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Abstract

This paper evaluates several state-feedback controlresgghods for a multi-phase
interleaved DC-DC boost converter with an arbitrary nuntdfdegs. The advantages
of state-feedback control laws are numerus since they dburden the system with
the introduction of further zeros or poles that may lead torppoperformance as far as
overshoot and disturbance rejection is concerned. Botlt stad dynamic full state-
feedback control laws are designed based on the convaateraged model. Building
on previous work, this paper introduces significant extamsion the investigation of
several undesirable bifurcation phenomena. In the castatif state-feedback it is
shown that interleaving can give rise to more severe bifiongphenomena, as the
number of phases is increased, leading to multiple eqiglibAs a remedy, a bifur-
cation analysis procedure is proposed that can predictahergtion of multiple equi-
libria. The novelty of this paper is that this analysis canrttegrated into the control
design so that multiple equilibria can be completely avdide ruled out of the op-
erating region of interest. The proposed control laws agially implemented and

validated in a 2-leg case study using both simulation anéexgntation.
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1. Introduction

Nowadays, DC-DC power converters play a vital role in a wialege of applica-
tions, from their utilization in common electronic devicgsch as laptops and mo-
bile phones to larger scale industrial applications suclmnasdern electric vehicles
and power systems. One common feature encountered amosey thitched-mode
power converters is the output current and voltage rip@édhn be accounted to their
switching action. In the design process of the switched-@malver converters the re-
quirements for small current and voltage ripples, withisick limits, as well as high
efficiency must be met. Interleaving not only can alleviagdituation since it reduces
ripples and improves efficiency but it also allows for theesizduction of inductors
and capacitors. As the requirements for efficient power edeys become more and
more demanding the interleaving structure constitutesxgegal tool for meeting these
design objectives.

The development of highly efficient power converter systé&giite important in
modern power grid applications. A feasible path to achiggh lefficiency in wide-
range operating conditions is the systematic design ofgiodmd efficient control laws
which address the inherent nonlinear dynamics while réspmeadditional constraints.
This is the main reason for which the problem of designingaaded control algo-
rithms for switched mode DC-DC converters has attractedidenable interest in re-
cent years. Such converters possess special charactedstl are particularly chal-
lenging from a control point of view for a number of reasonsr &xample, they usu-
ally operate in the presence of unpredictable disturbasmgsply voltage and load
variations) while a reliable fast and accurate static anthdyic performance in a wide
operating range, and under hard state and control constraralso required.

The nature of their dynamics is quite complex since they agbiy nonlinear
[1, 2, 3] and hybrid in nature due to involvement of high-ueqcy switching. These

facts pose many challenges when it comes to their contragde§ he predominant
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method for eliminating the switching action of the conventeorder to derive a suit-
able model that can be used for directly applying controbtiiés averaging. The re-
sulting average model is a good approximation that can be aséhe basis for control
design since the nonlinear traits of the converter, suchlia&ér terms, and state and
control saturations are retained. However, when it comésg@ctual implementation
of the control laws, either in analog or digital form, the leafied switched dynam-
ics are still in force due to the employment of Pulse-Widthddlation (PWM). The
switched dynamics burden the system with other kinds oébibties, called limit cy-
cle instabilities or bifurcations, that the average moaelrmot predict or deal with, for
a recent review see e.g. [4]. The impact of these kind of iti@s on the converter
can severely affect the efficiency and its lifetime sinceytb@n double the harmonic
content (fast-scale bifurcation) or in other cases sugaos®a a low frequency and high
amplitude harmonic(slow-scale bifurcation). Howevergwtit comes to saddle-node
bifurcations the averaged model can be informative sirscednlinear nature can pro-
vide knowledge on their existence.

It is common practice for conventional control techniqueise used along with lin-
earized models so that linear feedback laws are derivedshattave the advantage of
simplicity and low-cost implementation. However, thespra@aches may lead to dete-
riorated performance or even unpredictable behaviourtattee uncertainties and the
nonlinearities of the converter. Although popular indigtstandard control schemes,
i.e. PI, voltage-mode and current-mode control are usecksséully even in nonlinear
converters, their linear and time-invariant form does nargntee robust stability and
performance in non-nominal operating conditions.

To this end, many advanced robust linear and nonlinear&tatiback control tech-
niques for bilinear boost DC-DC converters have been prghoscently in the litera-
ture. These include Model Predictive Control (MPC) [5, §,cnstrained stabilization
[8], Linear Matrix Inequalities (LMI) convex optimizatiocontrol synthesis methods
[9, 10, 11, 12, 13], and passivity-based control [14]. Marrpother advanced con-
trol techniques have been suggested for the boost conviertkrding sliding-mode
control [15, 16, 17], and robust control design [18, 19] . haligh some of these

techniques have been tested to parallel/interleaved butloast DC-DC converters
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[20, 21, 22, 23] and several studies for their mathematicadeting and control have
recently appeared [24, 25, 26, 27, 28] the lack of conssaiohcerning the nonlinear
phenomena that are presents due to the bilinear dynamiosicgable.

For a simple boost converter case study, systematic camestiatabilization tech-
niques have been also derived by the authors for designmgstatate feedback laws
such that further state and control constraints are satif#@, 30, 31]. These tech-
niques provide guarantees not only for nominal operatingditions, but also in a
wide operating range defined by a-priori specified paranvetéation intervals. They
have been developed for static state feedback control iavise ideal (lossless) case,
in which non idealities due to the inductor’s series resistaare assumed to be neg-
ligible. In this paper these ideas and tools of the constxhistabilization are fully
extended from a simple boost to the multi-phase interle&eadt converter, including
nonidealities occurring from inductor’s series resiseansome initial research results
of this work concerning the study of multiple equilibria geation have recently ap-
peared in [32]. The present paper provides significant sides of the main ideas in
[32] supported by detailed mathematical analysis.

A further important contribution of this work is the considtion ofdynamicstate-
feedback control laws that relieves the system from theexég of multiple equilibria,
due to the effect of the integrator state introduced in thetesy. The addition of the
integrating action in the system allows for the design oftacdraws that are relieved
from constraints concerning multiple equilibria that magreduce conservatism. Pole
placement techniques are utilized to design appropriate@daws that will compen-
sate the system both in the static and dynamic state-fekdlage.

This paper is organized as follows. In section 2 we begin aitintroduction to the
interleaved converter topology followed by its mathensltinodeling in two different
forms, exact switched and averaged. In section 3 a noveldaifion analysis proce-
dure is introduced, which allows the prediction and avogdaof multiple equilibria,
based on the converter’s bilinear averaged model. Sectipregents our main con-
trol design techniques in a static or dynamic state-feeklbaotrol law form using the
linearized averaged model and complementary bifurcatidar@. The control law’s

digital implementation is next discussed in section 5. iBads concludes the paper
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with a successful proof of concept for a specific interleavedst case study, using
both simulation and experimental results.

Notation : In this paperR denotes the real numbers dRd is the vector space of
n-dimensional real vectors. Boldface upper case lettarstédanatrices, while boldface

lower case letters are used for vectors. All vectors arenasduo be column vectors.

2. Mathematical modeling

An interleaved boost converter is the result of connectavgral simple boost con-
verters in parallel. An N-legged converter topology is showFigure 1. As it can be
seen from Figure 1 each phase is comprised of an inductoode d@ind a switch. For
properly implementing the interleaving principle everygauwidth modulator must be
introduced with a phase difference 2f/N relative to each leg, withV being the

number of legs.

\
i (D) 1>12>1N>1 c_—[ S

Figure 1: Interleaved DC-DC Boost converter with N-legs.

Since the system is subject to switching, i.e. changes inapelogy that depend
on the states of the switches, the analytical descriptidheflynamics of the converter
corresponds to a piecewise linear system of differentialaéqgns, called thexact
switched model In the general case of an N-leg topology, the state vector ibea
defined as

x(t) = [21(t) w2(t) .. ania ()] 1)



wherez; (t) is the capacitor voltag¥ andz,41(t), j = 1,2,3,..., N are thej-th
leg inductor currents; ;. Assuming that the converter operates in CCM (continuous

conduction mode), the inductor current, ; * of the j-th phase is governed by

, 1 .

IjJrl:f'(Vi - —rjowp1) j=1,2,...,N 2)
J

o wheres; = 1 — s; , ands; is the switching function of thg-th active switch.s; = 1

implies that the corresponding active swit6h is turned on, while ifs; = 0, S; is

turned off. The capacitor voltage equation is given by

1 [ 1
5'8126' ;8}'30%1—}—%'581 3)

whereL;, r; is thej-th leg inductance and series resistari¢és the output capacitance
andR is the load resistancé/,, is the input (supply) voltage. If not otherwise stated,

us throughout the paper a symmetrical topology is assumedehiire inductors have the
same inductance and series resistanceyj.es r, L; = L.

For the sake of simplicity a 2-legged topology will be comsihl throughout this
paper as far as the control laws application and experirheatification are concerned.
Nevertheless, the underlying analysis will be conductetitering an arbitrary num-

120 ber of legs. According to the previous analysis, the exadtied dynamics of a 2-leg

interleaved converter are

A51X+b‘/zn SleN SQZOFF

, Awx +bVi, S =OFF Sy—ON

X = 4)
A,,x + bV, ST =ON Sy =ON

AyjXx + bV, S =O0FF S,=O0FF

—1 1 —1 1
e 0 & 7w o 0
Asl - 0 %T 0 5 A-52 - %1 %T 0 (5)
—1 —r -
z 0 F 0 0 =

1The independent variable of timg,will be omitted from this point on unless otherwise noted.
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1 -1 1 1
zc 0 0 "C © ©
Aon - 0 _TT 0 3 Aoff - _Tl _TT 0 (6)
0 0 + 2 0 #
b=[01/L1/L]" @)

However, the switched dynamics of the system does not alvedntrol theory to
be applied directly thus the procedure of averaging mus fdce to eliminate the
switching action. Theaveragemodel is an approximation of the thexact switched
modelbut certainly more amenable to control design. This modelsadescribed by
the same equations (2), (3) if all state variables are replay their averaged versions
and the switching functions; are replaced by the duty cycle functiogis which are

our control inputs, i.eu; = d;. Thus, the following equations are derived

1 N 1
T = - Z%‘H'Uf——'m
¢ \= ’ R (8)

Tjp1 = Z'(Vi — @)= x)

In a 2-leg topology, the procedure of averaging renders tingral inputsuy, us
equivalent to the duty cyclas, d, of the switchessy, s, respectively. Hence, after
some manipulations the nonlinear (bilinear) averaged uhjos of a 2-leg converter

can be expressed as
).(:Al'X+A2'X'U1+A3'X'u2+b"/in (9)

WhereA1 = Aoff andAg = Asl — Aoff, A3 =Agp — Aoff.
In a general N-leg topology the corresponding bilinear dyica take the general

form
N

)‘(:Al'X—FZAkJrl'X'Uk‘i‘b"/in (10)
k=1

where the corresponding matricAs.,; can be similarly defined a& ;.1 = Ag —

Aoff
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2.1. Open-loop steady-state analysis

Since the inductor parasitic resistances are not consldwrgligible an open-loop
steady-state analysis can be very informative as far asithpact on the operation of
the converter is concerned. It should be noted that in thée ¢hese resistances are
modeled to incorporate other losses as well, that may stem tine rest of the compo-
nents of the system. The values of the parasitic resistameesxperimentally validated
in section 6 and utilized in the control design procedure.

The simplest, but also quite common case in practicébslancedsituation , in which
the total current is equally shared among all legs and thasfiar series inductor re-
sistances are considered symmetric, i.e. each having the sssistance value. In this
case, the same steady-state currénts and duty cycles: for the control inputs:;
applied to each leg are encountered. By equating derisatif/é8) to zero, we deduce

that all possible equilibria satisfy

0 = -z +R | 2 (11)
0 = Vip—m: u; — T T4 (12)

Simple algebraic manipulations lead to (13), whefgis replaced byl — u,, and N

is the number of legs.

N RV (1 — ug,) Vin
Vis = ’ I, = 13
T+NR(1—U55)2 T+NR(1_USS)2 ( )

Equations in (13) can be further utilized in order to invgate the impact of the induc-
tor series resistance on the operation of the system. Fongradifferentiating w.r.t.
to the steady-state duty cycle, and equating the derivative to zero the maximum

operating point¢7:**, V%*) is found to be

maz_ max NRV;N
=1 ”NR Vi 5 (14)

What can be deduced from (14) is that as the series resishmumnes smaller and

the number of legs increases the maximum operating poinemtw higher values.

2Subscriptss denotes the steady state value, i.e. wkes: 0, of the system’s dependent variables.
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Moreover, there are always two solutions fQr, which are

Vin:l: V-2 _4TV525
Ugs = 1 — V2$ al (15)

=

The solution of interest in the domaify; € [0, w72 ] is

‘/zn+ ‘/ii_élr

2 Vs

1
/AN

Ugs = 1 —

(16)

from which (13) also yields

Vvin . V;%I . 4rvV2
I, = v NR (17)

2r

A graphical interpretation of this argument can be seérignre6 for the experimental
setup of section 6. The domain of interest, as far adtheas concerned, is between
the input voltagéd/;,, and the maximum operating Voltag&?** (point@ in Figure®).
However, for aV;s value laying inside this domain there is also another soutor
uss andlg,, given in equation (13), on the right of the maximum opeapoint (e.g.
for Vs = 10V the two solutions are obtained at the poifts P> shown explicitly in
Figure6). The operation of the converter near the maximum p@ishould be avoided

due to the increased power loss.

3. Bifurcation analysis of bilinear dynamics under static $ate feedback

Recently, the problem of multiple equilibria (saddle-nodélopf bifurcation) gen-
eration for a boost converter under static state feedbagléan fully investigated in
[31]. In this section this analysis is extended to an intaréel boost converter.

The bifurcation analysis that follows investigates thesedce of multiple equilib-
ria in the case where the duty cycle functions are specifiea $tate-feedback control
law, i.e. it is aclosed-loopsteady-state analysis. Hence, thgen-loopsteady-state
analysis of the previous section does not suffice, and thxaldaw expression must
be taken into account.

Multiple equilibria are attributed to the nonlinear (b#iar) dynamics of the con-
verter, hence we proceed with a steady-state mathematiablsis on the basis of (8),

combined with the control law's mathematical expression.
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A general static state-feedback control law for the dutyefunctions is given by
wj = k1 [x1 — Ves] + k2 [@j41 — Lss] + uss (18)

where it is assumed that the feedback ga&ingc, are the same for all legs. By sepa-
rating dynamic and static elements we may exptess) = 1 — u;(t) with the help of
(18) as

U; = —kl L1 — kQ cTj41 + € (19)

where

e =1—uss+ ki Vs + kol (20)

The next step is to solve (12) fer; and replace back to (11) to yield a polynomial in
x1 only. Assume for the moment that a series resistance misroaturs, i.e. different

resistance values for each leg are encountered. Combining (12) and (19) yields

Vin + k12 —e-m
R 21
Tj+1 5 — ka1 (21)

Similarly, combining (11) and (19) results in

N

R- (Z [(E — klxl) cTj41 — kQ . $§+1]) = T (22)
j=1

Now the expressions from (21) may be used in (22) to yield srpwhial inz; only.

Due to the quadratic termsjz+1 the expressionsér; — ks - :cl)Q will appear in the

denominator, hence if both sides are multiplied by thesagehe following equation

in z; is obtained

j=1 | i=1,i#j (23)
N
= X1 - H (T‘j —kzl‘l)
j=1
where the quantitie®, = are given by
O = (c—ki-a1) (Vin + ki-23 —e ) (24)

== (Vm + ky - o] —5-x1)2

10
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These complex expressions can be useful for a computer meahsslution. However,
this formulation allows us to observe that in the generag ¢hs order of the resulting
equationig2 - N + 1), i.e. linearly increasing with the number of phadés> 2.

In the absence of any series resistance mismatch, in whiehr, (23) becomes
R'N'[@(T—kgxl)—kQE] :Il'(T—kQSCl)Q (25)

resulting in a 4th order equation regardless of the numbehates. However, from
(24),(25) it can be easily seen that the coefficient of thetfopower ofz; will always
be zero, since the corresponding terms in the expre$€ién — kqoz1) — ko Z] are
canceled out. Hence, it is possible after some algebraigpukations to arrive at an

analytical expression of the resulting equation as
043,@‘;’4-042&6%4-041,%14-040:0 (26)

which is a cubic inz;, where the coefficients; , i = 0,...,3 are functions of all
parameters involved and are given by

a3 =—ki — NRrk?

as=21ks + NR (2erky — k1 ka2 Vip)

ap=—r% — NR(T€2 +rk Vi, — ankQ)

g =NR Vin (re — k2 Vip)

(27)

The variablee = 1 —ugss+ k1 Vs + k2 Iss contains all setpoint valudg, Iss, uss,
which can be further eliminated with the help of (13),(16heh we have

in E in —VE 4rV
LV +\F+k2_v \/_,E:vf— Ve
2Vis 2r NR

All formulas derived in this section provide significancsiatance for finding all pos-

azkl"/ss

(28)

sible equilibria and specifying bifurcation curves by sontysimple algebraic equations
numerically.

However, it is clear that even in the absence of any seriéstaese mismatch, in
the non-idealcase where- # 0 the resulting expressions are too complex to allow
a further analytical investigation. Nevertheless, in ordegain useful insight into
the interleaving process, w.r.t. to the multiple equikbgeneration problem, we will
consider thadeal case and extend the corresponding analysis of [31] in thevialg

section.

11



3.1. Bifurcation analysis in the ideal case

In this case the series resistance vanishes and the exprg26) can be easily
broughtin a cubic forny (z,) = 0 with real coefficients that may give one to three real
equilibria, where

f@)=a} + 228 +p-a1+g (29)

25 From (27) it can be deduced that

VJRJWpZA@—NJ%V(§i+V)
2 V2 ss 2 (30)
ko

In this case we also have much simpler expression&fots, i.e.

1 V; 1 V2 Vin
Uss = 1 —

Iss = %N = 2 ’
N R(l — U55)2 N R‘/zn ‘/ss

(31)

These expressions allow an analytical investigation sintd the one followed in [31]
for a simple boost converter. Although all results in [31hdze extended to the in-
terleaved case, in the sequel we present extensions of $ftiopdl and Lemmas 3,4,
20 With proofs very similar to [31]. These results are enoughit@ us a good flavour
and useful insights of the effect of interleaving to bifuroas. Once again we consider
equilibria voltaged/;s > V;,, and feedback gains satisfyikg > 0, ks < 0 and the

following definition :

Definition 1 A bilinear system (11),(12) in the balanced and ideal cagk wme, two

25 Or three real equilibriais denoted as EQ 1, EQ 2 and EQ 3, resipely.

In the interleaving case we have a nbifurcation function with an extra variable, i.e.

the number of leg®V

T (Vis, Vin, R, k1, k2, N) = VE k3 + Vi, VA R?k} - N?

(32)
+ 4RV2ky - N + 2VinRV2kiky - N

and the following updated proposition

Proposition 1 The bilinear system (11),(12) in the balanced and ideal casgrolled

20 by a state-feedback law (18) exhibits one to three real dyidland it is

12
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1. EQ1lifandonlyif ' <0
2. EQ2ifandonlyif ' =0
3. EQ3ifandonlyif T' > 0

The following lemmas related to the multiple equilibria alance are of particular

interest.

Lemma 1 A sufficient condition for the absence of positive multigi@ equilibria of

(29) is the satisfaction of the following inequality

k1
)

I Vi
N R-Vi

(33)

However, imposing conditions to ensure the absence of duychition phenomena
whatsoever can be very restrictive. Less conservativeitond which ensure the ab-
sence of any multiple equilibria inside a specific regionmérest may be found. E.g.
simple state constraints for the output voltdge. Vo < VCJr may be included. The

following lemma covers this case.

Lemma 2 A necessary and sufficient condition for the absence of ipesitultiple
real equilibria of (29) in the intervaly < Vg, is the satisfaction of the following

inequality
N - (RVin VsV ) ki + (Vs + V3 )WVesVa ke — N-RVZ < 0 (34)

Figure 2 provides a pictorial presentation of the previous redhié allows the
extraction of useful information and insights. As proved3t] the bifurcation curve
I’ = 0 is a parabola, made of two separate non-intersecting cimidg quadrant of
interest (the first quadrant of tHé¢,, — R plane, or the fourth quadrant of tihe — ko
plane). This property can be shown to hold for the interlegnéase as well. For
comparison purposes we have used the same numerical datf34}$ @and considered
a variable number of leg® = 1,2, 3 to study the effect of interleaving. The result
is presented irrigure2(a),(b). EitheV;,, — R or k1 — ko bifurcation diagrams show
clearly that as the number of phases increases the curvesowed to lower values,

hence the bifurcation phenomena occurrence is much mayadrg, i.e. for smaller

13
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deviations from the nominal values (as seen orifhe- R plane) or for a wider variety
of feedback gains (on thlg — k- plane).

The effect on thé, — k5 plane is particularly important since this diagram has been
directly used in [31] for controller design, i.e. for theestion of appropriate gains,
such that any multiple equilibria generation is completlpided, or at least suffi-
ciently suppressed (as suggested by Lemmas 1,2). To judgevihpresent a detailed
and clearer picture in Figure 2(c). For the area of intef@st ; < 0.1, -1 < ko <
0)° the same bifurcation curv&s= 0 as inFigure2(b) are shown (the upper part only),
together with the bifurcation lines produced by the resoftsemmas 1,2. Again, it
is obvious that the slope of these lines increases with Njrigdess and less space
for appropriate gain selection. This can be also analWicainfirmed by considering
the corresponding mathematical expressions. The linetiequienplied by (33) can be

reformulated as
Vis
i.e. is forms a line with negative slope equal¥o m and zero intercept. Similarly, the

kQZ—N'm'kl , M =

(35)

line expression implied by (34) can be rewritten as
ko = —-N-m-ky + N-b (36)

i.e. it is clearly a line with negative slope equallXo- m and intercept equal t&v - b,

where
S RVw . RV
VI Ve VVE (Vs + V)
Another observation fronfrigure 2(c) is that, compared with the exact bifurcation

(37)

boundaryl” = 0, the bifurcation lines produced by (35) according to Lemnigshibwn
at the left bottom part) are certainly quite conservativieilethe bifurcation lines pro-
duced by (37) according to Lemma 2 (depicted next to the cuwheerel’ = 0) offer
an improved result, i.e. a larger admissible area for gdetten.

Finally, although all previous results have been presefutethe ideal case, which

allows analytical verification, they are representativeha more general non-ideal

3This choice for the area of interest, i.é; > 0 andks < 0, provides a stable system with high

damping [33].

14
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case, in whichr # 0. Similar analysis can be carried out using the correspgnclibic
of (27) in order to specify a new bifurcation functidn This has be done numerically
in MATLAB and representative cases are depictedligqure3. The effect of increasing
the number of legsV is the same as in the ideal case, i.e. it allows less freedom in
the gain selection-control design process. The seriestagsie value does not have a
significant effect in the result, since the bifurcation @iy moved slightly upwards

when its value is increased.

4. State-feedback control design

In this work, both static and dynamic full state-feedbachtonl laws have been
studied for controlling an N-leg interleaved convertereTdesign methods are based
on the linearized dynamics of the bilinear interleaved eotar andpole placement
techniques are consideretiowever, their novelty lies in the use of complementary
bifurcation analysis. In a balanced situation, the desamlze performed using two
dimensional dynamics, due to symmetry. This is a commontigefollowed in other

works as well [25, 27].

4.1. Static state-feedback design using the linearizetbgeel model and bifurcation

analysis

The static state-feedback control law is given by (18), i.e.
wj = k1 [x1 — Ves] + k2 [@j41 — Lss] + Uss (38)

wherew; is the control input (duty cycle) applied to theeg, j = 1,2,...,N. At
this point it should be noted that, although the feedbackgaie the same for all legs,
all inductor currents are independently measured anaedlby the control law (38)
for each corresponding leg. Fortunately, the system oéufitial equations (8) that
govern the interleaved converter that is comprised by aitranp number of legs can
be significantly simplified due to symmetry. Thus insteadadihg a(N + 1) x (N +

1) system of equations that describes an N legged convertanibe conveniently

15
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truncated using (8) to the followin® x 2 system

'<N'$2'u/_fi%'xl) (39)

(Vip —x1 -0 — 1 - 22)

T =

S =Ql -

Ty =

wherez, is a state variable representing any of the equally balateggsl inductor

currentu’ = 1 — u, andu is the input (duty cycle) expressed in closed-loop form as
u = kl . [Il(t) — ‘/55] —+ kQ . [Ig(t) — Iss] + Ugs (40)

This truncated system can be expressed in matrix-vector $éimilarly to (10) as fol-

lows
X =A; x+Ayx-u+b-V, (412)
where
-1 N 0 =N 0
A= |0 O A= 9 b= (42)

The next step is to apply a linear transformation so that tve-zero equilibrium is
mapped to the zero state. The new state variables are trevariablesx. and input
u,. such that

X, = X — Xgs aNd ue = u — Uy (43)
so that (41) yields a new auxiliary bilinear system

Xe = A-x, +Ag X, uUe + ba-ue

(44)
A=A +Ar ug,br= Az xg
The linearized dynamics are given by
Xe = A-x, + by -u,
1 (O Lss
A= | EC N by, = N-E (45)
_u;3 o y D2 Vi,
L L L

As in (38), we consider control laws in an affine state-feettf@rm, which for a

non-zero equilibriunx,s and corresponding input,s are stated as

uw=kT (x—xXg) + uss OF u. =k’ -x (46)
( SS) 88 e e
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for a state vectok = [k; k2]7. Combining (45),(46) we arrive at a linear closed-loop

system with a system matrix

—  NZLep NI, - Ik
A = | T TN E R Nl = L) (47)
T(Vaski —uly)  1(Vaskz —7)
Further manipulations suggest that the characteristigrohial of (47) isp = sl —

Ayin| = s% + ais + ag, where

ap=NLeky — Yooy + 2+ L
ap = N 75 (rlss — ul Vis) k1 — N 75 (Vas 4+t Lss) ko (48)
TRECI !
It is evident that the necessary and sufficient conditioritiersystem to be stable, i.e.
that the eigenvalues have negative real part, isdhat 0 anday > 0. Moreover, a
second order characteristic equati8n-2{w,, s +w? implies thata; = 2¢w,, andag =
w2. These considerations allow the extraction of simple antenient expressions

concerning stability and performance, as follows :

4.1.1. Stability (Hopf bifurcation) boundary

For feedback gains satisfying > 0, ks < 0 the conditiona; > 0 is trivially
satisfied, hence the stability boundary is the cuiye= 0, which is a line on the
k1 — ko plane, as seen in (48). In thdeal case, it i = 0 andV,, uss are given by

(31), hence we have after some manipulations

V; Vis Vi
_NLCk1_2RLCk2+NLC‘/S2S>O (49)

4.1.2. Performance specifications

Simple time-domain performance specifications in termsheflinearized model
can be also easily set on the basis of typical settling tintecaershoot bounds.

A settling time requirement; < Ty, whereT,; a minimum desired time bound,
can be expressed as > T% assuming the well-known formutg, = 4/(¢w,,). In the

idealcase from (48) we have

V2 Vi | 8
ss g Ve g L8 50
rov, Mo Rt gs o, >0 (50)
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Similarly, a minimum overshoot bound may be set by imposjng (4, where

¢s @ maximum acceptable damping ratio, and may be expresseg asw?, where

wWq = %Cd. In theideal case from (48) we have
Vi V. V2
N2k — 2= ky + N 2 3 51
e ™ T *rre ™t N ovz < v (1)

Itis interesting to observe that the boundary implied by) (§&n expression of the
form
ko = —N-m-ki1 +0 (52)

i.e. aline with negative slope equal - m and intercept equal tg where

2
‘/in 2

m=y b=

RLC
2Vss

(53)

suggesting that the number of legs has a direct effect on ihienmm overshoot bound,
while (50) implies that the settling time requirement is affected. A similar expres-
sion can be also derived for (49), which implies a line boupdath the same slope as

in (52) and a different intercept which is proportional te tiumber of legsv.

4.1.3. Saturation avoidance criteria

Another significant aspect concerning the selection of th&roller gains is the
saturation avoidance of the control signal. The valueseirthut voltage};,,, and load
resistanceR, are characterised by uncertainty which is summarized bieTa. The
variation of these parameters will give rise to several l@gjiiim points, as illustrated
in Figure 4, which will populate the line segment with the tesdreme pointg, and

p2. Thus, it can be deduced that the feasible equilibria reigigiven as
L={x|a =V, I, <ap < I

wherel, and, can be found by utilizing (17) and the values for the inputagé
and load resistance of = [V, IjS]T andps = [V, I(;S]T respectively. In order
to ensure saturation avoidance the feasible equilibrimnageeds to be a subset of the
unsaturated region, see [31]. The unsaturated regionirse@dééd by the two saturation

linesu = 0 andu = 1. For the general expression of the control law k” (x—xss)+
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uss these lines can be denotedldS(x — xgs) = —uss andk? (x — xgg) = 1 — Ugs.

Their distances from the equilibrium point are

Uss 1- Uss

d k’uSS = — ) d: kauss 54

The distance between the two extreme pojntandp, can be expressed w.rk.as

k” (p1 — p2)
dia(k) = ——-- 55
12(k) T (55)
The necessary and sufficient condition for saturation arsd is

di2(k) < min (di(k,ug,), da(k, ul,)) (56)

whereu, andu}, are the values that correspondfg and I, respectively. In this

case (56) can be reduce to the simple form

min (ug,, 1 —ul)
I — I

k| < (57)

The condition described by (57) ensures that the feasihldileda region is included

in the unsaturated region.

4.1.4. A new design method through bifurcation analysis

Following the same approach with [31] we are now in the posito propose a
new control law synthesis technique for interleaved boosverters incorporating the
previous bifurcation analysis. First, the feasible regioithe control gains space is
specified such that closed-loop stability (Hopf bifurcajicaturation avoidan¢ger-
formance specifications and special bifurcation avoidaoclitions are met. Second,
a control law is selected in an optimal manner, i.e. by mazing performance re-
lated metrics. If the performance of the proposed contradlenot satisfactory, this
framework allows flexible and transparent re-designs witv specifications to be
performed, giving rise to different trade-offs between ftioting goals. This design

procedure is explained in more details in the case studepted in section 6!

4t is noted that, although all previous results have beeaintl for the converter operating under nom-

inal conditions, they can be extended to a wide-range dpara@se, with extra conditions as in [31].
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4.2. Dynamic state-feedback design using the linearizedeged model
Our dynamic state-feedback controller is formed with thdiah of an extra (in-
s tegrator) state; = fot(:cl — Vier) dt. Inthis case, the truncated second order system
in (39) becomes third order, i.e. we haxe= [x; 22 :ci]T, wherer; = Vo, 20 = i1
and the new state-space equations and control law are gwéBpand (59), respec-
tively. The expression of the control law in this case isaedid of the set-point terms

due to the action of the integrator.

__x1 ng _ NIQ
e + U

C [}
X=q-2 -2 4 40 4 Va (58)
1 — Viey
390
uy = kyxy + koxo + ki (59)

The same steady-state values as in (13),(17) are then ebtiinV;; = V. in the

domain of interesf0 , u72**], i.e.

S8

NRV2 —47V2

‘/in —"_ NR Tef
ss — 1 - 60
u Wiy (60)
4rV?2
Vip, — V2 _ Z_ref
I = n NER (61)
2r

Substituting (59) in (58) and linearizing around the edpilim point for the error

as dynamicsx, and inputu, we arrive at

1 NIgki N(Q—dss—Isska) NIk
RC [} [} [}
J— 1—dss—Vssk r—Vssk Vsski
1 0 0
e 21 —dg) 0 oo
Xe= [-1(1-dy) —r 0 Xe + | —Yes | ue (63)
1 0 0 0

The same holds for the constrained stabilization settirgtha stability validation procedure using flexi-
ble piecewise-linear Lyapunov functions adopted in thatepa These techniques are omitted in this work

due to space limitations.
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5. Digital control law implementation

In general, for an N-leg converter, the leg currents are $aanpith a sampling fre-
quencyfs equal to the switching frequency, with the appropriate phssft, whereas
w0 forthe output voltage a higher sampling frequencyoff, has to be used. Ttanalog
state feedback control laws designed in the previous seftioa 2-leg topology are
digitally implemented as shown in Figure 5 (top) and implied by both é (65).
Both currents are sampled evéfy= 1/ f, seconds (with a phase shift @%/2 for the

second current), while the voltage is sampled eW#éfg seconds.
ui[nT] = ki(z1[nT] — 1,ref) + ka(x2[nT] — T2 rep) + dss (64)

Uz [nT—i— g} = ki (21 [nT—i— g} — Tigef)
(65)

T
+ k? (:CS |:nT + 5:| - x3,ref) + dss

Accordingly, the digital implementation ofdgynamicstate-feedback control law is
depicted in Figure 5 (bottom) and the related control exgioes are given in (66) and
(67).

up [nT] = k1 x1 [nT] + ko xo [nT] + kix; [nT) (66)

Us {nT—i—g] = kix {nT—i—g] + ko x3 [nT—i—%]
(67)

+ ki x; [nT + %]
These expressions can be directly utilized to simulate gegation of the system. In
a0 fact, the simulation results presented in the next sectierewbtained by making use
of the corresponding diagrams shown in Fig. iV ULIN K™ . However, when
it comes to the real implementation of control laws the colrgtignals are delayed until
the next sampling time instant.
For sampling frequencie§ = 10 KHz or higher both numerical and experimental
as  results confirm that the digital implementation of the contius-time design is reliable.

The sampling frequency is considerably high compared tatmyerter’'s dynamics,
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Parameterl  Value Nominal value

R [20, 80] Q 40 Q
Vin [3.5, 6.5V 5V
Uss 0.5264 0.5264

L 1 mH 1 mH

C 20 uF 20 uF

r 1Q 1Q

N 2 2

Table 1: Interleaved Boost Converter Parameters.

and as such the effects of the digital implementation ardéigibtg, hence the digitally

controlled system behaves closely to its continuous copate

6. Anillustrative design example

We consider an interleaved boost converter with= 2 legs as in Figure 1 with
nominal parameter valuds = 1 mH,r = 1Q,C = 20uF, R =40Q,V;, =5V,
Vrer = 10 V. We also consider large parameter variations as shownidteTa A num-
ber of control laws have been designed for this system tdttestieas described in the
previous sections. The proposed designs have been versfied the exact switched
model of the converter with numerical simulation§dM U LIN K™ . Furthermore,
they have been also experimentally tested using a protatypdeaved converter and
a hardware digital implementation using Labview on board &BRIO 9636 FPGA
device from National Instruments. The inductor currentssemsed in each leg was
chosen to be a LEM LTS 6-NP.

6.1. Open-loop experiments

The first experiment conducted had the purpose of identif{fie inductor series
resistance. As seen from the steady-state voltage andhtexpressions in (13), the
series resistance has a significant impact which cannot édomked. For this reason,

acquiring a good estimate of the internal resistance vahreugh an experimental
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procedure, is a necessity. The result of this experimedaaitification procedure is
depicted in Figure 6, where equation (13) was used for apglgiproper curve fitting
technique, taking as the variable to be chosen for the curve to best fit the real da
should be noted thatdoes not represent the inductor series resistance ortigualh
it is modeled that way, but it also represents other lossatsrtay stem from other
components of the system. The resulting value of the resistavas found to be =

0.993652, rounded up td 2 for simplicity.

6.2. Pole placement using the linearized averaged dynamics

We begin our control law evaluation procedure with the saspktontrol design,
i.e. a simple pole placement using a 2nd order linearizedeta@tcording to the
process outlined in subsection 4.1. The design is basedeosethction of the desired
damping factok, natural frequency,, and corresponding settling tinig values, for
the polynomial in (48). Then the analysis of section 3 canggied in order to check
for the existence of multiple equilibria in the operatingion of interest.

The performance specifications are adopted from [32], whiokide a fast oscillation-
free transient response. A damping facfor= 0.707 and a natural frequeney,, =
2.830 rad/sec (corresponding to a settling tifig = 2 msec, assuming tha&f, ~
4/(w,) are chosen which will provide the desired transient respofVithV,, = 10
V the corresponding values of,,, I, are found from (13),(16) to be,, = 0.5264,
I, = 0.2639 A and the poles are placedsaty = —C w, & wpy/1 — (2 = —2000+
j2000. The corresponding gains of this pole placement procedwdoaund to be

k = [0.0391 — 0.0719]".

6.3. Bifurcation analysis for static state-feedback laws

The gains specified by the previous pole placement procadasegive rise to
multiple equilibria. This can be easily checked using thalgsis in section 3. Further
stability and performance criteria can be addressed ubmganditions described in
section 4.

For the parameter variations given in Table 1 the feasilg@areon the gain space

k1—k5 is shown below in Figure 7.

23



465

470

475

480

485

490

The corresponding bifurcation curve is plotted as a dasined This curve is not
an approximation since it is calculated using the bilineadel. Further curves shown
are thel = 0.5, Ts = 2 msecsaturation avoidance of the control sigraaid the (Hopf
bifurcation) stability boundary, which are approximatecs they are determined nu-
merically using the linearized model. Figure 7 can fadiitdne selection of appropriate
gains, that satisfy desired performance requirements dsasavoidance of multiple
equilibria.

The bifurcation curve in Fig. 7 suggests that the géins- 0.0391, ko = —0.0719
(marked with a “*") which have been selected before lay algéghe safe region of a
single equilibrium (designated as “EQ1” in Figure 7). Intfaane can calculate that
there exist three equilibria ab, 17.1707, 22.023 Volts. The two equilibria at 10 and
22.03 \olts correspond to stable nodes, whereas the thedbh7.17 Volts is a saddle
point.To illustrate the problematic situation that carsarivhen the gains lay in the
multiple equilibria region, a representative simulatioqperiment shown in Figure 8
has been carried out.

In Fig. 8 a startup transient is initially shown, in which thestem operates inside
the region of attraction of the first node. However, in theeazfsa large load disturbance
for a short time period the system trajectory eventuallyeexis the saddle point and
lays in a region where it is diverted to the second stable nhatdsignificantly higher
output voltage and leg current values. This is a potentraiyardous situation that can
be avoided by using the bifurcation analysis of subsection 3

It is worth noting that this undesirable situation may ocewch more easily for
an even more unfortunate selection of the feedback gaimewfgains farther outside
the single equilibria EQ1 region are selected, &;0= 0.06, k2 = —0.2 (marked with
a “+" in Figure 7), the multiple equilibria are moved 19, 10.5, 22.5 Volts, i.e. the
saddle point is located d0.5 \Volts, really close to the neighbourhood of the stable
desired equilibrium at0 Volts! This implies that a sudden slight disturbance could
severely affect the system’s operation. To illustrate glienomenon representative
simulation and experimental results are shown in Figurel® Jystem is initially at
normal operating conditions, however when the system igstdd to a sudden slight

load disturbance for a short time period the system trajgésammediately attracted
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by the saddle point to a distant operating point correspugidi the second stable node.

Along these lines we modified the initial design, and picked nalues:; = 0.03,
ko = —0.2 (marked with an “x”), which are far from the bifurcation cervand also
correspond to a reasonable damping factor valde< ¢ < 1, a sufficiently high
natural frequency,, > 3000 rad/secand abide by the saturation avoidance condition
In fact, the new selection places the closed-loop poles2&21 + ;52985 with { =
0.645 andw,, = 3907 rad/sec.

For a switching frequency, = 20 KHz, and undestatic state-feedback control,
the evolution of the output voltage of the converter at atigris shown in Figure 10.
Simulated responses from the exact switched model and linedni averaged model
are also plotted. The two simulated responses are quite tdasach other, and would
certainly come closer for an increased switching frequenbg experimental response

is very satisfactory.

6.4. Dynamic state-feedback pole placement

In the dynamic state feedback case we do not expect any heuttipuilibria, due
to the presence of an integratam. the case where the state feedback gains are chosen
to place the poles of the system in the left half of the compliee the operation
of the integrator will always try to diminish any error bewvethe desired voltage
referenceV,..r, and the voltage of the converter. However, what needs t@kent
into account is the value of the reference signal which shoeler exceed’**. If
the reference signal were to exceed that value an integratal-up situation would
be instigated. Along these lines it can be deduce tha¥for € [0, V/**] there will
always be a single equilibrium and the control design praced no longer confined
by constraints concerning multiple equilibri& pole placement procedure based on
the linearized state-space equations (63) can be appliedier to calculate the three
gainsky, ko, k;. The desired location of the closed-loop poles is adopteh fi32],
which lay at—2000 £ j 1000, —5000, so that a pair of dominant complex poles with
¢ = 0.89 andw,, = 2236 rad/sec is obtained. The resulting gain values that drige th

poles of the system to the desired locationfare- 0.0274, ks = —0.6026, k; = —56.
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The performance of thidynamicstate-feedback control law is depicted in Figs. 11,
12. The disturbance rejection behavior of the controlléested against large load and
set-point step changes. The results are quite satisfaatatyhe close resemblance of
the simulated with the experimental responses suggestscassful proof of concept

for the simple pole-placement control design procedured usthis work.

7. Discussion and conclusions

This work has dealt with the design of both static and dyndmlicstate-feedback
controllers for compensating a multi-phase interleavateder. Pole placement tech-
niques have been proposed which are based on the lineavieejad dynamics of the
bilinear interleaved converter. Their performance hanhegified by simulation and
experimental results. We have shown that the averaged rptaded an important role
on the controller’s gain selection procedure and can peo&ickasonably good approx-
imation on potential multiple equilibrium points, in theseaof static state-feedback.
It is also reported that, although very useful in other respehe interleaving process
leads to more serious bifurcation phenomena, such as neuttipuilibria, as the num-
ber of phases is increased. To deal with this problem, a catepifurcation analysis
procedure has been developed to serve as a complementanttendesign process so
that multiple equilibria can be completely avoidedruled out of the operating region

of interest.
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Figure 2: Representative bifurcation diagrams for the edev of section 6 in the ideal case wiify, = 5
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Lemmas 1 and 2 are portrayed.
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