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Abstract— This paper presents a detailed comparison between a 

conventional PI controller and a variable structure controller 
based on a fuzzy sliding mode strategy used for speed control in 
direct torque control induction motor drive.  Genetic algorithms 
are used to tune the PI controller gains to ensure optimal 
performance.  The performance of the two controllers are 
investigated and compared for different dynamic operating 
conditions such as of reference speed and for load torque step 
changes at nominal parameters and in the presence of parameter 
variation and imprecision.  Results show that the PI controller has 
better performance for nominal operating conditions while the 
fuzzy sliding mode is more robust against parameter variation 
and uncertainty, and is less sensitive to external load torque 
disturbances with a fast dynamic response.   

  
Index Terms—Direct Torque Control, Fuzzy Logic, Genetic 

Algorithms, Induction motor, Sliding mode control  
 

I. INTRODUCTION 

Design of the speed controller greatly affects the 
performance of an electric drive.  PI speed controllers are 
widely used in industrial applications due to their simple 
structure.  However, because of the continuous variation of 
machine parameters, model uncertainties, nonlinear dynamics 
and system external disturbances, fixed-gain PI controllers may 
become unable to provide the required control performance [1], 
[2].  Therefore, continuous adaptation of the controller 
parameters becomes desirable when high performance is 
required from the drive system [1], [3].  Genetic Algorithms 
(GA) are adaptive search techniques based on a “survival of the 
fittest” biological concept.  They can yield an efficient and 
effective way for optimization applications by searching for a 
global minimum without needing the derivative of a cost 
function [4], [7].  Therefore, GA can be applied in tuning the 
gains of PI controller to ensure optimal control performance at 
nominal operating conditions.  However, another solution to 
the problem is to entirely replace the PI controller by adaptive 
control structures such as Model Reference Adaptive Control 
(MRAC), Sliding Mode Control (SMC), self tuning and 
Artificial Intelligence schemes [1].  The majority of these 

designs have been successfully applied to vector control 
induction motor drives.   
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Among these different proposed designs, the sliding mode 
control strategy has shown robustness against motor parameter 
uncertainties and unmodelled dynamics, insensitivity to 
external load disturbance, stability and a fast dynamic response 
[2], [4], [5].  Hence it is found to be very effective in controlling 
electric drives systems.  Large torque chattering at steady state 
may be considered as the main drawback for such a control 
scheme [2].  One way to improve sliding mode controller 
performance is to combine it with Fuzzy Logic (FL) to form a 
Fuzzy Sliding Mode (FSM) controller [6]. 

The purpose of this paper is to provide a comprehensive 
analysis and detailed comparison between a FSM speed 
controller and a GA optimized PI controller in terms of 
robustness, disturbance rejection capability, sensitivity to stator 
resistance variation and uncertainty in motor inertia.  The 
comparison is carried out based on assigning a performance 
index in terms of speed error to provide a numerical 
comparison of their performances when applied to a Direct 
Torque Control (DTC) induction motor drive.  A modified 
sliding mode control law is derived based on Lyapunov theory 
for the electromagnetic torque demand to ensure system 
stability.  The effectiveness of this control strategy is 
demonstrated through tests at different dynamic operating 
conditions. 

This paper is organized as follows.  In section II, the DTC 
strategy for induction motor control is described.  Section III 
describes how GA can be applied in tuning the PI controller 
gains.  In section IV, the detailed derivation of the sliding mode 
speed control law based on Lyapunov theory is presented.  In 
section V, simulation results are presented.  Conclusions are 
then summarized in the last section.   

II. DTC STRATEGY 
Recently there has been a fast growth in industrial 

applications of the DTC technique.  This is due to its quick 
torque response, simplicity and less sensitivity against motor 
parameter variation.  Compared with a vector control scheme, 
DTC provides a similar dynamic performance with a simpler 
controller architecture [3].  However, DTC is characterized by 
higher torque ripple compared to vector control in addition to 
its sensitivity to stator resistance variation.  The basic block 
diagram representation of the direct torque control of 
three-phase induction motors with a speed control loop is 
shown in Fig.1 [3]. 



 
 

 

In principle, DTC is a direct hysteresis stator flux and 
electromagnetic torque control which triggers one of the eight 
available discrete space voltage vectors generated by a Voltage 
Source Inverter (VSI) in order to keep stator flux and motor 
torque within the limits of two hysteresis bands [3].  The correct 
application of this principle allows a decoupled control of flux 
and torque.  Basically, the status of the errors of stator flux 
magnitude |ψs| and electromechanical torque Te are detected 
and digitalized by simple two- and three-level hysteresis 
comparators.  An optimum switching table is then used to 
determine the status of three switches S1, S2, S3 and the 
corresponding voltage space vector vi  depending on the stator 
flux region (θs).  The stator flux position (θs) is determined by 
dividing the d-q plane into six 600 regions.  Simple three sign 
detectors are used to determine the sector where the stator flux 
exists.   
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Fig. 1 Block diagram of direct torque control 

 
The primary space voltage vector of the PWM inverter vs 

can be expressed in terms of the inverter switching states S1, S2, 
S3 and the DC link voltage V as: 
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where vsd and vsq are the d-axis and q-axis stator voltage 
components in the stationary reference frame.   

The stator flux and the electromagnetic torque can be 
represented by [3]: 

( dtiRv sdssdsd ∫ −=ψ )                                                     (2)  

( )dtiRv sqssqsq ∫ −=ψ                                 (3)  
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2
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where isd, isq, ψsd and ψsq are the d-axis and q-axis stator current 
and flux linkage components in the stationary reference frame.    

If the drive contains a speed control loop, then the reference 
speed input is compared with the actual motor speed and the 
speed error is fed to a speed controller.  The output of the speed 
controller is the reference electromagnetic toque.   

III. GENETIC ALGORITHMS 
GA is a stochastic global adaptive search optimization 

technique based on the mechanisms of natural selection.  
Recently, GA has been recognized as an effective and efficient 
technique to solve optimization problems.  Compared with 
other optimization techniques, such as simulating annealing 

and random search method techniques, GA is superior in 
avoiding local minima which is a common aspect of nonlinear 
systems.  Furthermore, GA is a derivative-free optimization 
technique which makes it more attractive for applications that 
involve non smooth or noisy signals.  GA starts with an initial 
population containing a number of chromosomes where each 
one represents a solution of the problem which performance is 
evaluated by a fitness function.  Basically, GA consists of three 
main stages: Selection, Crossover and Mutation.  The 
application of these three basic operations allows the creation 
of new individuals which may be better than their parents.  This 
algorithm is repeated for many generations and finally stops 
when reaching individuals that represent the optimum solution 
to the problem [4], [7].  The GA architecture is shown in Fig.2.   

 

 
Fig. 2 Genetic Algorithm Architecture  

 
Due to its effectiveness in searching nonlinear, 

multi-dimensional search spaces, GA can be applied to the 
tuning of PI speed controller gains to ensure optimal control 
performance at nominal operating conditions.  The genetic 
algorithm parameters chosen for the tuning purpose are shown 
in Table I.   

Table I 
Genetic algorithm parameters 

GA property Value/ Method GA property Value/ Method 

Number of 
generations 10 Selection 

method 

Stochastic 
Universal 
Selection (SUS) 

No of 
chromosomes 
in each 
generation 

8 Crossover 
method Double-point 

No of genes in 
each 
chromosome  

2 Crossover 
probability 0.7 

Chromosome 
length 40 bit Mutation rate 0.05 



 
 

 

The cost function used to evaluate the individuals of each 
generation can be chosen to be the Integral Time of Absolute 
Error (ITAE).  The mathematical expression of this cost 
function can be written as: 

( ) dttetITAE
t
∫=
0

                                               (5) 

During the search process GA looks for the optimal setting 
of the PI speed controller gains which minimizes the cost 
function (ITAE).  This function is considered as the GA's 
evolution criterion which has the advantage of avoiding 
cancellation of positive and negative errors.  Each chromosome 
represents a solution of the problem and hence it consists of two 
genes: the first one is the Kp value and the other one is the Ki 
value: so the chromosome vector is [Kp Ki] where the range of 
each gain must be specified.   

IV. FUZZY SLIDING MODE CONTROLLER 
SMC is considered as an effective and robust control 

strategy.  It is mainly a Variable Structure Control (VSC) with 
high frequency discontinuous control action which switches 
between several functions depending on the system states.  This 
forces the states of the system to slide on a predefined 
hypersurface.  The plant states are mapped into a control 
surface using different continuous functions and the 
discontinuous control action switches between these several 
functions according to plant state value at each instant to 
achieve the desired trajectory.  SMC is known for its capability 
to cope with bounded disturbance as well as model imprecision 
which makes it ideal for the robust nonlinear control of 
induction motor drives [8], [9].  To design a sliding mode speed 
controller for the induction motor DTC drive, consider the 
mechanical equation: 
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where ω is the rotor speed in electrical rad/s, rearranging to get: 
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Considering ∆a and ∆b as bounded uncertainties introduced by 
system parameters J and B, (7) can be rewritten as [10]:  

( ) ( ) Le cTTbbaa +∆++∆+= ωω&                                           (8) 

where: 
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Defining the state variable of the speed error as: 

( ) ( ) ( )ttte *ωω −=                                                                       (9) 

Combining (8) with (9) and taking the derivative of (9) yields: 

( ) ( ) ( ) ( ){ }tdtTbtaete e ++=&                                                      (10) 

where d(t) is the lumped uncertainty defined as: 
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and 
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Defining a switching surface s(t) from the nominal values of 
system parameters a and b [5], [10]: 
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t
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Such that the error dynamics at the sliding surface ( ) ( ) 0== tsts &  
will be forced to exponentially decay to zero, then the error 
dynamics can be described by:    

( ) ( ) ( )tebkate +=&                                                                   (14) 
where k is a linear negative feedback gain [10]. 
A speed control law can be defined as: 

( ) ( )( )tstkeTe sgnβ−=                                                            (15) 

where β is known as hitting control gain used to make the 
sliding mode condition possible and the sign function can be 
defined as [6]: 
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The final electromagnetic torque command Te
* of the output 

of the sliding mode speed controller can be obtained by directly 
substituting (15) into (12). 

Basically, the control law for Te
* is divided into two parts: 

equivalent control ueq which defines the control action when the 
system is on the sliding mode and switching part us which 
ensures the existence condition of the sliding mode.  If the 
friction B is neglected, expressions for ueq and us can be written 
as:   

( ) ( )( )tsutkeu seq sgn; β−==                                                 (17) 

To guarantee the existence of the switching surface consider a 
Lyapunov function [6]: 

( ) ( )tstv 2
2
1

=                                                                           (18) 

Based on Lyapunov theory, if the function ( )tv&  is negative 
definite, this will ensure that the system trajectory will be 
driven and attracted toward the sliding surface s(t) and once 
reached, it will remain sliding on it until the origin is reached 
asymptotically [6].  Taking the derivative of (18) and 
substituting from the derivative of (13): 
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Substitute from (10) into (19): 

( ) ( ) ( ) ( ) ( ) ( ){ }tbketbdtTbtststs e −+⋅=⋅ &                                   (20) 

Using (15), gives: 

( ) ( ) ( ) ( ) ( )( ){ } 0sgn ≤−−⋅=⋅ tdsbtststs β&                                   (21) 



 
 

 

To ensure that (21) will be always negative definite, the 
value of the hitting control gain β should be designed as the 
upper bound of the lumped uncertainties d(t), i.e.   

( )td≥β                      (22) 
However, it is difficult practically to estimate the bound of 

uncertainties in (11).  Therefore the hitting control gain β has to 
be chosen large enough to overcome the effect of any external 
disturbance [5], [6].  Therefore the speed control law defined in 
(15) will guarantee the existence of the switching surface s(t) in 
(13) and when the error function e(t) reaches the sliding 
surface, the system dynamics will be governed by (14) which is 
always stable [10].  Moreover, the control system will be 
insensitive to the uncertainties ∆a , ∆b and the load disturbance 
TL [10]. 

The use of the sign function in the sliding mode control (15) 
will cause high frequency chattering due to the discontinuous 
control action which represents a severe problem when the 
system state is close to the sliding surface [6].  To overcome 
this problem a boundary layer Φ is introduced around the 
switching surface and the sign function (16) will be replaced by 
a saturation function sat(s /Φ) [6].  The choice of Φ is crucial; 
small values of Φ may not solve the chattering problem and 
large values may  increase the steady state error [6], requiring a 
compromise choice when selecting the boundary layer 
thickness.   

Another approach to reduce the chattering phenomenon is 
to combine FL with a SMC [6].  Hence a new Fuzzy Sliding 
Mode (FSM) controller is formed with the robustness of SMC 
and the smoothness of FL.  The switching functions of sliding 
mode and FSM schemes are shown in Fig. 3.  In this technique 
the saturation function is replaced by a fuzzy inference system 
to smooth the control action.  The block diagram of the hybrid 
fuzzy sliding mode controller is shown in Fig. 4.   

 
                    (a)                                            (b) 

Fig. 3 Switching functions (a) Sliding mode (b) Fuzzy 
sliding mode 

 
The If-Then rules of the fuzzy logic controller can be 

written as [6]: 
If s is BN then us is BIGGER 
If s is MN then us is BIG 
If s is JZ then us is MEDIUM 
If s is MP then us is SMALL 
If s is BP then us is SMALLER 

V. SIMULATION RESULTS AND DISCUSSION 
To compare the two speed controller design strategies, 

PI-GA and FSM, a DTC of a 7.5 kW squirrel cage induction 
motor shown in Fig. 1 is simulated using Matlab-Simulink 
software.  The parameters of each controller are: 

PI-GA: Using the GA parameters given in Table I, the optimal 
PI controller gains at 50 rad/s electric speed command and 25% 
rated torque applied to the motor during the tuning process are 
found to be Kp = 127, Ki = 4. 
FSM: The controller coefficients used in the simulation are: k 
=-2.3e-4, β = 100.  The membership functions for the input and 
output of the FL controller are obtained by trial error to ensure 
optimal performance and are shown in Fig.5.   

To examine the disturbance rejection capability of both 
schemes, a step change in the load torque from 25% to 75% of 
its rated value is applied at t=2s when the motor is running at 
100 rad/s.  When the load torque change is applied, PI-GA 
shows a poor disturbance rejection capability with a steady 
state error of 0.13% while FSM exhibits insensitivity to sudden 
load change.  The response of the two schemes is shown in 
Fig.6.   

 
Fig. 4 Fuzzy sliding mode speed controller 

 
(a)                                           (b) 

Fig. 5 Fuzzy logic membership functions (a) input (b) output  
 

To study the effect of electric parameter variation on the 
performance of both controllers, the drive is run with a 50 rad/s 
speed command, 25% rated torque and nominal machine 
parameters, at t=1s a 50% step increase in the motor stator 
resistance Rs is applied.  The sensitivity of stator resistance is 
investigated because its variation greatly affects the 
performance of the DTC drive.  The response of the two 
schemes is shown in Fig.7 where PI-GA shows oscillations 
with a negligible steady state error while FSM proves less 
sensitivity to Rs variation.  However, the steady state speed 
obtained from FSM has more ripples around the command 
speed 50 rad/s.   
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Fig. 6 Load torque disturbance rejection at 100 rad/s 
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Fig. 7 Sensitivity to Rs variation (a) PI-GA (b) FSM 
 
Figure 8 shows the speed response obtained from both 

schemes with uncertainty in the motor inertia J.  The nominal 
value of J is used in the FSM controller.  It is clear that the 
steady state error in the motor speed increases as the percentage 
uncertainty increases in PI-GA scheme.  The steady state error 
with 100% uncertainty is 0.14%.  By contrast the FSM scheme 
is insensitive to motor inertia uncertainty due to the proper 
choice of β in (22).   
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Fig. 8 Speed responses with J uncertainty (a) PI-GA (b) FSM 

To study the drive performance with a change in the 
command speed with nominal and uncertain parameters, a 
speed reference step change from 50 rad/s to 200 rad/s at 25% 
rated load and nominal parameters is applied to the drive at 
t=1s.  The response of both schemes is shown in Fig. 9.  FSM 
shows faster response and the motor speed reaches the 
command in 0.125s with a negligible steady state error while 
the PI-GA scheme shows slower response (0.16s) with 0.175% 
steady state error.  The switching function s(t) in (13) is shown 
in Fig. 10.  When the speed command changes, the speed error 
initially drops to a big negative value and as long as (21) is 
negative definite, it will be attracted to the sliding surface s=0 
and when reaches it, the error dynamics will slide on this 
switching surface.   

Another test is performed by applying a speed reversal 
command from 50 rad/s to -50 rad/s at 25% rated load with 
50% uncertainty in motor inertia J.  As shown in Fig. 11, FSM 
still shows faster dynamics and reaches the command speed in 
0.1s with negligible steady state error compared with 0.18s and 
0.44% steady state error for PI-GA scheme.   
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Fig. 9 Speed Response with step change in speed demand  
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Fig. 10 Switching surface of FSM scheme 
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Fig. 11 Speed Response with speed reversal demand 



 
 

 

 
During normal operating conditions when the drive is 

running at 50 rad/s speed command, 25% rated torque and 
nominal machine parameters, PI-GA shows less ITAE 
compared to FSM since it uses the optimal controller gains for 
normal operating conditions.  However, if the drive runs at a 
speed command of 100 rad/s at nominal parameters and 25% 
rated load, the speed response obtained from PI-GA scheme 
shows higher ITAE with 0.2% steady state error compared with 
a negligible one from FSM scheme.  This is because the PI 
gains are optimized at 50 rad/s.  The simulation results are 
summarized in Table II.   

Table II 
Comparison between controllers at different operating conditions 

  

VI. CONCLUSION 
In this paper a detailed comparison between GA optimized PI 
and FSM speed controllers is presented.  A modified control 
law for the electromagnetic torque command is derived for 
DTC drive based on Lyapunov theory for FSM control.  PI-GA 
shows better performance at nominal operating conditions 
while FSM proves robustness against stator resistance 
variation, uncertainty in motor inertia and insensitivity to load 
torque disturbance as well as faster dynamics with negligible 
steady state error at all dynamic operating conditions.   

   
APPENDIX 

 
MOTOR PARAMETERS 

  
PI-GA 

 
FSM 

 
50 rad/s reference 
speed at Nominal 

parameters and 25% 
rated load torque 

ITAE = 0.08165 ITAE = 0.09514 

 
100 rad/s reference 

speed at Nominal 
parameters.  Step load 

torque from 25% to 
75% rated load applied 

at t=2sec 
 

ITAE = 0.32 
Steady state error 

0.13% 

 
ITAE = 0.229 
Insensitive to 

external load torque 
disturbance 

50 rad/s reference 
speed and 25% rated 

load torque.  Step 
increase in Rs to 150% 

of its nominal value 
applied at t=1sec 

ITAE = 0.01182 ITAE = 0.04266 

 
100 rad/s reference 
speed at Nominal 

parameters and 25% 
rated load torque 

ITAE = 0.6061 
0.2% Steady state 

error 

ITAE = 0.5199 
Negligible steady 

state error 

 
50 rad/s reference 
speed at 25% rated 
load applied with 

100% uncertainty in 
motor inertia (J) 

 

 
ITAE = 0.3258 

0.14% Steady state 
error  

 
ITAE = 0.3025 

Negligible steady 
state error 

Speed reference 
change from 50 rad/s 
to 200 rad/s at  25% 

rated load and 
Nominal parameters 

 
ITAE = 12.78 

0.175%   Steady state 
error at 200rad/s  
Slower response 

(0.16s)  

 
ITAE = 9.49 

Negligible steady 
state error 

 
Faster response 

(0.125s)  
Speed reversal from 50 
rad/s to -50 rad/s at  
25% rated load  with 
50% uncertainty in 
motor inertia (J) 

 

 
ITAE = 9.45 

0.44%   Steady state 
error at -50 rad/s 
Slower response 

(0.18s)  

 
ITAE = 5.28 

Negligible steady 
state error  

Faster response 
(0.1s)  

7.5 kW, 3-phase, 220V, 60 Hz, P = 4, Rs = 0.15 Ω, Rr = 0.17 Ω, 
Ls = 0.035 H, Lr = 0.035 H, Lm = 0.0338 H, J = 0.14 Kg.  m2  
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