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Abstract— Energy systems are undergoing radical changes
that have resulted in buildings being regarded as proactive
players with the potential to contribute positively to energy
networks. This study investigates the role of active buildings (ABs)
as prosumers in energy systems by introducing a building-to-
building (B2B) strategy for energy exchange between residential
units, as well as a building-for-grid (B4G) model by exploiting
the demand flexibility of residential microgrids (RMGs). The mid-
market rate mechanism is adopted to produce local market price
signals at RMG level. A robust rolling horizon controller is devel-
oped for real-time energy management of a community of ABs.
This control philosophy can improve the robustness of the RMG
in face of real-time weather and energy price prediction errors.
The proposed method is a multi-level optimisation which pursues
multiple goals while making a trade-off between operational cost
and occupant comfort. Finally, the repercussions of COVID-19
induced power consumption resulting from changing lifestyle and
building occupancy profile is analysed by the proposed method
as a case study. The results show that the proposed B2B and B4G
strategy can reduce energy bills by 18.45%, while notable robust
real-time control and computational efficiencies are achieved
when benchmarked against conventional methods.

Index Terms—Active building (AB), robust rolling horizon
(RRH), building-to-building (B2B), building-for-Grid (B4G).
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Temperature set point [◦C]
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Set of time periods
Set of linearisation intervals
Set of buildings
Set of tasks

Index of time periods
Operation period of building appliances 
Index of buildings
Index of tasks

Tolerable value of robustness
Illumination set point [lux]

vices
Utilization/maintenance factor of lightening de- 
Duration of time periods [hour]
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Predicted electricity import/export price

Number of lightening devices in building j

Illuminated space in building j [m2]
Gas energy price [£/kW h]

Total number of buildings
Thermal capacitance of building j [◦C/kWh]

  ◦C/kW]Thermal reactance of building j [
[kW]
Maximum charge/discharge rate of each building 
grid [kW]
Maximum power exchange rate with the main 
Power consumption of each task [kW]
Rated power of combined heat and power [kW]
Source flux value of building j
storage [kWh]
Maximum/minimum state of charge of energy 

Total occupied periods of building j

j [◦C]
Maximum/minimum temperature inside building 

Visual/thermal weight factors
Maximum/minimum Illuminance level [lux]

(G/D)Rt 
MG Total generation/demand capacity of RMG [kW]

building appliances
Binary variable denoting the ON/OFF status of 
Weather related/market price robustness degree 

power [kW]
Output power of photovoltaic/combined heat and 
energy storage [kW]
Charge/discharge power of each building from/to 
Buying/selling power inside RMG [kW]
B2B strategy [kW]
Active power of building j at time period t under 
B2B strategy [kW]
Active power of building j at time period t under 
in building j [kW]
Power consumption rate of each lighting device 
heating purpose [kW]
Output power of combined heat and power for 
State of charge of energy storage [kWh]
storage
Charging/discharging binary variables of energy 
power from main grid
Binary variable denoting the import/export 
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BUILDING’S relationship to energy systems are evolving
due to onsite generation, smart appliances and demand-

side response. 36% of global energy consumption is attributed
to building’s embodied and operational energy use [1]. One
way to reduce building’s environmental impact is optimal
scheduling and control of building loads that can enable them
to become active agents within the wider energy system.
Such active buildings (ABs) can also exchange energy and
information locally to form a residential microgrid (RMG) [2].
These dynamic characteristics have become crystallised in the
concept of smart local energy systems that include a broad
range of soft (i.e. digital and cyber) and hard (i.e. distributed
generation) infrastructure components, and additionally under-
line the concept of peer-to-peer energy trading [3] within a
cluster of ABs. As well as cost and carbon saving, ABs seek
to facilitate greater user choice, enable the possibility of energy
transaction between ABs and maximising the use of distributed
energy resources.

This requires a paradigm shift in the management of oc-
cupant comfort, maximising self-consumption and autonomy
(in RMG), and maintaining virtual inertia and integrity (in the
whole system). These requirements present two distinct oppor-
tunities for an RMG controller that supervises a community
of ABs and their incorporated assets; first optimising the use
of its communally-shared portfolio of energy resources, and
second exploiting the possibility of energy exchange between
buildings and/or with the utility grid. Following these goals can
create a coordinated paradigm between ABs and energy net-
works, while facilitating the creation of community markets.
These strategies supported by advanced telecommunication
to enable real-time energy scheduling could be an efficient
replacement for conventional load shedding [4]. To realise
this, an RMG controller needs to overcome several challenges,
namely real-time data processing of advanced metering infras-
tructure, catering for occupant preferences, and satisfying a
set of techno-economic constraints. RMG controllers should
also be computationally (i.e. processing power/speed) and
economically viable for a residential application.

NTRODUCTIONI.I

Total illuminance level of building j [lux]
Illuminance level of building j [lux]
Indoor temperature of building j [◦C]
[kW]
Imported/exported power from/to main grid

MotivationA.

these units can play their part actively in the energy networks
their perspective in the energy networks, demonstrating how 

  These advances in the energy management of ABs, changed 
[10], and controllability [11].
grouped based on interpretation [9], operational dependency 
resources are managed in an RMG. Smart appliances are 
a signal on how smart appliances and distributed energy 
market participation and real-time pricing [7], [8] that provide 
energy scheduling approaches are guided by interactive energy 
elements can bring about 30% cost saving. These optimal 
Zhang et. al [6] has shown that optimal management of RMG 
cerned with optimising the operation of RMG assets [5]. 
investigated in the literature, with representative studies con- 

  Energy management and control of ABs have been widely 

Literature ReviewB.

in notable computational expense [26].
amount of information about uncertain data streams that result 
ances [23]. Stochastic methods, nevertheless, require sizeable 
main grid [22], and the scheduling pattern of building appli- 
difference between buying and selling electricity from/to the 
illustrate the impact of uncertainty on operational cost, the 
constrained optimisation [11]. Stochastic methods [22], [23]
decision theory [24], robust optimisation [25], and chance- 
include stochastic optimisation [22], [23], information gap 
approach, several other methods have been explored. These 
of uncertainty, in addition to rolling horizon based real-time 

  In order to account for the impact of multiple sources 
a substantial challenge for system operators.
scale, is known as demand uncertainty which has always been 
as well as building-related renewable generation. This, at wider 
time of different assets, building thermophysical characteristics 
changes by variations in occupants’ behaviour, operational 
not always accurate. This creates the possibility of sudden 
is made based on the predictions of future inputs, which is 
in the rolling horizon based methods is that a current decision 
constraints of the grid. The point that should be considered 
is coordinated with the building to respond to operational 
the operational cost, while the distribution system controller 
horizon based real-time optimisation method so as to minimise 
and day-ahead processes. Authors in [21] introduced a rolling 
in the building compensate the mismatch between real-time 
to supply the real-time demand, while the storage facilities 
updates the input results in a two stage optimisation so as 
as rolling horizon [19]. For instance, in [20], the controller 
benefits from the idea of look-ahead control strategies such 
frameworks have been introduced for this purpose that draw 
control signals from the main grid in real-time [18]. Several 

  A controller within an RMG should be able to respond to the 
building appliances [17].
MINLP as they can provide efficient application in controlling 
integer linear programming (MILP) models are preferred to 
and increases the computation time. In this regard, mixed 
programming (MINLP), which require a powerful processor 
comfort models with an optimised mixed integer non-linear 
of the aforementioned studies however consider non-linear 
factors [15] or cost-based coefficients [16]. The majority 
[14], or integrated into the main goal either using weighting 
tion, turning the problem into a multi-objective task [13], 
while the latter is considered as a separate objective func- 
occupant’s comfort. The former is common among AB studies, 
the optimisation of two main objectives: energy cost and 

  These scheduling and control methods generally consider 
generation.
the negative effect of reverse power flow caused by distributed 
has been considered as an effective approach in decreasing 
voltage fluctuation. Moreover, the demand-side management 
within a group of buildings can be effective in reducing the 
the authors have shown that energy management strategies 
dwelling units on voltage profile of the grid. In Reference [15], 
demand supply. Alwan et. al [15] investigated the effect of 
is considered as an important factor which can contribute to 
In [14], optimising the scheduling of controllable appliances 
in energy optimisation of an unbalanced distribution network. 
considered each building as an agent that can play its part 
while maintaining their user preferences [12]. Authors in [13]
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1In this study, building refers to a generic UK type family house

  for partial knowledge of input parameters.
  (compared to conventional controllers) while accounting
  prediction uncertainties at a lower computational time
  ness of real-time energy management systems against

• Introducing an RRH controller to maximise the robust-
  achieving an optimal energy management.
  MINLP predecessors). It also pursues multiple goals in
  require excessive processing power (as opposed to the
  participation using a linear robust controller that does not
  els, the proposed solution allows greater asset/building
  pliance/task constraints. Compared to current MILP mod-
  RMGs, with consideration for occupant comfort and ap-

• A multi-level MILP optimisation model is proposed for
butions of this paper are:
nature of modern power systems planning. The main contri- 
down condition in 2020 which further highlighted the critical 
operational characteristics such as COVID-19 related lock- 
against a conventional controller, and also tested under atypical 
The performance of the proposed controller is benchmarked 
an MILP model which can be solved by commercial solvers. 
ABs in the local energy market. The proposed architecture is 
comfort, the former can guarantee the preference/benefits of 
latter makes a trade-off between energy bill and occupants 
proposed model is multi-level and multi-objective. While the 
the AB community level to create a local pricing market. The 
(B4G) strategies. The mid-market rate approach is adopted in 
to introduce building-to-building (B2B) and building-for-grid 
and building inertia) and shared distributed energy resources 
exploits flexibility in AB loads (through interruptible loads 
information gap decision theory. The proposed RMG controller 
increased (referred to as RRH hereafter) using the notion of 
the robustness in each consecutive dispatch time interval is 
to receive real-time weather and energy price data, while 
and global goals. A rolling horizon based method is adopted 
of buildings 1 which can actively co-operate to achieve local 
a multi-level real-time energy management for a community 

  Hence, this study attempts to address this gap by proposing 

ContributionsD.

  processor.
  sector and does not require investment for an expensive
  control method that could be utilised in a residential

IV. Achieving [I]-[III] through a computationally efficient
  exploration.
  proving robustness in face of uncertainty needs more
  level. Furthermore, role of building occupants in im-
  energy exchange between buildings and overall comfort
  against uncertainty. The uncertainty can influence the
  in [27], while improving the robustness of this method
  tive control based rolling horizon methods, as suggested

III. Considering the effect of uncertainty on the model predic-
  ON/OFF status – or load adjustment of home appliances.
  of sensitivity to alterations of comfort level and timing-

II. Deconstructing the demand-side response to its sources
  the form of a schedule).
  and his/her expressed preferences for domestic tasks (in
  while also managing occupants’ thermo-visual comfort

I. The possibility of energy exchange between buildings
to examine:

  In summary, a gap has been observed in existing literature 

Research GapC.

each building, while the amount of energy that is required
the RMG, and communicates subsequent control signals to 
multi-level real-time optimisation of scheduled tasks within 

  Based on this data platform, the controller performs a 
prices and weather-related data.
occupancy profile. This is augmented by real-time energy 
tasks, [II] the preferred zone comfort thresholds, and [III]
phone apps) to receive [I] day-ahead scheduled time for home 
access occupant preferences through digital media (i.e. mobile 
website queries) and the grid. The controller is assumed to 
storage and externally with a weather forecast platform (e.g. 
with all ABs, the shared combined heat and power and energy 
their high capital cost. The controller communicates internally 
storage units are shared between the entire community given 
photovoltaic unit, while combined heat and power and energy 
summarised in Fig. 1. Each AB is equipped with an individual 
cessful data and energy exchange in an RMG. This concept is 

  A bidirectional transaction framework is required for suc- 

The Residential Microgrid (RMG) StructureA.

II. OVERVIEW OF RESIDENTIAL MICROGRID CONTROLLER

concludes the article.
Simulation results are discussed in Section VI and Section VII 
description and simulation setup are introduced in Section V. 
of the proposed multi-level control scheme. The framework 
formulation of problem. Section IV explains different stages 
tion II illustrates the concept of RMG. Section III outlines 

  The remainder of this paper is organised as follows. Sec- 

Article StructureE.

  role of building occupants in improving RMG robustness.
  certainty on the local energy markets, while exploring the

• Taking into account the effect of multiple sources of un-
  or load adjustment of home appliances.
  alterations of comfort level and timing- ON/OFF status –
  the demand-side response to its sources of sensitivity to
  in-site generation capacity, while the latter deconstructs
  power exchange between dwellings using flexibility in
  certain environment. The former strategy facilitates the
  occupants comfort, and appliance settings under an un-
  to-peer energy trading in RMG level while valuing the

• Proposing B2B and B4G strategies to oversee the peer-

Fig. 1: The conceptual illustration of RMG.
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from the upstream network is sent to the distribution grid
controller. The optimal starting time of each task, cost and
comfort level, the output of building level (photovoltaic unit)
and community level (energy storage, and combined heat and
power) assets, and the value of B2B/B4G transactive tasks
is then communicated by the controller. Cloud computing is
assumed to enable real-time communication and control signal
processing, while observing privacy issues. Therefore:
• Real-time communication is assumed and a delay has not

been considered.
• The RMG controller is in charge of the entire RMG asset-

base and all AB asset data.
• RMG is connected to the main grid at point of integration.
• The energy sources within each building (e.g. photo-

voltaic unit) are controlled by RMG controller.

B. Robust Rolling Horizon (RRH) Controller

The rolling horizon approach, which is based on the concept
of model predictive control, can be used for real-time energy
management of RMGs. This method uses real-time data for
each discrete time interval to solve the optimisation over a
nominal control horizon while also accounting for future time-
slots. Therefore at time period t1, the input data for upcoming
intervals (i.e. t2...tn) are forecasted, so the optimised results
are defined based on a predicted path. Forecast data uncertainty
(especially for parameters prone to wide fluctuation) results in
a simulation error (i.e. the difference between predicted and
actual value). To reduce error, the conventional methods use
smaller time intervals (i.e. reducing optimisation interval from
30min to 5min). However, this requires high computational
time and power which may present difficulties when per-
forming real-time controls. Additionally, smaller time intervals
cannot solve the issue of future uncertainty. To address these
issues, an information gap decision theory based technique has
been proposed in this paper to increase the robustness of rolling
horizon method. This method does not require excessive in-
formation on input parameters, and needs lower computational
time compared to stochastic methods [26], making it suitable
for dealing with input data with unknown behavioural patterns
such as weather forecast. Generally,

Figure 2 attempts to illustrate this approach. In the con-
ventional method (Fig. 2-a) [21] and at time instance t1, the
forecast error for a future instance of time (e.g. tm) propagates
into a simulation error. The proposed RRH method (Fig. 2-b)
introduces a robustness degree for those input data that are
more likely to change over operational horizon. By maximising
the degree of robustness, the erroneous effect of the changeable
forecasts on the control action is reduced. It should be noted
that the optimal value of robustness is related to its tolerable
value. The tolerable value of robustness is a parameter defined
by the decision maker and increases the value of the objective
function. This increase in cost is called cost of robustness.
The bigger the tolerable value of robustness, the greater the
system robustness. Therefore, in Fig. 2-b, the optimal value of
dotted green line is related to the amount of increase in the
objective function (i.e. from the solid green line to the dotted
green line).

III. PROBLEM FORMULATION

The proposed mathematical model describes optimal opera-
tion of multiple ABs, and shared energy sources, which form
an RMG, while they can communicate with the utility grid, and
locally together. In the following, the technical and operational
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Fig. 2: Conventional rolling horizon (a) and proposed RRH
(b) controller.

constraints of RMG are introduced. Then, the AB flexibility
strategies are discussed.

A. Objective Functions

In the proposed optimisation, the controller follows two con-
flicting objective functions, namely energy bill and occupants
comfort index, defined as:

min

ζ=∆t
∑
t∈ψt

∑
j∈ψj

λ̂GI
t PGI

j,t −λ̂
GE
t PGE

j,t +λGt P
CHP
j,t

 (1)

max

Ξ=
1

B

∑
t∈ψoc

tj

∑
j∈ψj

1

T ocj

(
ωVj,tI

Vcom
j,t + ωTj,tI

Tcom
j,t

) (2)

V Bj,t =
κjP

I
j,tfjη

u
I .η

m
I

Aj
(3)

TBj,t+1 = TBj,t + ∆t
Rth

j Dth
j

(
T̂ outt − TBj,t

)
+ ∆t

Dth
j

Hth
j,t (4)

where, in (3), P Ij,t is the amount of power consumed by
lighting devices to provide visual comfort (i.e. V Bj,t). Eq.(4)
is widely referred to as building resistance and capacitance

Power consumption of these tasks is defined as:
mal comfort-providing tasks are categorised into this group. 
defined based on the preferred comfort level. Visual and ther- 

  Comfort-Providing Tasks: the consumption of these tasks is 
gorised into different groups, as outlined below.

  Operational characteristics of AB appliances can be cate- 

B. Operation of Different Tasks

index towards 0.
it (i.e. the space being too hot or too cold) moves the comfort 
comfort) is represented by 1 and degrees of departure from 
index of 0 to 1. Thermal neutrality (i.e. highest degree of 
development this bidirectional band is translated into a single 
‘too cold’ to ‘too hot’ thermal spectrum, here for equation 
Bedford) normally a 7 point approach is used to represent a 
thermal comfort codes (i.e. BS EN ISO 7730, ASHREA or 
Ij
Tc
,t

om ) comfort indices respectively. While in predominant 
factors ωVj,t and ωTj,t by virtual (i.e. Ij

Vc
,t

om ) and thermal (i.e. 
dwelling unit, which is obtained by multiplying the weighting 
community (i.e.B) over the occupied period (i.e.T o

j 
c) of each 

given in (2) represents the comfort index of all ABs in the 
supplying the combined heat and power. The objective function 
is the cost of purchasing natural gas from the main grid for 
power from/to the main grid, respectively, while the third term 
and second terms are cost and income of importing/exporting 
where, Eq. (1) represents the energy bill, in which the first 
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thermodynamic model [16], in which Hth
j,t denotes the amount

of power that is consumed for providing thermal comfort.
Fixed Power Consumption Tasks (i.e. ψFi ): set of tasks

which operate in a specific period (i.e. ψAptop ) with a fixed power
consumption rate (e.g. cooker hob). Based on the preferred
time window of these tasks, which is defined between their
starting time (i.e.ψAptst ) and ending time (i.e. ψAptend

), their
operation is described as:

ψAp
tend
−ψAp

top∑
t=ψAp

tst

χApj,i,t = 1 ,∀i ∈ ψFi (5)

Variable Power Consumption Tasks (i.e. ψVi ): these tasks
operate with a variable consumption rate, such as washing
machine and dishwasher. Constraints (5) should be modified
so as to describe the operation of these tasks, as follows:

ψAp
tend∑

t=ψAp
tst

χApj,i,tP
Ap
j,i,t =

∑
o=ψAp

top

PApj,i,o ,∀i ∈ ψVi (6)

According to constraint (6), the ON/OFF status of each task
(i.e. χApj,i,t) controls the required power at each period (i.e.
PApj,i,t) so as to satisfy the variable power consumption at each
operational period (i.e. PApj,i,o).

C. Comfort Constraints

The comfort indices are related to comfort related tasks as
explained in (3)-(4). In addition to internal comfort providing
technologies, outdoor illumination and temperature are consid-
ered as external factors which can affect the occupants comfort.
These indices and their corresponding constraints are:

IVcom
j,t = 1−

(
V T
j,t−V

Set
j,t

V Set
j,t

)2

(7)

V Tj,t = V Bj,t + V̂ Nt (8){
V Bl
j ≤ V Tj,t

V Bj,t ≤ V
Bu
j

,∀t ∈ ψoctj (9)

ITcom
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(
TB
j,t−T
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j,t

TSet
j,t

)2

(10)

TBl
j ≤ TBj,t ≤ T

Bu
j (11)

where, (7) is the visual comfort index, while (8) shows
the total illuminance level within each building, which is
equal to the sum of natural illumination and that of lighting
devices. Equation (9) limits the illuminance level. Besides,
(10) represents the thermal comfort index, while (11) limits
the buildings’ indoor temperature. The quadratic term in (7)
is linearised as follows:

Ω
V+

j,t + Ω
V−
j,t =

N∑
n=1

θVj,t,n (12a)

0 ≤ θVj,t,n ≤ θ
Vu
j (12b)

V Tj,t − V Setj,t = Ω
V+

j,t − Ω
V−
j,t (12c)

θVu
j =

V Bu
j − V Bl

j

N
(12d)

γVj,n = (2n− 1)θVu
j (12e)

IVcom
j,t = 1−


∑
n∈ψn

γVj,nθ
V
j,t,n(

V Setj,t

)2
 (12f)

where, N is the number of linearisation intervals. Based
on the piecewise linearisation technique, the parabolic curve
(V Tj,t − V Setj,t )2 is approximated by variable θVj,t,n.

D. Energy Balance Constraints

In the designed RMG, heating and electricity energy demand
of ABs is supplied by internal (e.g. combined heat and power
and photovoltaic units) and external (e.g. electricity grid). The
following energy balance constraints are introduced for the
model.∑

i∈ψi

(
χApj,i,t−oP

Ap
j,i,o

)
+ P Ij,t + PESSd

j,t + PGE
j,t

= PGI
j,t + PCHPj,t + PPVj,t + PESSc

j,t + PB2B
j,t

(13)

Hth
j,t = HCHP

j,t (14)
where, (13) is the electric power balance, consisting of

the consumption of different tasks and generation of various
sources, while (14) represents the heating balance. The terms
given in these equations are limited by their technical and
operational constraints. The shared combined heat and power
is the linking asset between heating and electricity energy.

E. RMG Asset Constraints

The central and individual energy providers of the RMG
which are integrated to supply ABs load demand are limited
by the following constraints.∑

j∈ψj

PCHPj,t ≤ PCHPR (15)

EESSt −EESSt−1 =∆t

( ∑
j∈ψj

ηcessP
ESSd
j,t −

∑
j∈ψj

[
P

ESSd
j,t

ηdess

])
(16)

EESSl ≤ EESSt ≤ EESSu (17)
0 ≤ PESSc

j,t ≤ χESSd
j,t PESSd

u (18)
0 ≤ PESSd

j,t ≤ χESSc
j,t PESSc

u (19)
χESSc
j,t + χESSd

j,t ≤ 1 (20)∑
t∈ψt

PESSd
j,t ≤

∑
t∈ψt

PESSc
j,t (21)

0 ≤ PPVj,t ≤ P̂
PVF
j,t (22)

Constraint (15) limits the output power of combined heat
and power based on its rated power, while PCHPj,t could be
converted to HCHP

j,t by the the heat-to-power efficiency (i.e.
ηCHPP2H ) of combined heat and power. Equations (16)-(21) de-
scribe the energy storage model, in which (16) denotes the total
state of charge of energy storage, while it is limited by (17). In
order to prevent net accumulation, the state of charge of battery
at the end of the period (i.e. tend) should be equal to its initial
value at the beginning of the period (i.e. tst). The charge and
discharge of each building from the central storage is limited
by (18) and (19) respectively. Note that the P

ESSc/d
u is also the

maximum allowable charge/discharge of all ABs. Constraint
(20) is a limiting logic based on the binary variables χESSd

j,t

and χESSc
j,t which prevent simultaneous charge and discharge.

Constraint (21) represents that the amount of discharged power
for each AB is limited by the value of charged power. This
means that AB j can utilise the power from energy storage
if it has contributed to its charging before. Finally, constraint
(22) represents the output power of rooftop photovoltaic units
based on the predicted output.

F. Utility Grid

The RMG can receive and send electrical power from/to
the utility grid. These limits are represented in the following
constraints:

PGI
j,t ≤ PGu × χGj,t (23)
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PGE
j,t ≤ PGu × (1− χGj,t) (24)

where, binary variable χGj,t prevents the simultaneous import
and export from/to the main grid.

G. Active Building Flexibility Strategies

Active building strategies advance the role of prosumers
in the energy network by introducing flexibility measures,
while taking into account critical denominators such as users’
comfort. These strategies can be divided to those which serve
the AB community and those which provide services for the
gird. The former is referred to as B2B strategy while the latter
deconstructs the idea of demand flexibility into its source and
is called B4G strategy.

Building-to-Building Strategy: this strategy is developed
based on the idea of peer-to-peer energy trading [3]. According
to this framework, buildings can participate in a local market
based on their available generation capacity and demand flex-
ibility. However, participating in peer-to-peer energy trading
for an AB is subject to maintaining the techno-economic
constraints and satisfying the occupant comfort. Furthermore,
enrolling in B2B should bring about profit for each individual
AB. This profit can be reflected in the energy bills. Finally,
such a framework should not create security problems for the
utility grid. The following equations represent the B2B strategy
based on these criteria.

PB2B
j,t = P buyj,t − P

sell
j,t (25a)

0 ≤ P buyj,t ≤ P
ABD
j,t − PABG

j,t (25b)
0 ≤ P sellj,t ≤ P

ABG
j,t − PABD

j,t (25c)
0 ≤ P buyj,t ≤ (1− χb2bj,t )×M (25d)

0 ≤ P sellj,t ≤ χb2bj,t ×M (25e)∑
j∈ψj

PB2B
j,t = 0 (25f)

The value of B2B for each AB and its role (i.e. buyer or
seller) in the local market is defined by (25a). Each AB can
specify its role as buyer (i.e. when PB2B

j,t takes its value from
P buyj,t ) or seller (i.e. when PB2B

j,t takes its value from P sellj,t ) in
the B2B framework by managing its generation capacity (i.e.
PABG
j,t ) and demand (i.e. PABD

j,t ) as indicated by constraints
(25b) and (25c) respectively. Constraints (25b) and (25c) also
ensure that the energy exchange would happen based on the
RMG internal capacities. Note that, the generation and demand
of each individual AB are obtained in the energy balance
equations. Based on constraints (25d) and (25e) each building
can be a buyer or a seller in each time period. The variable
PB2B
j,t is also added to the power balance equations in (13).
Building-for-Grid Strategy: for the B4G strategy, a positive

variable is defined (i.e. Lflexj,i,t ) to tolerate the power con-
sumption of the adjustable power consumption tasks, through
multiplying it by the building appliances’ power usage (i.e.
Lflexj,i,t ×χ

Ap
j,i,t−o×P

Ap
j,i,o). However, this will change the model

to a non-linear one. Thus, the term χApj,i,t−oP
Ap
j,i,o in (13) is

replaced by Lflexj,i,t P
Ap
j,i,o, while the following linear model is

defined for B4G.

χApj,i,t−o × L
flex
l ≤ Lflexj,i,t ≤ χ

Ap
j,i,t−o (26)

PB4G
j,t =

∑
i∈ψv

i

PApj,i,o ×
(
χApj,i,t−o − L

flex
j,i,t

)
(27)

where, constraint (26) introduces the upper and lower limits on
the variable Lflexj,i,t based on the binary variable χApj,i,t−o which
has been defined in (5) for ON/OFF status of appliances. If
a building appliance is on (i.e. χApj,i,t−o = 1), the upper value

λ̂RMG
sell,t =

(
DRMG
t λ̂RMG

b2b,t + (GRMG
t −DRMG

t )λ̂GI
t

)/
GRMG
t

(28)

λ̂RMG
buy,t =

(
GRMG
t λ̂RMG

b2b,t + (DRMG
t −GRMG

t )λ̂GE
t

)/
DRMG
t

(29)

community.
the fair distribution of price between all buildings in the 
proportionally allocated between all producers. This enables 
the amount of energy that could be sold to the main grid is 
generation can sell their energy to the buyer buildings, whereas 
price is obtained by Eq. (28). Note that buildings with excess 
λ̂Gt 

E ). Local buy price is equal to λ̂Rb 
M

2b, 
G
t while local sell 

can be sold to the main grid with the grid export price (i.e. 
is lower than average B2B price, while the excess generation 
GRt 

MG, as in Fig. 3-(b)): In this case, the local sell price 
  II. RMG generation is higher than demand (DR

t 
MG < 

prices compared to those of the main grid.
market under this scenario can benefit from better buy and sell 
and export price. Therefore, buildings participating in the local 
under this scenario happens with the average of grid import 
(i.e. λ̂Rs 

M
ell 

G
,t ) prices are equal to λ̂Rb 

M
2b, 

G
t . Local energy trading 

in Fig. 3-(a)): In this scenario, local buy (i.e. λ̂Rb 
M
uy 

G
,t ) and sell 

  I. RMG generation equals demand (GRt 
MG = DR

t 
MG, as 

different scenarios are devised, as outlined below [29]:
GRt 

MG) and demand (e.g. DR
t 
MG) vary at each time-slot, three 

However, due to the fact that the RMG local generation (e.g. 
port prices with the main grid (i.e. λ̂Rb 

M
2b, 

G
t = (λ̂Gt 

I + λ̂Gt 
E )/2). 

RMG local prices are defined as the average of import and ex- 
this method is shown in Fig. 3. Based on this mechanism, the 
the energy prices within the RMG. The illustrative concept of 
commonly used pricing mechanism, is adopted for establishing 
is required. In this study, the mid-market rate method [29], a 
in the B2B and B4G strategies, a suitable pricing mechanism 
to establish a local market and encourage ABs to participate 
and improvement in energy system reliability [28]. In order 
advantages for the prosumers, such as energy bill reduction, 

  Participating in a local market can bring about several 

Pricing MechanismH.

their consumption to bring about lower cost for ABs.
signal guides the controller to switch on appliances and adjust 
appliances) can be adjusted. This means that the market price 
than one means the load of an appliance (or collection of 
clarify, reducing the value of flexibility to an amount lower 
value of flexibility (i.e. Lj

f
,
l
i
e
,t
x) to assist B4G services. To 

ON/OFF (i.e. χj
A
,i
p
,t) or indeed where applicable adjust the 

ABs can respond to the price signal by turning appliances 
program depends on the market prices. Based on this strategy, 
less than one. The willingness of an AB to participate in this 
which is non-zero if the flexibility variable would take a value 
parameter Ll

flex. Constraint (27) represents the value of B4G 
of Lj

f
,
l
i
e
,t
x will be one, while the minimum value is defined by 

consumers in the community.
imported from the main grid is proportionally allocated to all 
λ̂Rb 

M
2b, 

G
t and local buy price is obtained by Eq. (29). The energy 

grid with the grid price, while local sell price is equal to 
as in Fig. 3-(c)): The energy deficit is imported from the main 
III. RMG generation is lower than demand (GRt 

MG < DR
t 
MG, 

grid pricing contracts. As illustrated in Fig. 3, the local prices
while exchanging energy with the main grid based on the 

  Under this pricing framework, ABs can trade energy locally, 
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Price

PowerGeneration

Demand

Price

PowerGeneration

Demand

PowerGeneration

Demand

Price(a) (b) (c)

Grid import price Grid export price Local buy price Local sell price Mid price

ζj = ∆t
∑
t∈ψt


λ̂GI
t PGI

j,t − λ̂
GE
t PGE

j,t + λGt P
CHP
j,t

−λ̂GE
t PB4G

j,t

λ̂RMG
buy,t P

buy
j,t − λ̂RMG

sell,t P
sell
j,t

 (30)

IV. PROPOSED MULTI-LEVEL RMG CONTROL SCHEME

In order to accommodate the proposed mid-market rate
pricing mechanism, B2B and B4G service provision models,
the RMG controller has to consider three important factors.
Firstly, it has to dispatch an ABs participation in B2B and B4G
services only if that control action can provide added benefits
(i.e. reduced energy bills). Secondly, participation in any
local market for a building should honour occupant comfort
constraints. Finally, the RMG controller should consider input
parameter prediction errors when processing control signals
for the community. To address these challenges, this study
introduces a multi-level control framework as outlined in the
following subsections.

A. Base-Case RMG Control (First Level)

An AB-specified market should present cost saving to the
participants. In other words, energy bill of ABs after partici-
pating in the B2B and B4G should be lower than that without
these strategies. Accordingly, the base-case level of the RMG
control strategy minimises the energy bill in Eq. (1) without
consideration for B2B and B4G constraints, as follows:

min
(
ζl1 = ζ

)
(31a)

s.t :
(3)− (31b)(24)

The value obtained for ζl1 is considered as a constraints for
other levels of optimisation. The value obtained for total RMG
generation and load is also utilised to define the mid-market
rate local prices. This allows the definition of local prices
without consideration for an individual AB’s benefit, bringing
about a fair distribution of benefit among all dwellings.

B. Multi-Objective Optimisation (Second Level)

This level exploits B2B and B4G strategies to obtain the
greatest energy bill saving. The willingness to minimise the
cost, however, brings it into a conflict with the occupants
comfort. In this regard, it is required to solve this level as a

multi-objective optimisation. In this study, the ε−constrained
method is adopted to solve the optimisation problem. This
method does not require manual definition of weights and
can deal with convex and non-convex methods as opposed to
other approaches such as weighted sum technique [30]. These
are important factors that should be considered, especially
in automated control methods. In this method, one of the
objective functions is transferred into the model constraints,
while the other is optimised. The objective function that is
considered as a constraint takes its limits from ε, which
is derived from the maximum and minimum values of the
objective function that is being considered as a constraint.

Noting that either objective function could be optimised,
the energy bill is minimised in (32a) while the comfort level
is defined as the model constraint in (32b). This process turns
the model into a single-objective cost optimisation while the
comfort level is constrained by ε. The value of ε is defined
between maximum and minimum possible comfort level. The
interval between the maximum and minimum value is divided
into equal steps and the optimisation is solved for each value.

As aforementioned, energy bill with AB flexibility mecha-
nisms should be lower; therefore, constraint (32c) is introduced
in this level. The other constraints of this optimisation are
(3)-(27). This will enable the generation of all Pareto optimal
solutions for a multi-objective problem.

OF = min
DV

∑
j∈ψj

ζj

 (32a)

s.t :
Ξ ≥ ε (32b)
ζj ≤ ζl1j (32c)

(3)− (32d)(27)

as:
flexibility. Accordingly, the energy bill of each AB is written 
allows ABs to reduce their prices by utilising their demand 
export price. In addition to the B2B strategy, the B4G method 
their excess generation with a price better than that of grid 
price compared to that of grid import, while sellers can sell 
and sellers. Those who buy energy can benefit from lower 
participating in the local market brings profit to both buyers 
are defined between grid import and export prices. Therefore, 

  demand-generation scenarios.
Fig. 3: Value of local market price under different

Furthermore, as illustrated in this figure, stochastic methods
task in case of input data with unknown behavioural patterns. 
function of each uncertain parameter, which is a strenuous 
tion requires accurate knowledge about the probability density 
precise information on the uncertain input data. This informa- 
Fig. 4 [31]. As shown in this figure, stochastic methods require 
optimisation. For more elaboration on this method, consider 
agement technique which is different from the stochastic 

  The proposed method is a robust real-time energy man- 
effect of uncertainty on the B2B and B4G strategies.
as well as the price signals, it is necessary to consider the 
developed based on the generation capacity and AB demand, 
Since the proposed mid-market rate pricing mechanism is 
deviation from predicted data can affect the simulation results. 

  The schematic illustration in Fig. 2 demonstrated that the 

RRH Controller (Third Level)C.

market does not increase each individual AB’s energy bills.
that constraint (32c) ensures that participating in the local 
functions is chosen as the best compromise solution [30]. Note 
obtained, and the maximum value of the selected membership 
in which the minimum value of each membership function is 
solution. To do so, a fuzzy-based min-max method is adopted, 
are acceptable, there is a need to select the best compromise 
functions. Considering the fact that all Pareto optimal solution 
sation problem draws a Pareto optimal set for both objective 
(obtained when ζ is minimised solely). Solving this optimi- 
(obtained when Ξ is maximised solely) to its minimum value 
ε is decreased from the maximum value of occupants comfort 

  In (32), the operational cost is minimised while the value of 
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(a)

Uncertainty radius

(b)

U(α,
_
ν ) =

{
ν :
∣∣∣ν(t)− _

ν (t)
∣∣∣} ≤ α ∣∣∣_ν (t)

∣∣∣ , α ≥ 0 (33)
where ν(t) is the value of uncertain variable which deviates
around the predicted value (i.e. _

ν (t)). The size of gap between
ν(t) and _

ν (t) is defined by α which is called uncertainty
variable. Based on this model, the fractional deviation of
predicted parameter from the uncertain value is limited by α.
The bigger the value of α, the larger the horizon of deviation.

In the proposed model, the predicted values of outside
temperature (i.e. T̂ outt ), natural illuminance level (i.e. V̂ Nt ),
and photovoltaic unit output (i.e. P̂PVF

t ) are considered as
the weather-related uncertain data. While these parameters are
weather-related, the first two data impose demand uncertainty
while the third one reflects the generation uncertainty. The
import/export electricity prices (i.e. λ̂I/Et ) are also considered
as the market related components of uncertainty. It is worth
mentioning that these sources of uncertainty can even affect
the local market prices.

Since these parameters are more likely to experience vari-
ation over the control horizon, the proposed RRH controller
improves the system robustness in face of market price devi-
ation (i.e. αp) and weather-related forecasted data uncertainty
(i.e. αw) over the control horizon by scheduling AB assets and
benefiting from the participation of occupants. Note that these
deviations will be obtained based on the control mechanism.
To achieve this control philosophy, the RRH controller solves
the following optimisation:

max
DV

{
αt
(

min (ζ)× (1 + β) ≥ ζ
max (Ξ)× (1− β) ≤ Ξ

)}
(34)

s.t :
αt = ω × αw + (1− ω)× αp (35)
PPVj,t ≤ (1− αw)P̂PVF

t (36)
V Nt ≤ (1− αw) V̂ Nt (37)
T outt ≤ (1− αw)T̂ outt (38)

λ
I/E
t ≤ (1 + αp)λ̂

I/E
t (39)

ζj ≤ ζl1j (40)
(3)− (41)(27)

In (34), the weighted sum method is utilised to obtain
the maximum degree of robustness. The tolerable value of
robustness degree which affects both objective functions is
specified by parameter β, which is defined in the interval [0,1].
Assuming that the weather-related data affect photovoltaic
unit output, natural illuminance level, and outside temperature,
the robustness degree is multiplied by these input parameters
in (36)-(38) respectively. Also, the effects of market price
robustness degree is obtained in (39). Robustness degrees are
defined in the interval [0,1].

Knowing that the previous studies which have investigated
a robust market price framework [24] introduced a non-
linear model such as constraint (39) , this equation has been
linearised in this study through replacing the term λItP

GI
j,t by

the variables PG
1
L

j,t and PG
2
L

j,t as follows:

λItP
GI
j,t =

(
P
G1

L
j,t

)2

−
(
P
G2

L
j,t

)2

(42a)

P
G1

L
j,t =

1

2

(
λIt + PGI

j,t

)
(42b)

P
G2

L
j,t =

1

2

(
λIt − P

GI
j,t

)
(42c)

where the non-linear terms in (42a) are linearised using the
method described in (12). The same approach is adopted to
linearising λEt P

GE
j,t and λEt P

B4G
j,t .

DV =



TBj,t ∀j ∈ ψj , t ∈ ψt
V Bj,t ∀j ∈ ψj , t ∈ ψt
χApj,i,t ∀j ∈ ψj , t ∈ ψt, i ∈ ψi
P
GI/E

j,t ∀j ∈ ψj , t ∈ ψt
P
PV/CHP
j,t ∀j ∈ ψj , t ∈ ψt
P
ESSc/d

j,t ∀j ∈ ψj , t ∈ ψt
PB2B
j,t ∀j ∈ ψj , t ∈ ψt
PB4G
j,t ∀j ∈ ψj , t ∈ ψt
αt



(43)

V. FRAMEWORK DESCRIPTION AND SIMULATION SETUP

A. Framework Description

Fig. 5 illustrates the framework of the proposed RMG
controller. The input data is transferred to the data receiver.
Then, for the time period t, the model is solved in three levels,
starting from the first level where energy bill is minimised
without B2B and B4G strategies. The local prices are deter-
mined in this level, while the value of energy bill is considered
as a constraint for outer levels. The second level takes into
account two conflicting objective functions, while the process
ends up with the RRH which improves the robustness of the

described as follows [32]:
controller in face of uncertainty. This model is mathematically 
tion gap decision theory to improve the robustness of RMG 

  This study utilises the envelope-bounded model of informa- 
immune if the input data vary within an unknown threshold.
means that the optimal value of objective function will remain 
objective function in face of uncertainty in the input data. This 
known. This method increases the immunity (i.e. robustness) of 
only requires an uncertainty set which does not need to be 
which is based on information gap decision theory technique, 
On the other hand, On the other hand, the proposed method 
eter, resulting in a dramatic increase in the computational time. 
produce a large number of scenarios for each uncertain param- 

  theory and stochastic methods.
Fig. 4: The conceptual difference of information gap decision

equations (34) and (32)) are defined as below:
of decision variables. The set of decision variables (i.e. DV in 
solving the proposed problem along with optimising the values 
building are dependent variables which are obtained through 
delivering comfort, comfort indices, and demand level of each 
the other variables such as local prices, consumption power for 
of B2B and B4G, and ON/OFF status of appliances. Note that 
main grid, output value of distributed energy resources, value 
radius of uncertainties, imported/exported power from/to the 
consist of temperature and illuminance level in each building, 

  The decision variables of proposed RRH control method 

Decision VariablesD.
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Fig. 5: Illustration architecture of the RMG controller.

TABLE I: building and task description.

Included tasks No.Typebuilding No. DescriptionTask No.
j1 3 i1 − i10 i1 Dishwasher
j2 2 i1 − i6, i10 i2 Washing machine
j3 2 i7 − i10 i3 Spin dryer
j4 1 i1 − i4, i6 − i7, i10 i4 Cooker hob
j5 1 i4 − i10 i5 Cooker oven
j6 3 i1 − i10 i6 Microwave
j7 1 i1 − i4, i8 − i10 i7 Laptop
j8 1 i1 − i4, i6 − i10 i8 Desktop
j9 3 i1 − i10 i9 Vacuum cleaner
j10 2 i5 − i7, i9 − i10 i10 Fridge
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Fig. 6: Occupancy profile and comfort weights of different
buildings types.

  results demonstrates the role of building occupants in
  pence while the occupant comfort decreases 1.3%. This
  ment (i.e. β = 0.10) the energy bill increases by 63
  For instance, in Case II, for a 10% robustness improve-
  while the occupants’ expectation is slightly decreased.

III. Robust solution: the robust solution imposed more cost,
  be taken into account.
  planning for instance, are important factors that should
  the advantages for the main grid, no need for expansion
  problem is solved from the RMG’s perspective, while
  markets. It is crucial to consider the fact that the
  while demonstrating the importance of local energy
  can improve the socio-economic aspects of buildings,
  cost. This results imply that the flexibility measures
  strategies in improving occupants comfort with lower
  demonstrating the effect of the proposed AB flexibility
  solution in Case II is 1.1% higher than that of Case I,
  I. From the comfort index point of view, the robust
  about 18.45% and 18.46% lower than those of Case
  The compromise and robust solutions in Case II are
  (from both viewpoints of cost and comfort) for ABs.
  B2B and B4G strategies brought about better solutions
  the solutions for cases I and II that participating in the

II. B2B and B4G strategies: it is evident from comparing
  the current thermostats in each building.
  control framework could be a suitable alternative for
  compared to comfort-optimal solution). Therefore, this
  fort level close to set points (i.e. only 0.5% decrease
  thermostat-controlled solution while keeping the com-
  lution provides 16.46% lower energy bill compared to
  makes a trade-off between comfort and cost. This so-
  in the majority of buildings. The compromise solution
  solution is compatible to the thermostats that are used
  resulting in more expenditure for the community. This
  and illuminance values that are closest to the set points,
  level, while comfort-optimal solution seeks temperature
  decreased the comfort index to its minimum allowable
  I. The Pareto optimal solutions: the cost-optimal solution

observations are:
studies are highlighted and compared in this figure. The main 
cost is minimised for each level. Different solutions and case 
from 0.992 to 0.965 in different levels while the operational 
in blue in Fig. 7), the value of comfort index is decreased 
operational cost is minimised. For example, in Case I (shown 
from its maximum value to its minimum value while the 
these solutions, the value of ε (i.e. comfort level) is decreased 
and III reflecting different strategies are depicted in Fig. 7. In 
the operation horizon, the Pareto optimal fronts for cases I, II, 

  In order to investigate the impact of different strategies over 

A. Pareto Optimal Solutions

tested.
case studies. The computation efficiency of the model is also 

and discussed in this section through comparison of various
  The results obtained for the proposed model are analysed 

VI. RESULTS AND DISCUSSION

which changed the occupancy profile of residential buildings.
an abnormal scenario such as COVID-19 pandemic lockdown 
ABs are always occupied. This case attempts to represent 
Case II is solved under different occupancy profile where 

  Case III: The proposed model in an abnormal condition. 
This case study is solved for different scenarios.

  Case II: The proposed model with B2B and B4G strategies. 
optimisation without AB flexibility measures.
gies. This case study solves the second and third levels of the 

  Case I: The proposed model without B2B and B4G strate- 
following case studies:

  The effectiveness of the proposed model is evaluated by the 
supporting data are available online at [34].
and included tasks in each one is given in Table I. Other 
sleeping periods respectively. The information on buildings 
white and pale colours represents occupied, unoccupied and 
three types as a function of their occupancy profile. The bold, 
and then during a winter day. Buildings are categorised into 
factor index for each AB under normal operating condition 
Fig. 6 illustrates the occupancy profile and comfort weighting 
into three types as a function of their occupancy profile. 
ABs are considered in the RMG. Buildings are categorised 
using 30-minute time windows, starting from 8:00AM. 10 
using CPLEX solver. The simulation is performed for 24 hours, 
simulated in general algebraic modelling system (GAMS) [33]

  The proposed problem is an MILP model which has been 

B. Simulation Setup and Case Studies

period is analysed.
the end of operation horizon, when the results for the whole 
process for the next time-slot. This process is continued until 
signals to the ABs and different assets while re-compiles the 
At the end of each time period, the controller sends the control 
second and third levels are energy bill and occupants comfort. 
model in the same time window. The linking variables between 
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Fig. 7: Pareto optimal front for multiple optimisation
solutions.

TABLE II: Root mean square error of Case III for each AB.

Building No. j1 j2 j3 j4 j5
6.756.7515.4415.412.42Root mean square error (%)

Building No. j6 j7 j8 j9 j10
15.392.456.766.732.48Root mean square error (%)

inertia is utilised as an energy storage mechanism and indoor
in response to market price. In doing so, the building thermal 
allow the controller to oversee a flexible indoor temperature 
obtained for robust solution also shows that how ABs can 
with slightly lower values in the robust solution. The result 
comfort index of the AB fluctuated over the price variations, 
as shown in Fig. 11. It is evident from this figure that the 
the temperature of building has affected the comfort index, 
alternating their preferred comfort zones. These variations in 
a considerable role in improving the RMG robustness by 
to 23:00). This demonstrates that AB occupants can have 
particularly under high market price periods (i.e. from 19:30 
however, experiences more fluctuation and lower temperatures, 
AB while considering the economic factors. Robust solution, 
the temperature around the preferred set point given by the 
compromise solution, the main goal of controller is to keep 
and compromise scenarios of Case II for building j1. In the 
by giving an example of the indoor temperature in robust 
contribution of occupants in improving system robustness, 
robustness should not be neglected. Fig. 11 highlights the 

  The participation of occupants in improving the system 
markets.
a considerable influence on the energy interaction in the local 
Therefore, social factors (i.e. occupant behaviour) can have 
decrease in participation of building in the local market. 
value of occupants comfort index resulted in a considerable 
occupants comfort index (i.e. 0.96). However, increasing the 
exchanged more power in the local market at lower values of 
occupants comfort. As can be seen in this figure, building 
j1 over the control horizon is depicted for different levels of 
illustrated in Fig. 10, where the power exchange of building 

  The effect of occupants comfort on the B2B interaction is 

E. Role of Occupants

(i.e. from 19:30 to 23:00).
least not changed, especially during high market price periods 
higher price deviation, the imported power is decreased or at 
other words, in order to improve the robustness against the 
by RRH controller is robust against higher price deviation. In 
of compromise solution. This means that the decision made 
main grid in robust solution is almost twice as much as that 
latter. For example, at 17:00, the imported power from the 
how more grid power import occurs in former compared to 
comparing robust and compromise solutions of Case II shows 
delay the need for generation investment. On the other hand, 
high sell prices and low buy prices. In the grid level, it can 
try to achieve a high retail profit from prosumers by offering 
can be an effective alternative for profit-seeking retailers who 
than importing from the main grid (see Fig. 8). This strategy 
while those with energy needs purchased energy locally rather 
excess generation have sold their power to other buildings, 
in Case II (both scenarios). This demonstrates that ABs with 
the main grid. The energy export to the main grid is zero 
the B2B and B4G strategies affected the power exchange with 
cases I and II is shown in Fig. 9. This figure shows that utilising 

  The energy exchange between RMG and the main grid in 

D. Energy Exchange with the Main Grid

a higher operational profile.
behaviour, while B4G strategy can be efficient for ABs with 
creates flexibility based on generation capacity and occupancy 
B4G strategy. Therefore, it can be concluded that B2B strategy 
tasks, the less an AB can contribute proactively to the grid in 

full range of adjustable appliances. The lower the number of
(e.g. j10) did not participate actively since they do not offer a 
consuming appliances. On the other hand, type two buildings 
more active as they are equipped with more adjustable power 
than j6. In B4G strategy, type three buildings (e.g. j1) are 
same category. For instance, building j1 received more energy 
price received more energy, compared to other buildings in the 
that need to start their tasks at hours with high rates of market 
ation window of buildings appliances, such that the buildings 
decisive factor in B2B strategy is the starting time and oper- 
can provide other ABs with their available capacity. Another 
type two buildings (i.e. unoccupied during office hours) which 
day) mostly played the role of the receiver, as opposed to 
the B2B strategy, type three buildings (i.e. occupied the whole 
are separately illustrated on the outer edges of the figure. In 
buildings j1 (type three building), and j10 (type two building)
by B4G strategy. As an illustration, consumption patterns of 
and the right picture outlining the flexibility service provided 
outlining the power exchange between ABs in the B2B strategy 

  Figure 8 demonstrates Case II scenarios with the left picture 

C. Building Flexibility Values

real-date analysed by Reference [35].
the root mean square error value has been observed in the 
occupancy profile before and after lockdown. This variation in 
mean square error of each building varies based on its type and 
summarised in Table II. As can be seen in this table, the root 
ing load profile, the root mean square error of Case III is 

  In order to analyse the impact of COVID-19 on the build- 

B. COVID-19 Effect

  systems.
  taken into account operation and planning of energy
  consumption pattern of dwellings, which should be
  that the pandemics (e.g. COVID-19) can change the
  loads. Therefore, it is crucial to consider the fact
  in Case III also increases the overall energy system
  at a higher cost. Note that increasing comfort levels
  pied ABs and therefore has to deliver greater comfort

IV. Cases II and III: Case III represents constantly occu-
with a negligible cost.
boosting the robustness of the proposed control strategy 
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Fig. 8: Power exchange in B2B and B4G strategies.
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12 that examines variation of αt over the weighting factor ω for
various levels of β. This figure shows that increasing ω raises
the value of αt. This can be interpreted with Equation (34) in
mind, that increasing ω raises the weight of weather-related
robustness, resulting in a dramatic increase in the value of αt.
In another words, it is easier to increase the weather-related
robustness as opposed to that of the market price. Besides,
increasing the value of β raises the robustness degree.

G. Computational Efficiency

In order to evaluate the computational and economic merits
of the proposed model, it is benchmarked against the conven-
tional rolling horizon method within three different scenarios:
[I] S1 which portrays an optimistic future horizon in which
predicted data and the subsequent reality for those forecasts are
the same; [II] S2 with across a 3 hour future horizon assumes
the real weather to be 30% different to the initial forecast and
the market price to be 15% different to the initial value and
finally [III] S3 which solves the same optimisation problem
as S1 using 5-min intervals (instead of 30 min). The results
for these scenarios are outlined against the proposed RRH in
Table III. Scenario S1 solves the model in 34.21s at each time
step, while the proposed RRH model takes 42.15s. Comparing
scenarios S1 and S2 shows that deviations between initial
forecast and subsequent reality results in more operational
cost. To overcome this problem, S3 solved the model at finer
time intervals that yields 8.6% cost reduction (compared to
S2), but at a penalty of much higher computational time
(i.e. 175.25 seconds each iteration). Against these results, the
proposed RRH demonstrated superior performance in both
computational (e.g. 76% lower compared to S3) and economic
aspects (e.g. 6.3% lower cost as opposed to S2). The improved
accuracy in scenario S3 imposes considerably higher process-performs. This is demonstrated by a sensitivity analysis in Fig.

ω ) are instrumental in how the robustness degree component 
ness (i.e. β) and the robustness degrees’ weighting factor (i.e. 

  In the proposed RRH model, the tolerable value of robust- 

F. Robustness Analysis

well-insulated buildings.
to stay within comfort bands) is even more pronounced in 
storage resources. Thermal neutrality (or the ability of an AB 
buildings is a major advantage to exploit as a virtual thermal 
gradually. The intrinsically slow thermal response of most 
hours with lower market price and thereafter allowed to fall 
temperature is increased to above the set point in morning 

building j1 over the operation horizon for different cases.
  Fig. 11: Variation of temperature and comfort index of 



IEEE TRANSACTIONS ON, VOL. 00, NO. 0, OCTOBER 2021 12

TABLE III: Computation efficiency of different techniques.

ComfortOperationalComputation time (Sec.)Scenario
TotalPer interval indexcost (£)(time step)

S1 0.9866.351,648.0834.21(30 min.)
S2 0.9857.131,648.0834.21(30 min.)
S3 0.9766.5150,472.00175.25(5 min.)

0.9736.682,023.2041.15RRH (30 min.)

TABLE IV: Comparison of MILP and MINLP models.

MILPMINLPModel type
MOSEKCPLEXDICOPTBARONSolver

1.920.709.6754.05Computation time (min. per interval)
6.686.686.706.70Operational cost(£)
0.9730.9730.9730.973Comfort index

0000Relative gap (%)
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