
IEEE TRANSACTIONS ON, VOL. 00, NO. 0, APRIL 2022 1

A Joint Risk and Security Constrained Control
Framework for Real-Time Energy Scheduling of

Islanded Microgrids
Saman Nikkhah, Graduate Student Member, IEEE, Ilias Sarantakos, Natalia-Maria Zografou-Barredo, Abbas

Rabiee, Senior Member, IEEE, Adib Allahham, and Damian Giaouris

Abstract— High penetration of intermittent renewable energy
sources (RES) and unexpected disruptions (e.g., natural disas-
ters) are fundamental challenges which can threaten the secure
operation of microgrids, especially during the islanded condition,
with no support from the upstream grid. This paper introduces
a hierarchical tri-layer min-max-min joint risk- and security-
constrained model predictive control (RSC-MPC) framework
for real-time energy scheduling of islanded microgrids (IMGs)
under the influence of uncertainty and real-time time-varying
contingency conditions. While the first layer processes a pre-
scheduling day-ahead optimisation, the second layer detects
the worst-case contingency conditions by maximising the load
curtailment and the mismatch between pre-scheduling (i.e., first
layer) and real-time operation. The third layer implements the
corrective security measures to minimise the negative effect of
contingency conditions while accounting to the cost associated
with the risk of uncertainty in the forecasted inputs. The third
layer also explores the economic effects of the RES’ uncertainty
on the proposed RSC-MPC, considering the risk and energy
procurement cost as conflicting objectives. The computational
efficiency of the proposed hierarchical control system in terms
of accuracy and processing time is guaranteed through a mixed
integer conic programming model. The proposed RSC-MPC is
tested in different case studies and its efficiency is validated by
numerical results.

Index Terms—Islanded microgrid (IMG), security, risk, conic
programming.

NOMENCLATURE

Indices
i, j Index of system buses
t/s Index of time/scenario
Sets
Ωb Set of system buses
Ωj

b Set of buses that are not connected to the
upstream network

Ωs
b Set of buses connected to the upstream network

Ω
f/c
b Set of responsive/curtailable loads

Ωg/w/e Set of DU/WT/ESS installed buses
Ωt/s Set of time/scenarios
Parameters
(G/B)

ℓ/Sh
ij Series/Shunt conductance/susceptance of the

line between buses i and j [pu]
(P/Q)Gi,max/min Maximum/minimum active/reactive power

capacity of DUs [kW]
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β Weighting factor
χG
i,t Parameter indicating the on/off status of DUs

∆t Duration of time periods [hour]
η
Ch/DCh
i Charge/discharge efficiency of ESS [%]
γmt Energy price [$/kWh]
πW
s The probability of falling to each wind scenario

[%]
ψWT
i,s Available wind power at each scenario

ρ CVaR confidence layer [%]
Iℓmax Maximum current capacity of branch ℓ [pu]
LCur
i Value of loss load [$/kWh]

PD0
i,t,s Base active load [kW]
PWT
R Rated power of WTs [kW]
R

U/D
i Ramp up/down limits of DUs [kW]

RT Repair time of distribution lines [hour]
SOCESS

max/min Maximum minimum state of charge of ESS
[kWh]

V
max/min
i Maximum/minimum voltage magnitude [pu]

Variables
(P/Q)Di,t,s Active/reactive load demand [kW/kVAr]
(P/Q)Gi,t,s Active/reactive power output of DUs

[kW/kVAr]
(P/Q)UN

i,t,s Active/reactive power imported from upstream
network [kW/kVAr]

(P/Q)WT
i,t,s Active/reactive power output of WTs

[kW/kVAr]
(P/Q)ℓij,t,s Active/reactive power flow between buses i and

j [kW/kVAr]
(R/T )ℓij,t,s Variables associated with the line between buses

i and j in MICP model [pu]
αℓ
ji,t,s Binary variable specifying the parent bus [=1 if

bus i is the parent of bus j, =0 otherwise]
βres
i,t,s Degree of flexibility of responsive loads [%]
λ
Ch/DCh
i,t,s Binary variables indicating the charge/discharge

status of ESS [0,1]
σ Auxiliary variable indicating the value of CVaR

[$]
θij,t,s Voltage angle between buses i and j [pu]
φs Excess of the cost in each scenario over ex-

pected cost [$]
ϑℓij,t,s Binary variable representing the status of line

between buses i and j [0-1]
P

Ch/DCh
i,t,s Charge discharge power of ESSs [kW]
PC
i,t,s Load curtailment [kW]
SOCESS

i,t,s State of charge of ESS [kWh]
Ui,t,s Variable associated with buse i in the MICP

model [pu]
U ℓ
ij,t,s Variable associated with the line between buses

i and j in MICP model [pu]
Vi,t,s Voltage magnitude of bus i [pu]



IEEE TRANSACTIONS ON, VOL. 00, NO. 0, APRIL 2022 2

I. INTRODUCTION

SECURITY issues have been increasing in power systems
in recent years due to the extreme weather events leading

to breakdown of infrastructure networks as a result of climate
change. On the one hand, more frequent natural disasters have
highlighted the necessity of accounting for security measures.
On the other hand, increased penetration of volatile renewable
generation (to decrease environmental pollution) has created
more opportunities, but also challenges for system operators.
Therefore, greater share of renewable energy sources (RESs)
as well as increased frequency of natural disasters in sys-
tems without suitable decentralised control frameworks have
provoked substantial challenges to the electricity networks.
For instance, the UK power grid outage on August 2019
was the result of high penetration of RESs and the lack
of suitable control strategies in the local networks which
were disconnected from the main grid by the under-frequency
load shedding [1]. Such an event triggered the necessity of
designing the microgrids (MGs) that are capable of operating
in islanded mode, while accounting for security issues caused
by low-probability high-impact contingencies. This operation
strategy can prevent, or at least decrease the load shedding of
local networks that are disconnected from the main grid.

The islanded operation requires an efficient control mech-
anism that ensures different operational and physical con-
straints. Efficient controlling of islanded MGs (IMGs) can
enhance the grid reliability and resilience, while improving the
RES penetration [2]. Optimal control and energy scheduling
of IMGs, however, can be challenged by a wide variety of
technical/operational problems. Firstly, due to the inclusion
of different inverter-based technologies in the network, the
IMG controller should be able to deal with the time-scale
discrepancy between the responses of different technologies
on a real-time basis. On the other hand, due to the high
probability of RES uncertainty, even in a minute-to-minute
real-time tracking [3], the risk associated with uncertainty
should not be neglected. Therefore, the IMG controller needs
to take into account forecasted parameter uncertainty (e.g.,
in renewable generation) and the potential response delays of
different assets in real-time control. Secondly, such a real-time
IMG controller should be able to tolerate possible contingency
conditions (e.g., a sudden disruption caused by a natural disas-
ter) that can affect grid elements such as distribution system’s
lines. This problem raises the necessity of accounting for
security measures in the IMG’s real-time controls. Finally, such
control framework should be computationally efficient, while
considering important physical and operational constraints of
the network.

Several approaches have been proposed in the literature to
deal with the aforementioned challenges.

1) Real-time control: Model predictive control (MPC) has
been regarded as an efficient approach that is capable of
considering system constraints at each time step, enabling
real-time control of complex systems. The utilisation of MPC
approach in [4] has brought higher RES penetration as well as
improvement in the IMG efficiency. In [5] the MPC is adopted
to predict future voltage deviations in the IMGs and adjust
the reactive power generation to prevent voltage instability.
Regardless of the efficiency of MPC-based methods, the main
issue in the application of these approaches is the possibility
of changes in the predicted data of future time slots. As it has
been shown in [6], there is a considerable difference between
the actual and predicted photovoltaic generation output, which

is caused by the inherent uncertainty of solar irradiance.
The effect of RESs uncertainty on the voltage stability of
IMGs and optimal capacity of electric vehicle parking lots
is analysed in [7]. This factor also has been considered as an
important challenge which can affect the system operation [8],
load curtailment [9], and system reliability [10]. However, the
conventional MPC approaches fail to capture the critical uncer-
tainties (e.g., those associated with RESs) and consequently to
handle their associated technical and economic risks. Although
it has been considered as the future research work in [4], there
is not any research which has investigated the performance
of the MPC-based control approaches under an uncertain
environment. It should be noted that the effect of uncertainty
on the energy management of microgrids has been analysed in
recent literature [11], [12], where robust optimisation has been
utilised to improve the system robustness in face of uncertainty
in the renewable generation. Furthermore, the risk associated
with uncertainty of predicted data in the MPC requires more
investigation.

2) System security: The occurrence of several natural dis-
asters in recent years [13] obliged system operators to con-
template the contingency conditions as a challenging issue
which can affect the power grid [14]. The importance of such
constraints in energy management of MGs has been clearly
shown in the previous researches [15]–[19], and different pre-
ventive and corrective measures have been taken into account
to improve the system security. Reference [15] introduced a
conservative energy scheduling framework which minimised
the dependency on susceptible lines, while concerning the
voltage and reactive power constraints as important criteria
of secure grid operation. Sun et al. [16] proposed a self-
healing strategy for MGs to prevent security problems when
the grid is facing a contingency condition. The steady state
voltage stability of islanded AC-DC MGs with limited reactive
power support in the off-grid mode and under the influence
of contingencies is studied by [17]. In [18], the security
constraints have been integrated into the optimal power flow
model in energy management of multi-MGs in a stochastic
environment. Contingency conditions have been considered as
the main means of defining different security measures [14].
In [19] the role of reserve constraints in providing security
margin for isolated microgrids against forecast errors and intra-
dispatch fluctuations is analysed by introducing a capacity
allocation method. The reserve requirements can be provided
by dispatchable units, or optimal management of controllable
loads. In [20] optimal management of thermostatically con-
trollable loads is considered as flexibility option for primary
frequency regulation. In reality, however, the contingency situ-
ations are mainly uncertain phenomena (e.g., natural disasters)
that change over a geographical area in a specific period of
time. These two factors (i.e., uncertainty in the occurrence of
disruptions, and changeability over the system structure) have
not been considered in the definition of security.

Network reconfiguration has been regarded as a viable
solution to enhance the system security, while keeping a radial
structure for the system to facilitate the protection measures.
The results obtained in [21] show that the network reconfigura-
tion can change the maximum active droop coefficient through
tolerating the impedance. A worst line contingency detection
method for the IMGs is proposed in [22], while the mobile
RESs and network reconfiguration are considered as preventive
actions to minimise the load curtailment. Application of this
method in improving system security is even evident when
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it has been subjected to different limitations, such as loss-of-
load and line capacity constraints [23], or dynamic line rating
limitations [24]. A new network reconfiguration in the presence
of RESs has been introduced in [25] for post failure system
restoration. This method helped in decreasing the costs of
restoration program. In [26], the joint optimisation of network
reconfiguration and distributed generation is considered as a
solution for decreasing the time and cost of system restoration
after major faults in the distribution network. The network
reconfiguration, however, has been mainly studied as a pre-
ventive rather than a corrective measure. Also, the majority of
post/pre-reconfiguration problems has been designed based on
the known location of faults. However, considering the highly
uncertain nature of contingency conditions, changing the sys-
tem configuration prior to the occurrence of any contingency
condition may not influence the elements that will be affected
by the event of disruptions.

3) Computational efficiency: Including the security mea-
sures in a real-time control mechanism, requires a computa-
tionally efficient mathematical model. The existing literature
on the real-time energy scheduling of IMGs have mainly
adapted mixed-integer nonlinear programming (MINLP) [27]
or mixed integer linear programming (MILP) [28] models.
Also, those studies which have considered network reconfigu-
ration as a flexibility option for improving the system security
have mainly utilised MINLP [22] or MILP [16] models. The
main classification criterion for these mathematical methods
is the power flow algorithm. Considering a full AC power
flow model results in an MINLP problem, and is often solved
employing heuristic optimisation methods [29]. However, the
MINLP models fail to ensure global optimality (or quantify the
optimality gap), while imposing a significant computational
burden. The MILP models use some simplifications and ap-
proximations in order to linearise the non-convex constraints,
which introduce a layer of inaccuracy to model outputs.

The taxonomy of relevant literature on the energy scheduling
of IMGs is given in Table I. The studied literature clearly
highlighted the importance of including security measures in
IMGs operation, as well as the need for using an efficient con-
trol mechanism. However, there are several important points
in the literature that have not been considered, including:
a) importance of security in real-time energy scheduling, b)
influence of uncertainty on the real-time operation of system,
c) economic factors associated with risk of uncertainty in the
real-time energy scheduling, d) real-time flexibility measures
created by the energy grid, and e) computational efficiency
of a framework that concerns points in (a)-(d). These factors
have been highlighted as important research program questions
in the Global Power System Transformation (G-PST) Consor-
tium’s Research Agenda Group [30]. The relevant questions
mentioned in this agenda are [30]:

I. How can operators identify critical stability situations in
real-time and optimise system security?

II. How can system operators get relevant real-time visibility
and situational awareness of the state of the power system
with increasing penetrations of RES and DER?

III. How do control rooms address uncertainties in weather
conditions that impact loads and renewable energy output
and rate of change (ramps)? How can probabilistic fore-
casting techniques be better incorporated into real-time
operations?

IV. How can grid topology be flexibly adapted at various
operating conditions?

In view of the above requirements, this paper proposes a tri-
layer min-max-min joint risk- and security-constrained model
predictive control (RSC-MPC) framework for real-time energy
scheduling of islanded microgrids (IMGs) under the influence
of uncertainty and real-time time-varying contingency con-
ditions. The control philosophy starts from first layer cost
optimisation, which applies the preventive measures based on
the predicted data. The preventive security measures in this
layer are adopted through optimal pre-scheduling of DERs,
and applying the demand response (DR) program. The second
layer aims at identifying the worst-case contingency conditions
by maximising the load curtailment and the mismatch between
the pre-scheduling energy procurement cost (i.e. first layer) and
that of real-time (i.e. second layer). Convex time-varying secu-
rity constraints are developed for the RSC-MPC controller in
the second layer, which consider changeability in the location
of disruptions over different zones of the IMG. Finally, in the
third layer, the controller develops a convex real-time network
reconfiguration as a corrective security measure against the
contingency conditions, while re-scheduling the IMG with a
trade-off decision making (i.e. making compromise between
energy procurement cost and risk of uncertainty in the pre-
dicted data). Note that solving the model without the first two
layers results in an optimistic decision making which neglects
contingency condition or risk of uncertainty. The proposed
model benefits from a MICP which is computationally efficient
in terms of accuracy and processing time. These developments
allow the inclusion of risk and security measures in the real-
time energy management of MGs that have to operate in
islanded mode. To summarise, the main contributions of this
paper are:

• Proposing a multi-layer MICP model for multi-objective
energy scheduling of IMGs. The introduced model is
computationally efficient and can provide an accurate
representation of the power flow model for inclusion in
the RSC-MPC.

• Developing a min-max-min RSC-MPC framework which
considers the uncertainty of predicted data and the risk as-
sociated with them. The introduced control model allows
the inclusion of uncertainties in real-time energy schedul-
ing of IMGs while accounting for structural changes in
the network topology.

• Building time-varying security constraints based on a
MICP power flow model. The proposed framework takes
into account the real-time disruptions which change over
the grid zones. This framework allows the inclusion of
more realistic contingency conditions.

• Developing a corrective real-time network reconfiguration
model which improves system security, while guaran-
teeing the network radiality over uncertainty scenarios
(i.e. stochastic network reconfiguration). This framework
enables the system controller to change the system con-
figuration so as to prevent load curtailment caused by
real-time contingency, while considering the uncertainty.

The remainder of this paper is organised as follows.
Overview of the proposed RSC-MPC is given in Section II.
The description of different layers and the problem formulation
is presented in Section III. Section IV introduces the frame-
work description and case study. Simulation results are given
in Section V, while conclusions are summarised in Section VI.
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TABLE I: Taxonomy of IMG energy scheduling literature.

Constraints Real-time approach Reconfiguration Security measures
Ref. No Uncertainty Risk Security Reserve Conventional Risk-constrained Normal Stochastic Corrective Preventive Model type

[4] x x x ✓ ✓ x x x x x MILPI

[5] x x ✓ x ✓ x x x x VVCII MILP
[9] ✓ x ✓ ✓ x x x x x x MILP
[14] x x ✓ x x x x x x NRIII MINLPIV

[15] x x ✓ x ✓ x ✓ x DRV NR MILP
[17] x x ✓ ✓ x x x x x VVC MINLP
[18] ✓ x ✓ x x x ✓ x x NR MINLP
[19] ✓ x ✓ ✓ ✓ x x x DR x MILP
[22] ✓ x ✓ x x x ✓ x x NR MINLP
[23] ✓ ✓ x x x x ✓ x x x MICPVI

[26] x x x x x x ✓ x NR x MILP
This study ✓ ✓ ✓ ✓ x ✓ x ✓ NR DR MICP

I: Mixed integer linear programming, II: volt-var control, III: Network reconfiguration, IV: mixed-integer nonlinear programming, V: demand response, VI: mixed-integer conic programming.

II. RISK- AND SECURITY-CONSTRAINED MPC

Using an optimisation-based approach and incorporating the
system constraints while also accounting for future timeslots
in predicting the state variables are unique advantages of MPC
approach, enabling it as a widely-used control mechanism for
real-time energy scheduling of IMGs. This controller compiles
the optimal control decisions through optimising an objective
function for a finite time horizon while only considering the
results for the current time interval. For the next timeslot, the
controller re-dispatches the system while considering the grid
dynamics, past and present control signals. Although such a
control framework is efficient in optimising the state variables
according to the objective function, it cannot fully address the
real-time structural changes in the system topology and the
uncertainty of RESs. These challenges reinforce the needs for
boosting the efficiency of this control scheme.

The conceptual illustration of the conventional and the pro-
posed MPCs is shown in Fig. 1. In the conventional MPC, the
controller dispatches the system for each time interval while
considering the whole control horizon. This controller, how-
ever, does not account for the uncertainty of RESs, and the risk
associated with stochastic generation of these energy sources.
For example, when compiling the model at time period t(1), the
predicted RES output between time periods t(1+n) and t(1+k)

are uncertain and more likely to have different generation
scenario from the predicted values. Besides, the occurrence of
contingency in the future time intervals cannot be predicted by
the conventional control systems. For instance, any disruption
between the line connecting the RESs to other parts of the
network results in a contingency situation that requires a
real-time security measure. Concerning these challenges, this
paper introduces a RSC-MPC, which is conceptually illustrated
in Fig. 1. This controller accounts for the uncertainty of
prediction data, while considering the risk associated with
each scenario. Such a risk is defined based on the difference
between the expected amount of objective function and its
value in different uncertainty scenarios. The proposed RSC-
MPC also accounts for real-time contingency condition, while
re-dispatches the available sources and upgrades the IMG
structure to guarantee the system security.

Note that the proposed method investigates the energy man-
agement of an IMG. Therefore, there is no need to optimise the
power exchange with the main grid, which requires a tertiary
control level [31]. This study performs a MPC-based energy
management strategy which is part of secondary control level.
It considers the economic aspects of the IMG operation and
manages the optimal power flow.
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Fig. 1: Comparison of conventional and the proposed MPCs.

III. PROBLEM FORMULATION

Figure 2 illustrates the proposed RSC-MPC framework for
IMG energy scheduling, comprising dispatchable units (DUs),
and wind turbines (WTs) as the available generation capacity,
as well as ESS and DR as the IMG flexibility sources. The
proposed architecture is a hierarchical tri-layer min-max-min
optimisation. The problem is solved hierarchically with con-
sideration for here-and-now and wait-to-see decision variables.
The first layer of the model is a day-ahead scheduling which
does not consider MPC and uncertainty scenarios. The second
and third layers are MPC-based stochastic optimisation, taking
into account contingencies and uncertainty scenarios. The
second and third layers are performed on a real-time basis
over the control horizon.

The timeline of the each layer is shown in Fig. 3. Consid-
ering the availability of weather forecast data on an hourly
basis, the second level is solved for one-hour time intervals
over the control horizon. Meanwhile, in order to increase the
performance and adaptability of the proposed control method
to real-time condition [32], the third layer is solved for 5-min
time periods.

In the first layer, a pre-scheduling day-ahead cost optimi-
sation is solved so as to determine the preventive measures,
consisting of the DER dispatch and the load flow variables (i.e.
voltage magnitude/angle of system buses and active/reactive
power flow through system branches). These decision variables
are obtained for the normal operation of the system and are
considered as a reference point for the constraints in second
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and third layers. They are used for evaluating the risk of
uncertainty and the contingency condition in the real-time
operation of the network. The outputs of the first layer are
scenario independent (i.e. X l1

i,t,s = X l1
i,t), and considered as

here-and-now control actions.
The second layer tries to identify the worst real-time contin-

gency scenarios that can affect the pre-scheduling preventive
measures (i.e. the system state in the first layer) under the
influence of wind power output uncertainty. The contingency
conditions determine the worst line outage scenarios that can
affect the normal operation of the system. The optimisation
in this layer maximises the mismatch between preventive and
real-time actions along with the system load shedding as the
objective function, while the location of line-outage scenarios
is defined at each time interval on a real-time basis. The
decision variables of the second layer (i.e. X l2

i,t,s) identify
the worst contingency scenarios at time period t and the
uncertainty scenario s. This information is transferred to the
third layer which tries to re-schedule the IMG based on the
wort-case scenarios.

The third layer receives the real-time data from the forecast
platform and that of previous layers, and re-solves the model
to proceed the corrective actions. The corrective decision vari-
ables (i.e. X l3

i,t,s) are preformed by re-dispatching DERs while
using the network reconfiguration as a flexibility measure.
DER re-dispatching and topology reconfiguration strategies are
taken by the third layer at time interval t in face of real-time
contingency conditions and the risk associated with uncertainty
of wind power prediction at the same time interval. Since
the control signals in this layer are proceeded according to
the current state of the system in different scenarios, they are
identified as the wait-to-see variables (i.e. scenario dependent).
At the end of operation horizon, the controller analyses the
costs associated with the risk of uncertainty and the security
measures. In this section, the mathematical formulation of the
proposed MICP stochastic optimisation is presented.

A. Objective function

The mathematical model of the proposed RSC-MPC is built
upon an objective function comprised of expected energy pro-
curement cost of IMG, and expected cost of load curtailment,
represented by Equation (1). Considering the energy price
inside the IMG as a known input [27], the former includes
cost of purchasing power from DUs and WTs, the cost of
energy arbitrage with the ESS, and the cost of incentivising
the responsive loads for participating in the DR program, while
the latter represents the load shedding cost based on the value
of lost load, as follows:

of =
∑
s∈Ωs

πW
s ×

(
CEP

s + CC
s

)
(1)

CEP
s =

∑
t∈Ωt

∆t× γmt



∑
i∈Ωg

PG
i,t,s +

∑
i∈Ωw

PWT
i,t,s

+
∑

i∈Ωe

(
PDCh
i,t,s − PCh

i,t,s

)
+
∑

i∈Ωf
b

(
PD
i,t,s − PD0

i,t,s

)


(2)

CC
s =

∑
t∈Ωt

∑
i∈Ωc

b

∆t×
(
LC
i P

C
i,t,s

)
(3)

where (2) is the energy procurement cost of the IMG in each
scenario, in which the first and second terms are respectively
costs of purchasing power from DUs and WTs; the third

and fourth terms represent the cost/income of discharging
and charging power from/to the ESS respectively; the last
term is cost of DR in the responsive loads. Note that the
energy price is determined by the upstream network and the
microgrid operator tries to minimise the energy procurement
cost based on available resources. Equation (3) represents the
load curtailment cost at each scenario.

B. Including Risk Constraints in the Objective Function

The first layer of the proposed optimisation is a cost min-
imisation for here-and-now decision variables. Therefore, the
objective function given in (1) is minimised (i.e. min {Θl1 =
of}) in this layer. The second layer, however, tries to identify
the worst contingency scenarios by maximising the expected
load curtailment cost, while maximising the mismatch between
the real-time and preventive energy scheduling. This allows
the third layer security measures to deal with real-time contin-
gency conditions, and re-dispatch the IMG at each time interval
to prevent the security problems that could be the result of
energy scheduling mismatch and/or unexpected disruptions.
The objective function of the second layer is written as:

max

{
Θl2 =

∑
s∈Ωs

πW
s ×

(
(CEPl2

s − CEPl1
s ) + CC

s

)}
(4)

The solution obtained in (1), however, is subject to the risk
of uncertainty, meaning that it is more likely to observe a
considerable difference between expected value of objective
function and its individual value in some scenarios. To deal
with this risk, several methods have been introduced such as
variance, shortfall probability, expected shortfall, value at risk,
and conditional value at risk (CVaR). In this study, CVaR is
adopted for handling the risk measures due to its advantages,
numerical efficiency and stability of calculation for instance,
over other techniques [33]. Based on the objective function,
the process of including risk measure in the objective function
of the proposed RSC-MPC is expressed as:

ℜ = σ − 1

1− ρ

∑
s∈Ωs

φsπ
W
s (5)

(
CEP

s + CC
s

)
− σ ≤ φs ,∀s ∈ Ωs (6)

where, (5) gives the optimal value of the CVaR (i.e. ℜ), with
(1 − ρ)100% of total cost in each scenario worse than value
of VaR (i.e. σ ). The difference between expected value and
total cost in each scenario is shown by (6), where φs ≥ 0.

To consider the risk constraints in the third layer, the
expected cost should be increased, based on the value of ρ.
In other words, minimising the degree of risk increase the
value of energy procurement cost. Under such circumstances,
a proper solution can make a trade-off between expense of
risk measures and energy procurement cost. To do so, the third
layer of the optimisation is solved as multi-objective problem
using weighted sum method. Note that the general model
is convex and could be solved by different multi-objective
handling techniques. Based on this explanation, the general
min-max-min objective function of the proposed RSC-MPC is
defined as follows:

min

{
β × of

[
max

(
Θl2 minΘl1

)]
+(1− β)× ℜ

[
max

(
Θl2 minΘl1

)] } (7)
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Known inputs

   Energy price
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Fig. 2: Proposed hierarchical RSC-MPC architecture.
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Fig. 3: The proposed RSC-MPC time steps.

C. Power Balance Constraints

The proposed power balance in this study takes into consid-
eration the power output of DUs, WTs, as well as the charge
and discharge power of ESS, the participation of responsive
loads, and the branch power flow, as follows (∀i, j ∈ Ωb,∀t ∈
Ωt, ∀s ∈ Ωs):

PUN
i,t,s + PG

i,t,s + PWT
i,t,s + PDCh

i,t,s + PC
i,t,s

−PD
i,t,s − PCh

i,t,s =
∑
j

P ℓ
ij,t,s

(8)

QUN
i,t,s +QG

i,t,s +QWT
i,t,s

+tan

(
QD

i,d,t

PD
i,d,t

)
× PC

i,t,s −QD
i,t,s =

∑
j

Qℓ
ij,t,s

(9)

P ℓ
ij,t,s = Gℓ

ijV
2
i,t,s − Vi,t,sVj,t,s(G

ℓ
ij cos θij,t,s +Bℓ

ij sin θij,t,s)
(10)

Qℓ
ij,t,s = −

(
Bℓ

ij +
BSh

ij

2

)
V 2
i,t,s − Vi,t,sVj,t,s(G

ℓ
ij sin θij,t,s

−Bℓ
ij cos θij,t,s)

(11)

where, constraints (8) and (9) represent the real and reactive
power injections at each bus, respectively. Constraints (10) and
(11) are the real and reactive power flow from bus i to bus j
at time step t and scenario s. These constraints, however, are
non-convex nonlinear and are more likely to result in a local
optimal solution, with a dramatic computation time. On the
other hand, linearising the non-linear equations decreases the
accuracy of the model. Generally speaking, as mentioned in
[34], “the large boundary is not between linearity and non-
linearity, but between convexity and non-convexity”. Therefore,
a convex relaxation is adopted here by reformulation of contin-

uous variables as follows [35] (∀i, j ∈ Ωb,∀t ∈ Ωt, ∀s ∈ Ωs):

Ui,t,s =
V 2
i,t,s√
2

(12a)

Rℓ
ij,t,s = Vi,t,sVj,t,s cos θij,t,s (12b)

T ℓ
ij,t,s = Vi,t,sVj,t,s sin θij,t,s (12c)

Therefore, the power flow equations in (10) and (11) are
reformulated as follows:

P ℓ
ij,t,s =

√
2Gℓ

ijUi,t,s −Gℓ
ijR

ℓ
ij,t,s −Bℓ

ijT
ℓ
ij,t,s (13)

Qℓ
ij,t,s=−

√
2

(
Bℓ

ij+
BSh

ij

2

)
Ui,t,s+B

ℓ
ijR

ℓ
ij,t,s−Gℓ

ijT
ℓ
ij,t,s (14)

Variables Rℓ
ij,t,s and T ℓ

ij,t,s are new variables that are
defined for each line and can be constrained as follows:

Ui,t,sUj,t,s =
(
Rℓ

ij,t,s

)2
+
(
T ℓ
ij,t,s

)2
(15)

This non-convex equation can be relaxed to:
Ui,t,s Uj,t,s ≥

(
Rℓ

ij,t,s

)2
+
(
T ℓ
ij,t,s

)2
(16)

Constraint (16) represents the relaxed conic quadratic con-
straint for branch ij, with free variable T ℓ

ij,t,s and positive
variable Rℓ

ij,t,s. It is worth mentioning that increasing the
value of Rℓ

ij,t,s causes the relaxed inequality constraint in
(16) to be binding at optimality [35], which ensures accuracy
of the model. This is achieved by minimising the energy
procurement cost in (1), leading to the minimisation of net
active power injections, which results in an increase of Rℓ

ij,t,s

(since Gℓ
ij ≥ 0 in (13)).



IEEE TRANSACTIONS ON, VOL. 00, NO. 0, APRIL 2022 7

D. Distributed Energy Resources

The following constraints represent the capacity and techni-
cal limits of different DERs within the IMG, including ESS,
WTs, and DUs (∀t ∈ Ωt, ∀s ∈ Ωs):

SOCESS
i,t,s = SOCESS

i,t−1,s +∆t
(
PCh
i,t,s η

Ch
i − pDCh

i,t,s /η
DCh
i

)
,∀i ∈ Ωe

(17)

SOCESS
min ≤ SOCESS

i,t,s ≤ SOCESS
max ,∀i ∈ Ωe (18)

0 ≤ PCh
i,t,s ≤ λCh

i,t,sP
Ch
max ,∀i ∈ Ωe (19)

0 ≤ PDCh
i,t,s ≤ λDCh

i,t,s P
DCh
max ,∀i ∈ Ωe (20)

λCh
i,t,s + λDCh

i,t,s ≤ 1 ,∀i ∈ Ωe (21)

0 ≤ PWT
i,t,s ≤ ψWT

i,s PWT
R ,∀i ∈ Ωw (22)

− tan(φlead)P
WT
i,t,s ≤ QWT

i,t,s ≤ tan(φlag)P
WT
i,t,s ∀i ∈ Ωw (23)

PG
i,minχ

G
i,t ≤ PG

i,t,s ≤ PG
i,maxχ

G
i,t ,∀i ∈ Ωg (24)

QG
i,minχ

G
i,t ≤ QG

i,t,s ≤ QG
i,maxχ

G
i,t ,∀i ∈ Ωg (25)

PG
i,t,s − PG

i,t−1,s ≤ RU
i ,∀i ∈ Ωg (26)

PG
i,t−1,s − PG

i,t,s ≤ RD
i ,∀i ∈ Ωg (27)∑

∀i∈Ωg

(
χG
i,tP

G
max − PG

i,t,s

)
≥ Rest (28)

0 ≤ PC
i,t,s ≤ PD

i,t,s ,∀i ∈ Ωc
b (29)

Constraints (17)-(21) represent the ESS model: (17) shows
the state of charge of ESS which is defined based on its
value of energy in the previous time period and current state
of charge and discharge; (18) limits the upper and lower
limit of storage energy; (19) and (20) respectively limit the
charge and discharge power; (21) is a logic preventing the
simultaneous charge and discharge.Note that ESS can also
provide reactive power in Eq. (9). However, it is assumed
that the ESSs are operating in unit power factor and only
exchange active power with the network, while the reactive
power of WTs and DUs is enough to support system demand.
The WT active and reactive power is limited by (22) and
(23) respectively. Note that the parameter ψWT

i,s represents the
available power of WT in Scenario s. Finally, constraints (24)-
(27) define the DUs capacity limit, where constraints (24) and
(25) show the upper and lower limit of active and reactive
power respectively; the ramp up and ramp down limits are
applied through (26) and (27) respectively. Constraint (28)
shows the reserve requirements at each time interval which
is provided by DUs. Consideration of this constraint along
with (24) guarantees the provision of reserve requirements.
The parameter Rest is defined by the decision maker which
is assumed to be 10% in this study [36]. Finally, Constraint
(29) limits the maximum amount of active load that could be
curtailed.

E. Demand Response

A certain degree of flexibility is considered for some
responsive loads in the system to adjust their consumption
based on the electricity price. The load curtailment is also
included in the model so as to prevent unrecoverable damages
to the IMG in the emergency condition, which helps to
keep important security factors (e.g. voltage and frequency)

within acceptable range. The DR programs are introduced as
(∀t ∈ Ωt, ∀s ∈ Ωs):

(1− βres
i,t,s)P

D0
i,t,s ≤ PD

i,t,s ≤ (1 + βres
i,t,s)P

D0
i,t,s ,∀i ∈ Ωf

b (30)∑
t∈Ωt

PD
i,t,s =

∑
t∈Ωt

PD0
i,t,s ,∀i ∈ Ωf

b (31)

QD
i,t,s = tan

(
QD0

i,t,s

PD0
i,t,s

)
× PD

i,t,s ,∀i ∈ Ωf
b (32)

where, (30) denotes the maximum and minimum amount of
flexibility in the active power demand of responsive loads,
while (31) ensures that the total changes in the responsive
loads would be equal to the base load by the end of operation
period. Constraints (32) represents the changes in the reactive
power of responsive loads.

F. IMG Constraints

The branch current, and voltage limits are critical grid
constraints which should be satisfied in all layers as follows
(∀i, j ∈ Ωb,∀t ∈ Ωt, ∀s ∈ Ωs):(

Iℓij,t,s
)2

=
√
2
(
(Gℓ

ij)
2
+ (Bℓ

ij)
2
)

×
(
Ui,t,s + Uj,t,s −

√
2Rℓ

ij,t,s

)
≤
(
Iℓmax

)2 (33)

(
V min
i

)2
√
2

≤ Ui,t,s ≤
(V max

i )
2

√
2

(34)

where constraint (33) shows the squared current of branch ij
as a linear equation. Also, voltage magnitude is limited by
(34).

G. Time-varying Security Constraints

Unexpected disruptions can change the structure of the
MGs dramatically, and cause serious security issues, especially
during the islanded operation. According to [37], most of
the failures in the electrical network are related to weather
events, while the majority of these events affect the distribution
networks. Given a wide variety of weather events, this paper
concerned about high winds and their impact on the security of
MGs. The contingency scenario is referred to as a high inten-
sity wind which can cause damage to the overhead lines, such
as storm Malik and storm Corrie in the UK [38]. The overhead
lines are considered to be the most susceptible elements of the
network. Considering the fact that these storms affected parts
of Europe and UK from hours to days, the control horizon
of 24 hours is assumed as the duration of the weather event.
Considering a synoptic wind which is a large moving pressure
with a horizontal effect over hundreds of kilometers [39],
a set of time-varying security constraints are introduced in
the proposed RSC-MPC model, which change over the IMG
zones and are influenced by the uncertainty of wind power
generation. The term ‘time-varying’ refers to the real-time
changeability of disruption over the operation horizon at each
time interval. As opposed to the previous studies which have
considered known locations for the damaged elements of the
system, the proposed method defines the location of fault at
each time interval on a real-time basis.

While a non-linear model multiplies a binary variable into
the active and reactive power flow constraints [22], this study
introduces variables U ℓ

ij,t,s and U ℓ
ji,t,s for identifying the status

of branches, as follows (∀i, j ∈ Ωb,∀t ∈ Ωt, ∀s ∈ Ωs):
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0 ≤ U ℓ
ij,t,s ≤

(V max
i )

2

√
2

ϑℓ
−

ij,t,s (35)

0 ≤ U ℓ
ji,t,s ≤

(
V max
j

)2
√
2

ϑℓ
−

ij,t,s (36)

0 ≤ Ui,t,s − U ℓ
ij,t,s ≤

(V max
i )

2

√
2

(1− ϑℓ
−

ij,t,s) (37)

0 ≤ Uj,t,s − U ℓ
ji,t,s ≤

(
V max
j

)2
√
2

(1− ϑℓ
−

ij,t,s) (38)

ϑℓ−ij,t,s = ϑℓ−ji,t,s (39)

∑
ij∈Ωz

b

(
1− ϑℓ

−

ij,t,s

)
2

= ℑz ,∀t ∈ Ωz
t (40)

tr∑
t

(
∆t× ϑℓ

−

ij,t,s

)
RT

≤ 1 (41)

where constraints (35)-(38) represent the branch connection
status, based on variables U ℓ

ij,t,s and U ℓ
ji,t,s. These variables

take the values of Ui,t,s or Uj,t,s, if the branch is closed
(i.e. ϑℓ−ji,t,s = 1), and are set to zero, if the branch is
open (i.e. ϑℓ−ji,t,s = 0). Therefore, ϑℓ−ji,t,s is suggested in this
paper for identifying the location of disruption in the IMG.
Constraint (40) indicates the occurrence of a specific number
of disruptions in each zone (i.e. ℑz) over the period of time
at which the zone is experiencing contingency condition (i.e.
Ωz

t ), based on the set of buses located in each zone (i.e. Ωz
b ).

Finally, constraint (41) ensures that the damaged line is out-of-
service for time periods t ∈ [t, t+tr], where tr =

(
1
∆t

)
×RT .

The proposed constraints in (35)-(41) are adaptable with the
proposed MICP power flow model, and are a novel characteris-
tic of the introduced convex security-constrained optimisation
model. By introducing variables U ℓ

ij,t,s and U ℓ
ji,t,s there is a

need to modify equations (13), (14), and (16), as below:

P ℓ
ij,t,s =

√
2U ℓ

ij,t,sG
ℓ
ij −Gℓ

ijR
ℓ
ij,t,s −Bℓ

ijT
ℓ
ij,t,s (42a)

Qℓ
ij,t,s=−

√
2

(
Bℓ

ij+
BSh

ij

2

)
U ℓ
ij,t,s+B

ℓ
ijR

ℓ
ij,t,s−Gℓ

ijT
ℓ
ij,t,s

(42b)

U ℓ
ij,t,s U

ℓ
ji,t,s ≥

(
Rℓ

ij,t,s

)2
+
(
T ℓ
ij,t,s

)2
(42c)(

Iℓij,t,s
)2

=
√
2
(
(Gℓ

ij)
2
+ (Bℓ

ij)
2
)

×
(
U ℓ
ij,t,s + U ℓ

ji,t,s −
√
2Rℓ

ij,t,s

)
≤
(
Iℓmax

)2 (42d)

The variables U ℓ
ij,t,s and U ℓ

ji,t,s which identify the status of
branch ij, equal to Ui,t,s and Uj,t,s, respectively, in normal
situation (before occurrence of any disruption). These con-
straints are defined based on the status of lines connecting
buses. Therefore, they are solved for each time step over the
operation horizon on a real-time basis.

H. Corrective Security Measures

Several methods have been introduced in the literature to
respond to the contingency conditions. Among those methods,
network reconfiguration has been regarded as an effective
solution in improving the system security [21]. This method
can prevent load curtailment in a contingency condition while

ensuring the radiality of the network. In the previous liter-
ature [15], [24], however, the network radiality constraints
are adopted based on the graph theory (i.e. number of
lines=number of buses-1). Although this constraint is nec-
essary condition for the reconfiguration, it cannot guarantee
radiality. Besides, this method has been considered as a preven-
tive measure, rather than a real-time action that can deal with
unexpected real-time contingency conditions, while taking the
uncertainty into account. To deal with this issues, a new convex
model is introduced in this study to guarantee secure load
supply within the IMG after occurrence of disruptions (i.e.
equations (35)-(40)), while keeping the radial configuration
of the system in an uncertain environment. A binary variable
(i.e. ϑℓ

+

ij,t,s) is introduced to correct the possible damage
caused by the contingency binary variable (i.e. ϑℓ

−

ij,t,s). Also,
network radiality for an IMG is achieved by ensuring that
the characteristic of spanning trees holds true, meaning that
every node has exactly one parent. Therefore, the proposed
method in this paper is a stochastic network reconfiguration
which operates as a corrective real-time measure in the IMG.
Note that the high-frequency reconfiguration is considered as
a practical measure since only some specific switches actively
participate in the process [40]. Based on this explanation,
the branch connection constraints are reformulated as follows
(∀i, j ∈ Ωb,∀t ∈ Ωt, ∀s ∈ Ωs)):

0 ≤ U ℓ
ij,t,s ≤

(V max
i )

2

√
2

(ϑℓ
+

ij,t,s + ϑℓ
−

ij,t,s) (43)

0 ≤ U ℓ
ji,t,s ≤

(
V max
j

)2
√
2

(ϑℓ
+

ij,t,s + ϑℓ
−

ij,t,s) (44)

0 ≤ Ui,t,s − U ℓ
ij,t,s ≤

(V max
i )

2

√
2

(
1−(ϑℓ

+

ij,t,s + ϑℓ
−

ij,t,s)
)

(45)

0 ≤ Uj,t,s − U ℓ
ji,t,s ≤

(
V max
j

)2
√
2

(
1−(ϑℓ

+

ij,t,s + ϑℓ
−

ij,t,s)
)

(46)

ϑℓ
+

ij,t,s + ϑℓ
−

ij,t,s ≤ 1 (47)

ϑℓ
+

ij,t,s = ϑℓ
+

ji,t,s (48)

αℓ
ij,t,s + αℓ

ji,t,s = (ϑℓ
+

ij,t,s + ϑℓ
−

ij,t,s) (49)∑
j∈Ωj

i

αℓ
ij,t,s = 1 (50)

αℓ
ij,t,s + αℓ

ji,t,s = 0 ,∀i ∈ Ωs
b (51)

Constraints (43)-(46) represent the branch connection sta-
tus based on the binary variable indication the disruption
(i.e. ϑℓ

−

ij,t,s) and the binary variable that corrects the system
configuration (i.e. ϑℓ

+

ij,t,s). Since it is not practically possible
to repair the damaged line at time period t in a real-time
paradigm, constraint (47) is introduced to arrange the new
system configuration at time period t with consideration for the
disruption on a real-time basis. In addition, constraints (49)-
(51) ensure the network radiality after applying the corrective
actions. Constraint (49) shows that the branch ij is in the
spanning tree, if one node is the parent of the other. Constraint
(50) indicates that each bus must have exactly one parent.
For an IMG, the status of the line connecting the grid to
the upstream network is open. Therefore, the slack bus is
not parent node to any buses and vice versa. This has been
modelled by Constraints (51).
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Note that this study investigates a case of contingency in
a grid-connected MG. Therefore, the right-hand side of con-
straint (51) is equal to zero, indicating the islanded operation
of MG. The storage units and load shedding capability can be
utilised in an IMG for preventing the voltage and frequency
excursion. This formulation is different for an isolated MG. In
this type of grid, there is no point of common coupling be-
tween MG and the upstream grid, and it operates permanently
in stand alone mode [31]. Therefore, the variables indicating
the power exchange with the main grid in constraints (8) and
(9) (i.e. PUN

i,t,s and QUN
i,t,s )are neglected. Also, there is no need

to define constraint (51) in an isolated MG. The voltage and
frequency control in an isolated MG is more strenuous task.

IV. FRAMEWORK DESCRIPTION AND CASE STUDIES

This section summarises the solution framework for the
proposed RSC-MPC, and provides information on the test
system and data utilised for validating the model.

A. Framework Description

The framework of implementing the mathematical model
(given in Section III) on the proposed RSC-MPC architecture
is sketched in Fig. 4. At the core of this framework, the
predicted data is received. Then, the first layer optimisation
is processed, where the energy procurement cost is minimised
to produce here-and-now decision variables. The MG is in its
normal condition and there is no change in the configuration
of the system, i.e., without consideration for constraints (35)-
(51). Note that it is assumed the MG is self-sustainable,
with adequate DER capacity to supply the demand in the
normal condition; therefore, load curtailment is not expected
in the first layer. The information obtained from this layer is
utilised to evaluate the security measures and the consequences
of mismatch between the predicted and real-time data along
with the risk associated with uncertainty of renewable power
generation. Therefore, as a multi-layer optimisation, other
layers are optimised with regard to the information processed
in the first layer, including the energy procurement cost.
Although different sources of uncertainty (e.g. energy price,
system load) and various assets (e.g. photovoltaic, micro-
hydro) can be considered in the definition of the problem,
the main focus of this study is on the effect of uncertainty
on the MPC-based real-time energy management methods.
Therefore, no uncertainty has been considered in the forecast
of other input data and wind power generation is taken into
account as the only uncertain input. The second layer tries
to detect the worst real-time line contingency scenarios in
the system, and maximise the mismatch between real-time
IMG dispatch and that of pre-scheduling. The output of this
layer is considered as a security constraint for the inner layer,
to be corrected at each time interval of operation horizon.
Therefore, the third layer’s optimisation is processed subject
to the unavailability of critical lines and the mismatch between
real-time and pre-scheduled data. Also, constraint (51) is
considered in this layer, meaning that the microgrid experience
an islanded mode after a contingency condition. Since the
third layer tries to minimise the cost associated with risk of
uncertainty, the energy procurement cost is more likely to
rise. Therefore, the third layer optimisation tries to make a
trade-off between energy procurement cost and the expense of
dealing with the risk of exceeding the expected cost. Without
the first two layers, the model would be solved in an optimistic
manner and can not tolerate any contingency condition or risk
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Fig. 4: The framework of solving the proposed model.
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Fig. 5: Day-ahead energy price signals.

of uncertainty. It is assumed that cloud computing enables
the real-time communication, while observing privacy and
reliability of communication.

B. Case Studies

The proposed MICP model is executed in general algebraic
modelling system (GAMS) using MOSEK solver. The IEEE
33-bus test system is adapted as the test MG, with 5 tie
switches that are considered at the third layer as the means
of corrective measures. The data of the system under study
is taken from [41]. The day-ahead energy price profile is
given in Fig. 5. Therefore, the proposed multi-period optimal
power flow model in this paper is solved following a UC
which defined the ON/OFF status of DUs. Since the paper
investigates the real-time security issues in an emergency
condition, it has only focused on the the proposed three-
layer framework through the proposed AC optimal power flow
model. Therefore, the commitment status of DUs is considered
as an input parameter in Fig. 2. The islanded operation of the
system is guaranteed based on (45). The one-line diagram of
the test system, with the location of DERs, curtailable and
responsive load buses, along with the operation horizon of
the control system are illustrated in Fig. 6. It is assumed that
distribution lines are located in three different zones, shown
with different colours in Fig. 6. The lines located in each
zone are assumed to be in a close geographical location in
the IMG. An operation horizon of 24 hours with respectively
one-hour and 5-min time steps for the second and third layers
is considered for the controller. Note that the majority of
weather forecast or natural disaster tracking platforms are
working on an hourly basis. Since the second layer of the
simulation captures the effects of contingency (caused by
natural disaster) on the operation of the microgrid, one-hour
time intervals are considered for this layer. Meanwhile, to
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Fig. 6: Schematic diagram of the test IMG, and the operation
horizon.

TABLE II: Wind power output uncertainty scenarios.

Scenario number ψWT
i,s [%] πW

s

s1 0.0 0.069
s2 12.9 0.204
s3 49.4 0.404
s4 86.8 0.199
s5 100 0.123

increase the performance and adaptability of the system to
real-time conditions the third layer is solved for 5-min time
steps.

Considering a 9.85 MVA conductor with R = 0.259 Ω/km,
it can be derived that the total length of the IEEE 33-bus
network is approximately 80 km. Considering a synoptic
wind which passes with a horizontal effect over hundreds of
kilometers, it is assumed the weather event moves translational
speed over a 24 hours. Therefore, the duration of the high
wind at each zone of the system is assumed to be 8 hours.
It is assumed that the overhead lines are the most susceptible
elements of the IMG. Two hours of repair time is considered
for each branch [42], while assuming that additional manpower
and resources are prepared for the event of storm. Also, the
network reconfiguration is considered on hourly basis.

The rated capacity of WTs is considered to be 1000 kW ,
while the minimum and maximum output of DUs is assumed
to be 500 kW and 1500 kW respectively. The storage capacity,
and charge/discharge power is 1000 kWh, and 200 kW
respectively, with the battery efficiency of 90%. The maximum
flexibility of responsive loads is assumed to be 15%, and the
value of loss load is assumed to be 10 $/kWh. The power
output of the WTs is considered as the source of uncertainty
in the system. Five uncertainty scenarios are generated for the
wind power uncertainty, using historical data and scenario-
based method. Uncertainty scenarios are generated according
to [7]. The wind power output scenarios are summarised in
Table II.

Various aspects of the model are examined through the
following case studies:

Case I: The model is solved without consideration for
risk of uncertainty, and security constraints (i.e. neglecting
constraints (35)-(51)). This case is equivalent to conventional
MPC models.

Case II: The model is solved with consideration for security
measures, while neglecting the risk of uncertainty (i.e. β = 1
in (7)). The case is also called risk neutral (RN).

Case III: Risk and security are the main concern of the
controller in this case and the decisions are made without
considering the economic consequences (i.e. β = 0 in (7)).
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Fig. 7: Value of cost and CVaR in different case studies.

The solution of this case is called risk averse (RA).
Case IV: The controller makes a trade-off between cost

associated with risk of uncertainty, security measures and the
energy procurement cost.

V. SIMULATION RESULTS

In the following, the important aspects of the model are eval-
uated based on different case studies, while the performance
of the model is further demonstrated by sensitivity analyses
and computational statistics.

When the system is operating in a normal condition, any
intentional or unintentional disruptions can affect its perfor-
mance, requiring the IMG operator to take corrective measures.
Rescheduling the system under such circumstances, however,
is more likely to impose additional costs to the IMG operator.
Figure 7 illustrates the Pareto optimal front of the CVaR and
the energy procurement cost in different case studies. This
figure provides the economic figures for different case studies
of the proposed RSC-MPC. The solutions of the Pareto set
vary from a RN (i.e. Case II) to a RA ( i.e. Case III). The
difference between the cost of these cases is considered as the
expense of accounting for the risk associated with uncertainty.
Also, the difference between cases I and II is the security
cost. Accordingly, with a cumulative cost of $62.12, the MG
operator paid $32.50, and $29.62 for dealing with risk and
security respectively. These costs should be considered in
the energy management of the MGs that are more prone to
contingency and are under the penetration of RESs. To make
a trade-off between RN and RA solutions, the best compromise
solution is obtained in Case IV, as shown in Fig. 7.

In order to analyse the performance of CVaR measure
in handling the risk of uncertainty scenarios in the real-
time energy scheduling, the energy procurement cost of each
scenario in Case II, and Case III along with that of Case IV is
depicted and compared with the expected cost of each strategy
in Fig. 8. The red bars show the scenarios in which the energy
procurement cost exceeded the expected cost (i.e. blue bar),
while the green bars stand for the scenarios with lower/equal
energy procurement cost than/to the expected value. These
figures show how risk of uncertainty can influence the real-
time energy scheduling over different scenarios. For the RN
solution (i.e. Case II), it is shown that the energy procurement
cost in all scenarios is higher than the expected cost. However,
the CVaR measure decreased such a gap between solutions of
different scenarios in the RA strategy (i.e. Case III). Conse-
quently, the expected cost is increased by $32.50. Finally, the
compromise solution (i.e. Case IV), made a trade-off between
these two cases, as shown in Fig. 8. The security constraints
and risk measures are compensated by the energy procurement
cost of $62.12 compared to Case I.
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Fig. 8: Application of CVaR in decreasing the energy
procurement cost.
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9 shows the result of worst-case line contingency conditions
based on the proposed method in equations (35)-(41), for
each zone of the MG in different uncertainty scenarios. The
repair time is considered to be two hours. Therefore, a failed
line at time-period t remained out-of-service until time period
t + 2. The vulnerable lines are mainly recognised around the
DERs; especially WTs as their output power change in each
scenario. The changes in the uncertainty scenarios affected the
classification of worst-case scenarios. Considering the fact that
high winds can increase the WT’s generation, the worst-case
line outages in Scenario s5 (i.e. high wind power generation)
should be considered as the most critical lines for the MG.

However, the corrective measures taken in the third layer
prevented load curtailment by employing topology reconfigu-
ration on a real-time basis. Variation in the hourly status of the
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Fig. 10: The corrective configuration of line between buses 8
and 9 in different case studies.

line between buses 8 and 9 in different real-time uncertainty
scenarios over system zones is depicted in Fig. 10. Knowing
that this line is one of the longest lines in the network (i.e. with
a high resistance), in the RN strategy (i.e. Case II), it is mostly
open while it has been changed to closed status in the RA
strategy Case III. Opening this line decreases the power loss,
and consequently the energy procurement cost. However, in the
latter case, this line is a strategic connection between two buses
that direct the flow of power to different parts of the network
and can comply with the deviation of WT power output (Fig.
6 ). Similar to the energy procurement cost, the compromise
solution in Case IV considered a trade-off between RN and
RA strategies. Generally, if the economic issues are important
to the IMG operators, the compromise solution can be a case
with a lower cost and some degree of risk aversion.

The decisions made by the IMG operator regarding the
inclusion of risk and security measures can affect the optimal
scheduling of energy resources, as shown in Fig. 11. The
optimal scheduling of available energy resources in scenarios
with no wind power generation (i.e. s1) and high wind power
generation (i.e. s5) is depicted in this figure. It can be seen
that the injected power of WT in RN strategy is more than that
of RA. This means that the decision maker needs to decrease
the WT output power to deal with the risk of uncertainty. On
the other hand, to deal with such a risk, there is a need to use
more reliable units such as DUs. Therefore, the power output
of DUs in scenario s5 for the RA strategy is more than that of
the RN. Besides, in the scenarios with no wind (i.e. s1), the
participation of DUs in load supply is more obvious, which
shows the importance of these units in boosting the system
security. To deal with variation of load, the ESS played its part
by charging in off-peak periods and discharging during peak
hours. Finally, the responsive loads consumption pattern is
adjusted accordingly to deal with load variation and electricity
price signals.

In order to show the effect of higher layer decisions on the
final solutions of the inner layer optimisation, a freedom level
(e.g. ∆Xdv

l ) is introduced to the decision variables transferred
from each layer to another. ∆Xdv

l indicates the level of
freedom between the linking decision variables transferred
between the layers. For example ∆Xdv

l = 15% means that
the linking decision variables have 15% degree of freedom, i.e.
(1−0.15)×∆XdvH

l ≤ ∆XdvL

l ≤ (1+0.15)×∆XdvH

l ; where
∆XdvH

l stands for decision variables of higher layers (i.e. layer
one) and ∆XdvL

l shows the inner layer decision variables (i.e.
second layer). Figure 12 demonstrates the variation of CVaR
and expected cost in RA strategy over risk aversion degree
(i.e. ρ) for different values of freedom in the linking decision
variables. It is shown that increasing the risk aversion degree
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TABLE III: Computational data of the proposed MICP
model.

Parameter Value
Number of single variables 1,404,506
Number of iterations 22,239
Execution time [s] 1,893.6
Relative gap 0.002

raises the cost of dealing with the risk of uncertainty. Besides,
it can be seen that the optimal values of CVaR and expected
cost have not experienced a dramatic change when the degree
of freedom is increased. For example, introducing 15% degree
of freedom for ρ = 0.5 resulted in 0.01% and 0.05% changes
in the values of expected cost and CVaR respectively, while
it brought about 0.22% and 0.14% for ρ = 0.7 in latter and
former respectively.

Finally, the computational performance of the proposed
RSC-MPC in each time interval for Case IV is summarised
in Table III. This table shows the efficiency of the proposed
method in terms of processing time. Besides, the considerably
small value of relative gap shows the optimality and accuracy
of the model.

VI. CONCLUSIONS

This paper proposed a hierarchical tri-layer min-max-min
MPC framework for real-time energy scheduling of IMGs
under the influence of uncertainty and real-time time-varying
contingency conditions. A mathematical model is developed

for inclusion of convex security constraints, allowing the
real-time tracking of contingency conditions based on the
geographical structure of IMG. The risk associated with the
uncertainty of predicted data is also added to the proposed
RSC-MPC through adapting the CVaR method in the control
mechanism. A convex network reconfiguration is adopted as
a corrective security measure to deal with critical line outages
and risk of uncertainty on a real-time basis. The optimisation
problem investigates the role of risk and time-varying security
constraints in the optimal operation of IMGs. The multi-
objective economic analysis of the model shows the necessity
of additional budget to be considered for dealing with risk and
security measures. The results show the variation of contin-
gency condition over different zones and for various scenarios
of RES uncertainty, demonstrating the necessity of a real-time
approach that accounts for these measures. Furthermore, the
efficiency of the proposed corrective network reconfiguration is
evident in the results, such that the configuration of the system
has been changed to satisfy different economic and security
goals. Sensitivity analysis of risk measures and economic
targets shows a considerable rise in the energy procurement
cost to achieve a higher layer of risk aversion degree. Finally,
the computational efficiency of the model is demonstrated by
a considerably small value of relative gap.
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Bakirtzis, and J. P. Catalão, “Multi-objective reconfiguration of radial
distribution systems using reliability indices,” IEEE Transactions on
Power Systems, vol. 31, no. 2, pp. 1048–1062, 2015.


