0 0

�1
L

�kðx5 þ x6Tþ 2x7x2Þ
L

�30
L

0

0
3x3T
x2

�3 0

�1 0 0 0

3
77777777775

(51)

Jon ¼

2
66666666664

� 1
RC

0 0 0

0 �kðx5 þ x6Tþ 2x7x2Þ
L

�30
L

0

0
3x3T
x2

�3 0

�1 0 0 0

3
77777777775

(52)

In this paper the demanded voltage Vref is chosen as the

bifurcation variable. The results of the analysis are summar-

ised in Table 2, where we can clearly see that as we approach
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a demanded output voltage of 40.1 V there is a period doubling

bifurcation since one of the Floquet multipliers tends to �1.

Two eigenvalues are close to 1 (to four decimal places) because

of the presence of the slow outer PI controller & FC dynamics

(compared to the boost converter). To further validate this

result the bifurcation diagram of the system was computed

(Fig. 7) clearly showing a period doubling bifurcation just after

40.1 V. This is further confirmed by the numerical time

domain results presented in Fig. 8.

The subharmonics that appear in Fig. 8 can greatly down-

grade the system’s performance. The presence of sub-

harmonics may reduce the FC’s life time [2], will decrease the

efficiency of the converter due to the presence of extra AC

components. If the bifurcations result in a chaotic orbit then

the ripplewill be larger (hence larger losses), the spectrumwill

be spread (hence the filter would be ineffective), and it will be

highly uncontrollable (due to the sensitive dependence on the

initial conditions).
5. Efficient design method

It has been mentioned earlier that once a power electronics

practitioner determines the required values of the LC filter

based on some chosen design criteria, he/she has to oversize

the filter in order to avoid the subharmonic instability depic-

ted in Fig. 7. Another complementary approach is to use

a ramp compensator, which has the negative result of

increasing the steady state error, in addition to the fact that it

cannot be applied to any other converter apart from a boost

converter with a current loop. In this section, a new super-

vising control law will be proposed that guarantees a wide

stable operating range and zero steady state error while

simultaneously offering the possibility of reducing the size of

the circuit inductance, an extremely important consideration

for example in electric vehicle applications where size, weight
bility analysis and a new design methodology for a PEM fuel
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Fig. 10 e Supervising controller.

3.9992 3.9993 3.9994 3.9995 3.9996 3.9997 3.9998 3.9999 437

38

39

40

41

42

43

time, s

vo
lta

ge
, V

Vref=40V
Vref=40.3V

Fig. 8 e Steady state output voltage for Vref [ 40 and 40.3 V.

Fig. 11 e Steady state output voltage for Vref [ 42 and

L [ 0.9 mH with the supervising control law.
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and the cost factors are of paramount importance. This

method can easily be applied to any converter.

The new design process is based on the concept of making

small changes to the Saltation matrix that will not change the

location of the limit cycle (i.e. will not add a steady state error)

but will change the stability properties of the system. From

(44) we see that altering the time derivative of the scalar

equation that describes the switching manifold can influence

the Saltation matrix:

S ¼ Iþ

 
lim
t/t�

S

f1ðxðtÞ; tÞ � lim
t/tþ

S

f2ðxðtÞ; tÞ
!
nT

nT lim
t/tþ

S

f2ðxðtÞ; tÞ þ vhðxðtÞ; tÞ
vt

				
t¼tS

(53)

Thus if the demanded voltage changes from Vref to Vref

(1 þ a sin (ut þ j)) the scalar function h will become:

hðxðtÞ; tÞ ¼ x2 � KpVrefð1þ asinðu tþ jÞÞ þ Kpx1 � Kix4

And hence the time derivative will change from zero to:

vhðxðtÞ; tÞ
vt

¼ �KpVrefaucosðu tþ jÞ (54)

where the frequency u is equal to the clock frequency.

The phase shift j is chosen such that sin (u dT þ j) ¼ 0

implying that the switchingwill take place at the same instant

and at the same location in state space as the original orbit. It

is very easy to determine the duty cycle as the demanded

voltage (we assume that the steady state error is zero) and the

input voltage (from the VeI curve) are known. Thus, in the

above scenario, the duty cycle is given by:
Fig. 9 e Steady state output voltage for Vref [ 42 with and

without the supervising control law.

Fig. 12 e Responses of the controlled system for a) a 10%

state perturbation and a step increase of the demanded

output voltage from 42 V to 43 V.
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Table 3 e Results of the system using the supervising
controller, L [ 1.8 mH, Vref [ 42 V.

a Floquet multipliers of the period 1 orbit

�0.5 �0.8495 0.2328 1.000 0.9997

�0.8 �0.7064 0.2070 1.000 0.9997

�2 j�0.0671 þ 0.1029ij ¼ 0.1228 1.000 0.9997

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y x x x ( 2 0 1 2 ) 1e1 110
d ¼ Vout � Vin

Vout
¼ Vref � Vin

Vref
¼ 42� 25

42
z0:4 (55)

Hence sin (2p0.4 þ j) ¼ 0 0 j ¼ �0.8p

The value of a can be obtained using a numerical method

[12] or by trial and error. For example, if we choose a¼�0.5 the

previously unstable period one orbit becomes stable again as

shown in Fig. 9. Thus we propose the use of a supervising

controller (Fig. 10) that will change the values of a and j

depending on the demanded voltage in such a way as to force

the period one orbit to remain stable. Moreover, the stable

orbit shown in Fig. 9 shows a smaller ripple content than that

the original stable orbit. Hence it is possible to decrease the

value (and hence the size, weight and cost) of the inductance

and still have a stable system using the above controller. This

is demonstrated in Fig. 11 where the inductance value is

halved (Fig. 10).

Two more tests were conducted to validate the afore-

mentioned controller. In the first test the demanded signal

was increased from 42 V to 43 V and in the second test

a perturbation was added once the system had reached its

steady state, Fig. 12. Both tests show that the orbit is stable. In

order to quantify the stability of the controlled system, we

calculated the Floquetmultipliers using themethod described

in [6]. For a larger absolute value of the control signal (variable

“a”) the absolute values of the Floquet Multipliers become

smaller indicating a more stable system. The results are

summarised in Tables 3 and 4.
6. Conclusions

The nonlinear behaviour of a voltage/current controlled boost

converter fed by a FC has been studied in this paper, clearly

showing how the system can lose stability through a period

doubling bifurcation. The FC was modelled using a nonlinear,

current dependent RC equivalent circuit and its output was

fed to a conventional PI controlled boost converter with

current-mode control. A boost converter was designed based

on standard ripple criteria and its state space averagingmodel

was derived including the outer PI and the inner peak
Table 4 e Results of the system using the supervising
controller, L [ 0.9 mH, Vref [ 42 V.

a Floquet multipliers of the period 1 orbit

�0.5 �0.9495 0.3038 1.000 0.9997

�0.8 �0.8897 0.2943 1.000 0.9997

�2 �0.6686 0.2512 1.000 0.9997

Please cite this article in press as: Giaouris D, et al., Nonlinear sta
cell fed DCeDC boost converter, International Journal
j.ijhydene.2012.09.002
controllers. Thus the study was based on the full nonlinear

model of the combined system based on differential equa-

tions. In order to determine the stability of the combined

system, Floquet theory was used in conjunction with Fili-

ppov’s method to model the behaviour of the system during

the switching events. The eigenvalues of the monodromy

matrix were used to determine the stability of the nominal

periodic motion. It was shown that the converter loses

stability as the reference voltage increases; for example, for

the choice of parameters used in this paper the converter

becomes unstable at Vref z 40.1 V. This analysis showed for

the first time that under nominal conditions there are quan-

titative differences of the stability properties of the converter

when it is fed either by a constant supply and or an FC, though

the bifurcation scenarios are qualitatively similar.

Finally a new supervising control law is proposed in this

paper that both stabilises the overall system (FC and

converter) and allows us to reduce the converter inductance

by as much as 50%, thus making the system faster making the

system faster, lighter and less expensive. This allows for

a new and more efficient design of the converter that will

make the use of FCmore attractive in various applications like

electric vehicles.
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