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Summary
In this paper, a method to study the nonlinear dynamics of
a PV-fed boost converter is developed. The model for the
solar panel introduces an algebraic constraint into the sys-
tem and the resulting mathematical model is a set of hybrid
Differential Algebraic Equations (DAEs). The behaviour of
the system is observed to exhibit undesired operation as pa-
rameter values vary. Conventional mathematical tools de-
veloped to analyse DC-DC converters are not directly appli-
cable to systems modelled as a set of hybrid DAEs. In order
to find the Monodromy matrix to assess the eigenvalues of
the system, wemodify the Filippovmethod to calculate the
Saltation matrix. The derived formula is general and versa-
tile such that it can be applied to any PV-fed DC-DC con-
verter irrespective of the topology or control algorithm em-
ployed. Two case-studies are investigated; Current Mode
Control (CMC) andMaximumPower Point Tracking (MPPT).
Each case-study serves to demonstrate different consider-
ations that must be taken into account when conducting
stability analysis of hybrid-DAEs.
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1 | INTRODUCTION

A large scale redesign process is currently under way in power systems across the globe. Conventional sources of
energy based on fossil fuels are being replaced by renewable sources of energy such as PhotoVoltaic (PV) solar panels,
wind turbines, and batteries. This redesign is primarily motivated by growing environmental concerns as well as the
economic aspects of nations maximizing their available energy resources [1].

PV solar panels have gained an increase in market share due to falling prices, the free availability of sunlight, and
their low rate of emissions [2, 3]. PV panels have a nonlinear I-V characteristic curve. Hence, as the solar irradiance
varies, the output voltage of the PV panel will vary according to the I-V curve. The output voltage of the PV panel is
nonlinear with a Maximum Power Point (MPP) voltage in the range of 15 − 40 V [4]. The output voltage of each PV
panel must be stepped up to meet the demands of the interconnecting device. Such applications include: connecting
to the AC grid through a DC-AC inverter; charging a storage battery or electric vehicle; or contributing to the 380 V
DC distribution system [5].

The conventional method for stepping up the output voltage of multiple PV panels is to connect several PV panels
together in series. As the combined output of the array of panels is variable, some form of power electronics is used
to condition and regulate the output voltage. However, shading and other unideal operating conditions can drastically
reduce the efficiency of series connected PV devices [6].

The approach under study in this paper is to connect a DC-DC converter in series with each PV panel. Each
PV module operates independently from one another and can be connected to the load, battery, AC-grid, or DC-link
separately. The control algorithm for each DC-DC converter can be optimized as environmental conditions vary in
order to operate at the MPP.

The desired behavior of DC-DC converters is a stable periodic motion around a predefined value with a frequency
that is equal to the external clock. However, as parameters vary, such systems exhibit a wide range of nonlinear
behaviors such as subharmonic oscillations [7, 8, 9, 10]. These oscillations canmanifest themselves through a series of
bifurcationswhich can increase the current/voltage ripple, add extra harmonics, and increase the switching losses [10].
Thus, bifurcations can greatly impact on the efficiency of the system. This bifurcation behavior can lead to high ripples
in the state variables or control variables and high stress in the switches. For example, a period-doubling bifurcation,
can double the current ripple which can damage theDC-DC converter, the PV source or the load [11]. Hence, accurate
techniques to predict and avoid their occurrence in PV applications is essential in order to maximise the efficiency
of the overall system. A variety of different control algorithms for DC-DC converters have been proposed in the
literature to avoid such undesirable behavior [12, 13, 14, 15].

The typical method for predicting and avoiding fast-scale instabilities in switching circuits is through numerical
analysis by discrete-time modelling [16, 17] or Floquet Theory [18]. Further details of the later approach can be found
in Section 3. However, there is limited research into the prediction of these undesirable behaviours when the input
is nonlinear and the system is modelled as a set of hybrid Differential Algebraic Equations (DAEs) as opposed to a set
of piecewise-linear Ordinary Differential Equations (ODEs). This work aims to address this issue, that is, to develop a
method to determine the stability of PV-fed DC-DC converters that are modelled as a set of hybrid DAEs. Herein lies
the novel contribution of this work:

• To develop an algorithmic approach, that is mathematically accessible, to assess the stability of PV-fed DC-DC
converters modelled as a set of hybrid DAEs. The derived formulae are versatile in that they can be applied to
any PV-fed DC-DC converter topology directly. This can be found in Section 4.

• The derived algorithm is verified through brute force computer based simulations in Section 5. The circuit studied
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in this work is also studied in [11] where experimental results are presented but mathematical analysis is not
performed. This research conducts that quantitative analysis by extending the Filippov method to enable its
application to systems modelled as a set of hybrid DAEs. By considering the same system model with same
parameters, the experimental results of [11] can be related to this work.

• Two case studies are considered in Section 5. The first is chosen in order to demonstrate that the method for
the calculation of the transition matrix for DAE modelled systems must be modified from that for ODE modelled
systems in order to find the correct Monodromy matrix.

• The second case study illustrates when the algebraic constraint is included in the switching condition that the
formulae derived in this research must be applied in order to find the correct eigenvalues of the system.

• In Section 2, we compare the results observed and novelty of this body of research to that found in the literature.

2 | LITERATURE SURVEY

The research relating to PV-fed DC-DC converters is sparse and limited. In this section, we provide a brief overview
of the available literature and identify how it differs from the novelty and results of this research.

There exists a variety of methods to predict bifurcations in DC-DC converters. These include trajectory sensitivity
analysis [19], an auxiliary vector method [20], amongst others. However, they have not found widespread acceptance
or application in power electronics design. This may be due to the mathematical complexity in their application.
In recent years, the Filippov method has gained the most traction for studying the nonlinear dynamics of DC-DC
converters most probably owing to the mathematical simplicity of its application. However, little research has been
conducted into quantitative analysis of PV-fed DC-DC converters or DC-DC converters modelled as a set of hybrid
DAEs. Hence, the focus of this research is on the extension of the Filippov method to PV-fed DC-DC converters
modelled as a set of hybrid DAEs.

This is not the first paper to study the nonlinear dynamics of PV-fedDC-DC converters, a newmethod for studying
the nonlinear dynamics of DC-DC converters and predicting unstable modes of operation was proposed in [21] and
[22]. In [4, 22, 23], this new method is applied to a PV-fed boost converter and quadratic boost converter. However,
the system differs slightly from that studied in this research as the output of the PV panel does not feed directly into
the DC-DC converter. Instead, there is an input capacitor in order to smooth the input voltage and avoid the injection
of high current ripples. This enables an additional state variable to be created and the system can be modeled as a
hybrid ODE.

In this work, the PV panel is connected directly to the DC-DC converter and the DC-link capacitor is omitted.
The resulting mathematical model is a hybrid DAE. The rationale for this can be found in Section 5. The results of
[4, 22, 23] are only applicable to hybrid-ODEs. Hence, the results of this work are more general as they can be applied
to DAEs and ODEs with no adaptation to the equations to model the system.

The application of the Filippov method to PV-fed DC-DC converters is not a novel concept. In [11], stability anal-
ysis of a PV-fed boost converter operating under different control algorithms is performed. The authors identify over
what range of values of R , Ir ef , and Iph give a stable period-1 output through simulations and bifurcation diagrams.
The results are experimentally verified. For peak Current Mode Control (CMC) and average CMC, the eigenvalues of
the system are found using the conventional Filippov method. As outlined in this research, the conventional method
is applicable as the algebraic variable is not present in the switching manifold i.e. nTy = 0 for these control strategies.
However, only qualitative results are presented when theMaximum Power Point Tracking (MPPT) control algorithm is
considered. There is no quantitative analysis performed. The stability of the system is determined through bifurcation
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diagrams, time-domain simulations, and experimental waveforms. The eigenvalues of the system are not found. This
is because the standard Filippov method cannot be employed as the algebraic constraint is present in the switching
condition for MPPT control.

The approach taken in this research is to extend the work of [11] and [18]. Both of these works consider quanti-
tative analysis of hybrid ODEs and the derived formulae only have a mathematical foundation in such systems. This
work considers hybrid-DAEs and extends the mathematical foundation developed in [18] to such systems. A new
formula to calculate the Saltation matrix is derived to include the effect of the algebraic term on the calculation of the
stability of the system. This enables the Filippov method to be applied to hybrid DAEs, as well as, hybrid ODEs.

By considering the same circuit, parameters, and operating conditions, the experimental results of [11] can be
extended to verify the validity of proposed method developed in this work.

Themain author in [4, 23], contributed to [24, 25, 26] where they study the bifurcation behavior of a PV-fed boost
converter. In a similar manner to [11], the conventional Filippov method is applied in order to find the eigenvalues
of the Monodromy matrix. However, there is an input capacitor filtering the output of the PV-panel. Hence, the
approach taken in [24, 25, 26] is not as general as that developed in this research.

In [27], an MPPT controlled boost converter fed by a PV-panel is studied. In all the papers discussed in this
literature survey, the temperature and solar irradiance is fixed when studying the effect of other parameters on the
nonlinear dynamics of the system or the solar irradiance is the bifurcation parameter with all other parameters fixed.
However, in [27], the authors calculate the maximum power point for each value of solar irradiance and fix vi n at the
MPP. For this reason, the results of [27] are for a specific converter, at a specific temperature, and operating under
specific conditions. The algorithm presented in this paper is generalised and can be applied to any DC-DC converter
with a PV source with any operating conditions.

In all the research papers discussed here, the system is modeled and analysed as an ODE. Hence, it is important
to consider the work carried out in the field of hybrid DAE analysis. The work of Federico Bizarri and Angelo Brambilla
in [28] studies mixed analog/digital circuits that are modelled as hybrid DAEs. In a similar manner that is undertaken
in this research, they derive a generalised version of the Saltation matrix that is applicable to hybrid DAEs. However,
the systems that they study undergo an impact event i.e. G1 , G2 unlike this work where G1 = G2. Furthermore,
the application of the derived Saltation matrix is to Analog Mixed Signal circuits and not PV-fed DC-DC converters or
similar.

The proposed algorithmic approach offers a powerful technique that can be applied to any DC-DC converter
modelled as a set of hybrid DAEs, a set of piecewise-linear ODEs, or a set of hybrid ODEs. The approach can be
applied regardless of the index of the DAE, the number of algebraic constraints present in the DAE, or the topology of
the DC-DC converter. The boost converter is studied in this work as experimental results are presented in [11]. Hence,
the same system model and parameters are used. The approach is valid if isolated DC-DC converters are considered,
such as the Forward Converter, or other transformerless high gain DC-DC converters such as the quadratic boost
converter.

3 | OVERVIEW OF FILIPPOV THEORY

In this section, a brief overview of the Filippov method is presented. The differences between studying a hybrid-DAE
and piecewise-linear ODE are highlighted along with the relevant notation used throughout this work.

The desirable behaviour of a DC-DC converter is a stable periodic motion around a predefined value with a
frequency that is equal to the external clock. As parameters vary, the system may undergo a bifurcation and the
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stability of the periodic motion may be lost. This can greatly increase the current ripple and therefore damage the
DC-DC converter itself, the PV-source, or the interconnecting load [11]. Operating in the unstable region may lead
to a degradation in the efficiency of PV array or reduce the lifespan of the PV module. Hence, the prediction of these
stability bounds is imperative for PV arrays.

One popular method to analytically determine the stability bounds of DC-DC converters is the Filippov method.
The stability of a general orbit, say x (t ), is assessed by placing a small perturbation at t = t0 and monitoring the
evolution of the perturbation ∆x (t ). The evolution is related to the initial perturbation by the fundamental solution
matrix. When the vector field that governs the original orbit is Linear Time Invariant (LTI), the fundamental solution
matrix is given by the exponential matrix:

∆x (t ) = Φ(t , t0)∆x (t0) = e
A(t−t0)∆x (t0) (1)

where Φ(t , t0) is termed the state transition matrix. In this work, the system is modelled as a nonlinear hybrid DAE.
Hence, the fundamental solution matrix is not termed the state transition matrix as it refers to the evolution of both
the perturbed state variables and the perturbed algebraic variables. Instead, we refer to it as the transition matrix,
Γ(t , t0). The transition matrix contains two submatrices and is of the following form:

Γ(t , t0) =

[
Φ(t , t0) 0ND×NA

Ψ(t , t0) 0NA×NA

]
(2)

where ND is the number of differential variables in the system and NA is the number of algebraic variables. We will
still refer to Φ(t , t0) as the state transition matrix as it describes the evolution of the state variables with respect to
the state variables. We will refer to Ψ(t , t0) as the algebraic transition matrix as it relates the evolution of the state
variables to the algebraic variables. Hence, if NA = 0, then Γ(t , t0) = Φ(t , t0).

Furthermore, the transition matrix is not given by the exponential matrix as the system is not LTI. Instead, it must
be calculated numerically. Section 4.2 provides a mathematical reasoning as to why Γ(t , t0) is constructed in this form
and presents a method for numerically calculating Φ(t , t0), Ψ(t , t0), and Γ(t , t0).

If the orbit is periodic, the stability can be quantitatively determined by assessing the eigenvalues of the funda-
mental solution matrix evaluated at t = t0 +T , where T is period of the orbit under study. The fundamental solution
matrix obtained at t = T is termed the Monodromy matrix.

DC-DC converters switch between two or more vector fields. As a result, the stability of (1) cannot be assessed
directly as the switching action must be taken into account. The Saltation matrix, S , is a form of the state transition
matrix that relates the perturbation before and after switching.

S = I +
(f2 − f1)n

T

nT f1 +
∂h
∂t |(x1,t1)

(3)

where h(x , t ) = 0 represents the switching manifold, n is the vector normal to the switching manifold and nT its
transpose, and f represents the right-hand side of the differential equations and the subscript notation 1 and 2 indicate
if the function is evaluated before or after switching. However, (3) is the equation to find the Saltation matrix for a
piecewise-linear ODE. In Section 4.1, we will present a reformulated version of (3) applicable to hybrid DAEs.

Since we are interested in the stability of a periodic oscillation exhibited by converters, we need to calculate the
transition matrix over an entire clock cycle. DC-DC converters are switched-mode power supplies that operate by
opening and closing switches in order to step up/down the input voltage. In this work, we analyse the DC-DC step-up
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boost converter fed by a PV panel. This has one switch that opens and closes depending on the value of the control
signal. If we assume that the switch is closed (ON) at the beginning of the clock cycle from t = 0 to t = dT (where
d is the duty cycle) and then opens (OFF) when some switching condition is met, h(x , t ) = 0, and remains open from
t = dT to t = T . The Monodromy matrix is given by:

ΓM (T , 0) = S2 × ΓOF F (T , dT ) × S1 × ΓON (dT , 0) (4)

S2 relates to the resetting event at the end of the switching cycle. Ramp compensation is typically used for DC-DC
converters and the falling edge of this signal leads to S2 being the identity matrix. For this reason, S2 is omitted from
future discussion in this work. Hence, (4) becomes:

ΓM (T , 0) = ΓOF F (T , dT ) × S1 × ΓON (dT , 0) (5)

When a PV-fed DC-DC converter is considered, the system is modelled as a nonlinear hybrid DAE. As a result,
the formula for the calculation of the Saltation matrix must be adapted accordingly. This adaptation is presented in
the next section.

4 | MONODROMY MATRIX FOR DAES

In this section we will outline a method to calculate the Monodromy matrix for a hybrid-DAE. First we will derive the
method used to calculate the Saltation matrix before briefly describing the method to find the transition matrices.

4.1 | Saltation matrix for DAEs

The PV-fed DC-DC converter is modelled as a hybrid DAE of the form:

Ûx = f (x , y , t )

0 = g (x , y , t )

where x are the differential state variables and y the algebraic variables, and the dot notation indicates the derivative
with respect to time. It is assumed that f and g are differentiable and their partial derivative matrices are referred to
as fx , fy , gx , gy , and gt . The initial condition at t = t0 for the state variables is given by x0. The initial condition for
the algebraic variables, y0, must be chosen in order to satisfy the constraint 0 = g (x0, y0, t0). We can reformulate the
DAE as an equivalent ODE by writing:

0 = gx Ûx + gy Ûy + gt

Ûy = −g−1y (gx Ûx + gt )
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For brevity, the dependence on (x , y , t ) is omitted. Letting G = −g−1y (gx Ûx + gt ), the equivalent ODE is given by:

[
Ûx

Ûy

]
=

[
f (x , y , t )

G (x , y , t )

]
(6)

Let Sode be the Saltation matrix for the reformulated ODE given in (6):

Sode = I +

( [
f2

G2

]
−

[
f1

G1

] )
nT

nT

[
f1

G1

]
+ ∂h
∂t |(x1,y1,t1)

(7)

The Saltation matrix, Sode , relates the differential and algebraic variables before and after switching:[
∆x2

∆y2

]
= Sode

[
∆x1

∆y1

]

However, instabilities manifest themselves through the differential variables. The algebraic variables are a constraint
on the system. Hence, we are not interested in the relationship between∆x2 and∆y1. However, owing to the algebraic
constraints in (6), a perturbation of ∆x1 to x1, leads to an perturbation in y1 of −g−1y gx∆x1. Hence:[

∆x2

∆y2

]
= Sode

[
∆x1

−g−1y gx∆x1

]
(8)

In order to derive an expression for the Saltation matrix that is directly applicable to a hybrid DAE, let’s consider each
component of (7) separately. First, consider the bottom line of the fraction:

nT

[
f1

G1

]
+
∂h

∂t
|(x1,y1,t1)

As nT is the derivative of the switching manifold with respect to the state and algebraic variables, we can define nTx
as the first 1 × ND entries of nT and nTy as the remaining 1 × NA entries. Hence:

[
nTx nTy

] [
f1

G1

]
+
∂h

∂t
|(x1,y1,t1)

Since G = −g−1y (gx Ûx + gt ), we can write:

nTx f1 − n
T
y g
−1
y (gx f1 + gt ) +

∂h

∂t
|(x1,y1,t1)

Rewrite (8) as: [
∆x2

∆y2

]
=

[
SD

SA

] [
∆x1

−g−1y gx∆x1

]
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where SD relates the perturbation of the state variables before and after switching and SA captures the effect on the
algebraic variables. Hence:

∆x2 = SD

[
∆x1

−g−1y gx∆x1

]
(9)

where:

SD =
[
IND×ND 0ND×NA

]
+

(f2 − f1)
[
nTx nTy

]
nTx f1 − n

T
y g
−1
y (gx f1 + gt ) +

∂h
∂t |(x1,y1,t1)

If both matrix elements of SD are post-multiplied by
[
IND×ND −g−1y gx

]T
, we get the following:

SΦ = IND×ND +
(f2 − f1)(n

T
x − n

T
y g
−1
y gx )

nTx f1 − n
T
y g
−1
y (gx f1 + gt ) +

∂h
∂t |(x1,y1,t1)

(10)

Hence, we can rewrite (9) as:

∆x2 = SΦ∆x1

Now consider:

∆y2 = SA

[
∆x1

−g−1y gx∆x1

]
(11)

where SA is given by:

SA =
[
0NA×ND INA×NA

]
+

(G2 −G1)
[
nTx nTy

]
nTx f1 − n

T
y g
−1
y (gx f1 + gt ) +

∂h
∂t |(x1,y1,t1)

However, G1,2 = −g−1y gx f1,2. If we post-multiply by
[
IND×ND −g−1y gx

]T
, we get the following:

SΨ = −g
−1
y gx +

−g−1y gx (f2 − f1)(n
T
x − n

T
y g
−1
y gx )

nTx f1 − n
T
y g
−1
y (gx f1 + gt ) +

∂h
∂t |(x1,y1,t1)

(12)

Hence, we can rewrite (11) as:

∆y2 = SΨ∆x1 (13)

Hence, we can modify the expression of Sode in (7) and, as the perturbation of the algebraic variables do not have an
impact on stability, rewrite (8) to derive an expression for the Saltation matrix that is directly applicable to a DAE:[

∆x2

∆y2

] [
SΦ 0ND×NA

SΨ 0NA×NA

] [
∆x1

∆y1

]
(14)
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where SΦ and SΨ are given by (10) and (12), respectively.

The resulting equations derived in this section, (10) and (12), can be directly applied to the hybrid DAE system
model. Herein lies the novelty of this work. The system model does not need to be reformulated as an ODE. The
derived equations take the reformulation of the DAE to an ODE about the switching point into account to enable the
direct application of the adapted Filippov method to the hybrid DAE. In order to determine the stability of a periodic
orbit the Saltation matrices and transition matrices must be calculated. In the next section, we present an adapted
method from [29] to find the transition matrix of a hybrid DAE.

4.2 | Calculation of the transition matrix

Consider an ODE with the initial condition x = x0 and in the following form:

Ûx = Ax + Bu (15)

where u is the input to the system andA andB areND×ND andND×1matrices, respectively. If we apply a perturbation
at t = t0, the distance between the perturbed orbit and the original orbit will evolve in time satisfying the variational
equation [30]:

ÛΦ(t , t0) = P (x0, t )Φ(t , t0) (16)

Φ(t0, t0) = I

where P = J for an ODE and J is the Jacobian matrix of the ODE. If the system is LTI, Φ(x0, t ) = eA(t−t0). Otherwise,
Φ must be calculated numerically. Hence, we solve both (15) and (16) in parallel so as to obtain the solution of the
state variables which can be used to form the Jacobian matrix at each time step as the Jacobian matrix is now time-
dependent.

In this research, the system is modelled as a nonlinear hybrid DAE. For this reason, (16) cannot be solved by
setting P = J . Consider a linearised form of the DAE:[

Ûx

0

]
=

[
fx fy

gx gy

] [
x

y

]
(17)

If we assume that gy is non-singular, we can write y = −g−1y gx x . Hence:

Ûx = fx x − fy g
−1
y gx x

Setting P = (fx − fy g−1y gx ) allows (16) to be solved for a DAE. Hence:

ÛΦ(t , t0) = (fx − fy g
−1
y gx )Φ(t , t0) (18)

Φ(t0, t0) = IND×ND

In general, (18) can be solved in parallel with (17) using any numerical integration method. The sensitivity of y with
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respect to x0 is given by:

Ψ(t , t0) = −g
−1
y gxΦ(t , t0) (19)

The formulation of the transition matrix is given by:

Γ(t , t0) =

[
Φ(t , t0) 0ND×NA

Ψ(t , t0) 0NA×NA

]

It is important to note that the calculation of (18) is computationally expensive as finding g−1y at every time-step
is not trivial for large systems. A computationally efficient method for estimating both Φ and Ψ can be found in [30].
However, the focus of this research is to develop an algorithm for a PV-fed DC-DC converter which typically has
very few differential and algebraic variables. Hence, this research is not concerned with optimising the algorithm for
computational efficiency. Instead, we are concernedwith reducing the algebraic complexity of the proposed approach
and, for this reason, (18) and (19) are used to find Γ in this work.

We will now illustrate the adapted method by finding the eigenvalues of a PV-fed boost converter.

5 | PV-FED BOOST CONVERTER

The output voltage of a PV panel is in the range of 15 − 40 V. However, applications at grid level require a much
higher voltage, such as the 380 V DC-link voltage. Hence, the output voltage of the PV panel must be stepped up.
For some applications, the required high-voltage gain could be as high as twenty [4]. Conventional DC-DC converter
topologies, such as the boost converter, cannot achieve this due to parasitic resistances in the switching devices and
reactive components [4]. However, the purpose and novelty of this paper lies in the development of an algorithm to
determine the Monodromy matrix for PV solar panels operating with DC-DC converters in series where the system
is modelled as a set of hybrid DAEs. Hence, the topology of the converter is not important as all relevant DC-DC
converters can be modelled as a set of ODEs. The PV panel supplying the input to the boost converter is what
introduces the algebraic term and hence is the reason we model the system as a hybrid DAE. For this reason, for
simplicity but without loss of generality, the boost converter is chosen.

In this section, we will introduce the mathematical model used to simulate the boost converter and PV module.
We will then consider two control algorithms for the PV-fed boost converter:

1. Average CMC: this control algorithm is chosen because nTy = 0. This case study will demonstrate that, while
the Saltation matrix widely found in literature for ODEs can be applied to DAEs when nTy = 0, the conventional
methods for finding the transition matrix cannot. Hence, the system cannot be strictly treated as an ODE.

2. MPPT: this control strategy is chosen as nTy , 0. Hence, the adapted Saltation matrix given in (14) must be
applied to the system. Otherwise, the calculation of the eigenvalues is wrong and may lead to incorrect design or
over-designed components.

All simulations are obtained using Matlab 2017b using the ode15s solver with the tolerance set to 1 × 10−10 with a
maximum step size,∆t , ofT /100whereT is the switching period of the boost converter. All simulationswere executed
on a 64-bit Windows 10 operating system running on an 4 core 1.90 GHz Intel Core with 16 GB of RAM.

It is important to note that there is no experimental verification presented in this research. However, in [11], a
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PV-fed boost converter is considered. The results of [11] are verified experimentally. For this reason, we have chosen
the same parameter values for the circuit and control system. Hence, by extension, the experimental results of [11]
verify the approach undertaken in the proceeding analysis.

5.1 | Mathematical models for simulation

Iph Rsh

Rs L

S C R vo

iL

PV Module Boost Converter

vinDpv vpv

F IG . 1 . PV-fed boost converter.

The circuit diagram for the PV-fed boost converter, using the single diode model [31], is shown in Fig. 1. The
diode equation is:

ipv = I0(e
Avpv − 1) (20)

where A = q/(γkTe ) and I0 is the saturation current of the diode, q is the charge of an electron = 1.6×10−19 C, k is the
Boltzmann’s constant = 1.38 × 10−23 J/K, Te is the absolute temperature, and γ is the diode ideality factor. Applying
Kirchhoff’s current law:

Iph − ipv − ish = iL

Since vpv = vi n + iLRs and substituting in (20), we can derive:

Iph − I0(e
A(vi n+iLRs ) − 1) −

vi n + iLRs
Rsh

= iL (21)

PV devices have a nonlinear I-V characteristic [31]. Hence the resulting equation to find the input voltage to the boost
converter, vi n , is nonlinear. Equation 21 is an algebraic constraint that causes the overall system to be modelled as a
hybrid-DAE.

It is important to note that in Fig. 1, and the resulting mathematical model, there is no DC-link capacitor between
the PVpanel and the boost converter. A real-world systemwould include this capacitor and the resulting systemwould
be modeled as a set of hybrid ODEs as in [24, 25, 26] and not a set of hybrid-DAEs. The reason for not including the
DC-link capacitor is two-fold:

1. Power systems and microgrids are oftened modeled as a set of DAEs [32]. The inclusion of a switched mode
power supply changes the system model to a set of hybrid-DAEs. An example of this is [33] where a PV panel is
connected to a battery. The battery is modeled as a DAE and hence, the resulting system is a set of hybrid-DAEs.
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There are a variety of different applications and loads where the resulting mathematical model for the entire
system is a set of hybrid-DAEs. Hence, for simplicity without loss of generality, an resistive load is considered
and the DC-link capacitor removed in order to model the system as a set of hybrid-DAE.

2. The work carried out in this paper extends that of [11]. The experimental work in [11] serves to verify the
proposed approach where the DC-link capacitor is not included. Hence, it is not included in this work.

For the boost converter, the switch is closed at the start of the switching period (ON) for a time dT and then
opens and remains open (OFF) for the rest of the switching period i.e. (1 − d )T . The control signal, vcon , is compared
against a ramp signal, vr amp . When vcon = vr amp , the converter switches from ON to OFF. Hence, the switching
manifold is given by h(x , y , t ) = vcon − vr amp = 0 which determines when switching occurs. The state equations for
the boost converter are expressed as:

Û[
iL

vo

]
=


fON (x , y ) Switch is closed

fOF F (x , y ) Switch is open
(22)

where:

fON =

[
1
L vi n

− 1
RC v0

]
fOF F =

[
1
L vi n −

vo
L

1
C iL −

1
RC v0

]

Hence, combining (21) and (22), the equations to model the system illustrated in Fig. 1 gives a nonlinear hybrid DAE:

Û
iL

vo

0

 =



fON (x , y )

gON (x , y )

 Switch is closed


fOF F (x , y )

gOF F (x , y )

 Switch is open

where

gON = gOF F = iL − Iph + I0(e
A(vi n+iLRs ) − 1) +

vi n + iLRs
Rsh

Hence, the differential variables, x , are iL and vo and the algebraic variable, y is vi n .

Unless otherwise stated, the parameters used in this work are as follows:
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TABLE 1 . Parameters of the PV-fed boost converter.

Parameter Value Parameter Value

q 1.6 × 10−19 C L 3.125 × 10−3 H

k 1.38 × 10−23 J/K C 20 × 10−6 F

Te 300 K T 1/10000 s

γ 10 VL 0

Iph 1.0 A VU 1

I0 1 × 10−11 A Kp 2

Rs 0.1 Ω vr ef 5.1 V

Rsh 100 Ω

5.2 | Average current mode control

CMC algorithms for switching power devices can give rise to many issues such as poor noise immunity and peak-
to-average current errors which the low current loop gain cannot correct [34]. Average CMC is a popular method
employed to overcome the limitations of other current sensing techniques. In average CMC, the inductor current is
compared against a reference current to create an error signal. The error signal is then adjusted by a Proportional
Integral (PI) control algorithm to produce a control voltage:

vcon = Kp (Ir ef − iL ) + Ki

∫
(Ir ef − iL ) d t

The control signal is compared against a ramp voltage:

vr amp =VL + (VU −VL ) t modT

where VL is the lower value of the ramp signal and VU is the upper value. Using this control strategy, at the start of
the switching period the switch is open. When the ramp signal is equal to the control signal, the switch is closed and
remains closed for the rest of the switching period. Figure 2 shows a bifurcation diagram with R as the bifurcation
parameter ranging from 40−46 Ω. The system is simulated for 100 switching cycles for each value of R and the output
sampled at the end of each switching cycle. It is clear, that for values of R ≤ 43.5 Ω, the system operates with a stable
period-1 orbit. When R = 44 Ω, the system has exceeded the critical load value and undergoes a period-doubling
bifurcation. The system operates in this unstable region for all values of R ≥ 44 Ω.

Bifurcation diagrams are qualitative tools for assessing the stability of systems. The Filippov method is a quanti-
tative tool that can achieve the same results. As the system is a nonlinear hybrid DAE, we must apply the adapted
Filippov method given by (10) and (12) to find the relevant Saltation matrices. It is important to note that no adapta-
tion to the DAE needs to be made. The equations derived in (10) and (12) can be applied directly to the DAE model
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F IG . 2 . Bifurcation diagram of a PV-fed average CMC boost converter with Ir ef = 0.9 A.

of the system.

f1 =

[
1
L vi n −

vo
L

1
C iL −

1
RC v0

]
f2 =

[
1
L vi n

− 1
RC v0

] nTx

nTy
∂h
∂t

=
[
−Kp 0

]
=

[
0
]

=
[
−1/T

]

g1x = g2x =
[
1 − Rs I0Ae

A(vi n+iLRs ) + Rs
Rsh

0
]

g1y = g2y =
[
AI0e

A(vi n+iLRs ) + 1
Rsh

]
g1t = g2t =

[
0
]

As has been shown in the literature, the integrator is effectively isolated from the rest of the system dynamics. It
introduces an eigenvalue very close to +1 and it does not contribute to the systems stability. It must be ignored when
estimating the stability margin [18]. For these reasons, it has been omitted from the calculation of the Saltation matrix
and transition matrix. It has been included in the simulation as it plays a role in deciding the switching condition.

5.2.1 | Modelling as a DAE

Since nTy = 0, (10) and (12) reduce to:

SΦ = IND +
(f2 − f1)n

T
x

nTx f1 +
∂h
∂t |(x1,y1,t1)

(23)

SΨ = −g
−1
2y g2x +

(
g−12y g2x f1 − g

−1
2y g2x f2

)
nTx

nTx f1 +
∂h
∂t |(x1,y1,t1)

(24)
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The Saltation matrix is found using the above reduced formulae and the transition matrix is numerically calculated by
solving (18) and (19). Since the formulation of the transition matrix and the Saltation matrix are:

ΓON /OF F =

[
ΦON /OF F 0ND×NA

ΨON /OF F 0NA×NA

]

and

S =

[
SΦ 0ND×NA

SΨ 0NA×NA

]
(25)

The Monodromy matrix will take the form:

ΓM =

[
ΦON SΦΦOF F 0ND×NA

ΨON SΨΨOF F 0NA×NA

]

There are ND +NA eigenvalues of this matrix. However, since the last NA columns are zero, there are NA zero eigenval-
ues. The ΨON SΨΨOF F block of the Monodromy matrix does not factor into the calculation of the eigenvalues. Hence,
it is sufficient to only consider the following reduced Monodromy matrix for stability analysis:

ΓR = ΦON SΦΦOF F (26)

Using (23) and (26), the eigenvalues of the Monodromy matrix are determined to be:
[
−0.9979 0.7914

]
for

R = 43.5 Ω and
[
−1.0060 0.7772

]
for R = 44 Ω. It is clear that the eigenvalues of the system move outside the

unit circle across λ = −1 which indicates a period-doubling bifurcation. This matches Fig. 2 and serves to verify the
derived equations.

We will compare the results obtained if the system is assumed to be a 2-dimensional piecewise linear ODE as
opposed to the hybrid DAE approach proposed in this paper.

5.2.2 | Conventional Method

DC-DC converters are systems typically described by:

Ûx = Aj x + B j vi n (27)

where j denotes the different topologies of the DC-DC converter, and AON /OF F are given by the respective fx . The
state transition matrix is given by Φ(t , t0) = eA(t−t0) if the system is LTI. It is important to note that vi n does not appear
in the state transition matrix as, for a LTI system, the input will affect both the perturbed orbit and unperturbed orbit
equally as Bvi n does not depend on the state variables. As shown in Section 5.2.1 ΨON /OF F and SΨ do not have an
effect on the eigenvalues of the Monodromy matrix. It is sufficient to consider ΓR = ΦON SΦΦOF F .

For these reasons, it would be natural to assume that the fluctuations of vi n do not need to be taken into account
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for the state transition matrix and, hence, the Monodromy matrix of a PV-fed boost converter would be given by:

ΓM = eAOF F (1−d )T SΦe
AON dT (28)

where d is the duty cycle and SΦ calculated according to (23). However, for R = 43.5 Ω, (28) yields eigenvalues at
λ1,2 =

[
−1.5393 0.7865

]
. This indicates that the system is unstable. However, according to Fig. 2, it is clear that the

system operates with the desired stable period-1 orbit.

The reason these assumptions are not valid is because the system is modeled as a set of DAEs. It is a nonlinear sys-
tem and cannot be described by (27). The algebraic constraint can cause the perturbation to shrink or grow over time.
Hence, it can have an effect on the stability of the system and this must be taken into account over the entire switching
period. Hence, Φ(t , t0) is not given by e (fx (t−t0)). A far better estimation is given by Φ(t , t0) = e (fx−fy g

−1
y gx )(t−t0).

5.2.3 | Conclusions - CMC-control

TABLE 2 . Eigenvalues of the system for R = 43.5 Ω and R = 34 for two methods of calculating the transition
matrix.

R (Ω) Orbit Φ(t , t0) Eigenvalues, λ

43.5 Stable Numerically from (18) −0.9979, 0.7914

e (fx (t−t0)) −1.5393, 0.7865

44.0 Unstable Numerically from (18) −1.0060, 0.7772

e (fx (t−t0)) −1.7843 0.7725

Table 2 summarises the results of the CMC case-study. From this table it is clear that when the transition matrix
is calculated according to (18), the eigenvalues correctly predict the bifurcation point. Calculating the state transition
matrix according to Φ(t , t0) = e (fx (t−t0)) gives incorrect eigenvalues of the system and the bifurcation point is not
correctly calculated.

The conclusions drawn from this case study are:

• Conventional ODE-based algorithms to calculate the state-transition matrix, and hence the Monodromy matrix,
are not applicable for PV-fed DC-DC converters. As the system is not LTI, the algebraic constraint must be taken
into account.

• While it is important to include the algebraic terms when calculating the transition matrix, the perturbation of the
algebraic variables does not need to be calculated when considering the stability of the system. Hence, SΨ does
not need to be calculated, only SΦ does. For very large simulations, this will reduce the computational burden as
calculating the transition matrix is not trivial and computationally expensive [30].

• If nTy = 0, then the reduced form of the Saltation matrix which closely resembles that widely found in literature
(such as in [18]) can be used.

In the next section, we will find the eigenvalues of the Monodromy matrix for a PV-fed boost converter with
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F IG . 3 . Bifurcation diagram of a PV-fed boost converter operating with an MPPT control algorithm with vr ef = 5.1
V.

MPPT.

5.3 | Maximum power point tracking

MPPT is a technique used to maximise the power extraction of PV panels regardless of the environmental conditions.
As shown in [11], theMPPT algorithm is far more efficient compared to conventional control techniques. Unlike these
conventional techniques, MPPT aims to maximise the output of the PV panel. In this algorithm, the input to the boost
converter, i.e. the output of the PV cell, is compared against a suitable reference voltage, vr ef . The resulting signal,
vcon , is then amplified by a proportional controller, Kp , to create the control signal vcon :

vcon = Kp (vi n − vr ef )

The control signal is then compared to a ramp signal. Thus, the switching surface is given by:

h(x , y , t ) = Kp (vi n − vr ef ) − (VL + (VU −VL ) t modT ) (29)

At the start of the switching period, the switch is closed (ON).When vcon = vr amp , the switch opens (OFF) and remains
open for the rest of the switching period.

Figure 3 illustrates a bifurcation diagram of the PV-fed boost converter with MPPT. It follows a similar pattern
to Fig. 2. For low values of R , the system operates with a stable period-1 orbit. The critical load value is at R ≈ 37 Ω
as the system undergoes a period-doubling bifurcation for values greater than this. A further bifurcation point can be
seen at R = 41.95 Ω.

In order to analytically determine the bifurcation point, we find SΦ , ΦON , and ΦOF F and determine the eigenval-
ues of (26).

f1 =

[
1
L vi n −

vo
L

1
C iL −

1
RC v0

]
f2 =

[
1
L vi n

− 1
RC v0

] nTx

nTy
∂h
∂t

=
[
0 0

]
=

[
kp

]
=

[
−1/T

]
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F IG . 4 . Plot of the output current, iL , showing (a) a stable period-1 orbit for R = 37Ω and (b) an unstable period-2
orbit for R = 37.1Ω.

gx =
[
1 − Rs I0Ae

A(vi n+iLRs ) + Rs
Rsh

0
]

gy =
[
AI0e

A(vi n+iLRs ) + 1
Rsh

]
gt =

[
0
]

The MPPT control algorithm differs from CMC in that the algebraic variable, vi n , is compared against a reference
voltage as opposed to a state variable. Hence, the algebraic variable forms part of the switching manifold in (29) and
nTy , 0. For this reason, the conventional formulation of the Filippov method, shown in (23), cannot be applied. The
resulting eigenvalues of the Monodromy matrix will be incorrect and this may lead to an inaccurate prediction of the
bifurcation points of the system. This case study highlights the relevance and requirement of this work for maximising
the power output of PV solar panels.

Figure 4 shows the time-domain response for the inductor current, iL , with R = 37 Ω and R = 37.1 Ω. It is clear,
that the system operates with the desired period-1 orbit for R = 37 Ω hence, we determine that the system is stable.
An undesirable period-2 orbit can be seen for R = 37.1 Ω hence, the system is deemed to be unstable. The system
loses stability at R ≈ 37.1 Ω. We will now find the eigenvalues for both cases.

In order to find the reduced Monodromy matrix given in (26), we find ΦON and ΦOF F by solving the variational
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TABLE 3 . Eigenvalues of the system for R = 37 Ω and R = 37.1 calculated using both the adapted formula to find
the Saltation matrix and the conventional formula.

R (Ω) Saltation matrix Eigenvalues, λ |λ |

37.0 Adapted method 0.7533, −0.993 0.7533, 0.993

Conventional method 0.8505 ± 0.1436i 0.8624

37.1 Adapted method 0.7390, −1.0514 0.7390, 1.0514

Conventional method 0.8571 ± 0.1249i 0.8662

equation for R = 37 Ω and R = 37.1 Ω.

R = 37 Ω : ΦOF F =

[
0.9221 −0.0120

1.9426 0.9316

]
R = 37.1 Ω : ΦOF F =

[
0.9322 −0.0110

1.6972 0.9423

]

ΦON =

[
0.9107 0

0 0.9246

]
ΦON =

[
0.9112 0

0 0.9177

]

The Saltation matrix is calculated in twomanners. The first uses the adapted method to find SΦ given by (10). The
second method uses the conventional formula to find SΦ that is widely given in literature such as [18]. This method
is equivalent to setting nTy = 0 of (10) as this ignores the effect of the algebraic constraint. The eigenvalues for the
system with R = 37 Ω and R = 37.1 Ω are presented in Table 3.

When R = 37 Ω, using both the adapted method and the conventional method for finding SΦ results in both sets
of eigenvalues being placed inside the unit circle. Both methods indicate that the system is stable and operating with
a period-1 orbit as shown in Fig. 4 (a). However, it is important to note, that the adapted method shows that one of
the eigenvalues is very close to λ = −1. Hence, the system is on the cusp of instability which may result in a period-
doubling bifurcation if any of the system parameters vary. The conventional method places the eigenvalues further
away from the edge of the unit circle. The distance an eigenvalue is from the edge of the unit circle can be used as a
metric to determine the relative stability of a system. This concept is similar to gain and phase margin and can be used
to indicate how far away from the instability the system is. If a control engineer was to interpret the results using
the conventional method, they may believe that the system is robust to noise or parameter variations. However, R
shifting from 37 to 37.1 Ω causes the system to undergo a period-doubling bifurcation. These types of bifurcations can
greatly increase the current ripple and damage the DC-DC converter, the solar panel, or the interconnecting devices.
Hence, the incorrect calculation of λ may lead to designs that damage devices. For this reason, it is imperative that
we employ the correct method for finding the eigenvalues of the Monodromy matrix.

When R = 37.1 Ω, the adapted method for finding SΦ correctly shows that the eigenvalues now lie outside the
unit circle and that the system is unstable. However, the conventional method no longer gives the correct indication
of stability, instead it indicates that the eigenvalues lie inside the unit circle. Figure 4 (b) clearly shows that the system
is operating with a period-2 orbit and hence, is unstable.

This case-study has served to show the importance of considering the effect of the algebraic terms in the calcula-
tion of the Saltation matrix and, hence, the Monodromy matrix. If nTy , 0, the algebraic terms have a significant effect
on the stability of the system. This is due to the fact that they feature in the switching manifold. Furthermore, this
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section has also served to show the simplicity of the proposed approach. While the derivation of the new formulae to
calculate the Saltation matrix is mathematically complicated, its application does not greatly differ from the approach
of applying the standard Filippov method. Hence, the mathematical burden is not greatly increased and the approach
retains the main benefit of the Filippov method which is the simplicity of its application. However, it is important to
note that the transition matrix must be calculated numerically as part of the simulation and cannot be calculated in
isolation unlike the State Transition matrix for equivalent Linear Time-Invariant ODEs.

6 | CONCLUSION

This study, and the available literature discussed in Section 2, has shown that PV-fed DC-DC converters may undergo
bifurcations leading to unstable and undesired outputs. Traditionally, these systems have been modelled as a set of
ODEs where the effect of the algebraic constraint imposed by the PV panel has been neglected during the stability
analysis or an additional state variable has been created through the inclusion of additional input capacitors allowing
the algebraic constraint to be expressed in the form of an ODE.

In this work, we propose modelling the system as a set of DAEs. However, the typical methods for studying DC-
DC converters have been developed aroundmodelling such systems asODEs. Hence, in order to study PV-fedDC-DC
converters modelled as a set of DAEs, we demonstrate how the Filippov method can be adapted accordingly. The
main advantage of the proposed approach is that it is a general method as, regardless of the converter topology or the
number of algebraic constraints, the derived formulae to perform stability analysis can be applied while maintaining
the main benefit of the Filippov method which is the simplicity of its application. This reformulation of the Filippov
method simplifies the analysis as no additional reformulation of the system equations needs to be performed.

We consider two case-studies with the purpose of demonstrating two separate scenarios. In the first, we consider
CMC. In CMC, there is no algebraic term in the switching manifold. Hence, the reformulated formulae to find the
Saltation matrix reduces to the conventional formula for the Filippov method found in the literature. The calculation
of the Saltation matrix can be treated as if it were an ODE. However, since the system is a DAE, it is shown that the
calculation of the transition matrix differs and must be done so numerically.

In the second case-study, we study a PV-fed boost converter with MPPT. It is shown in Section 5.3, since the
algebraic term is present in the switching manifold, the equation to find the Saltation matrix differs to that when the
system is an ODE. It is shown that the application of the derived formula, presented in Section 4.1, retains the main
benefit of the Filippov method which is the simplicity of its application compared to other available methods outlined
in Section 2. The approach was verified through brute-force simulations and experimental results can be seen in [11].

The derived formula for the Saltation matrix can be applied to any PV-fed DC-DC converter modelled as a hybrid
DAE of any index with any number of algebraic constraints nor is it limited to the boost converter. The approach can
be applied to any DC-DC converter, such as the isolated Forward Converter or the transformerless quadratic boost
converter amongst many others, once the system model is a set of hybrid DAEs.
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