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Abstract: The performance of a stator current-based model reference adaptive systems (MRAS) speed estimator for sensorless
induction motor drives is investigated in this study. The measured stator currents are used as a reference model for the MRAS
observer to avoid the use of a pure integrator. A two-layer, online-trained neural network stator current observer is used as the
adaptive model for the MRAS estimator which requires the rotor flux information. This can be obtained from the voltage or
current models, but instability and dc drift can downgrade the overall observer performance. To overcome these problems of
rotor flux estimation, an off-line trained multilayer feed-forward neural network is proposed here as a rotor flux observer.
Hence, two networks are employed: the first is online trained for stator current estimation and the second is off-line trained
for rotor flux estimation. Sensorless operation for the proposed MRAS scheme using current model and neural network rotor
flux observers are investigated based on a set of experimental tests in the low-speed region. Using a neural network rotor flux
observer to replace the current model is shown to solve the stability problem in the low-speed regenerating mode of operation.
1 Introduction

Sensorless vector controlled induction motor (IM) drives are
being vigorously developed for high-performance industrial
drive systems. Sensorless drives have been successfully
applied in medium and high-speed regions, but low and
zero speed operation is still a critical problem especially for
IM drives [1, 2]. Numerous strategies have been described
in the literature for rotor speed estimation in such drives [1,
3]. In general, these methods fall into two main categories:
fundamental excitation and spectral analysis techniques [1, 4].
Fundamental model-based techniques for rotor speed

estimation of IM drives make use of the instantaneous
values of stator voltages and currents to estimate the flux
linkage and the motor speed or position. These methods
usually utilise a d–q model to describe the machine
equations by assuming sinusoidal flux distribution and
neglecting space harmonics [1]. These schemes usually
work well above 2% of the base speed [1].
Model-based estimation strategies include open-loop

estimators [3], observer-based schemes [5], sliding-mode
observers [6–8], extended and unscented Kalman filters [9,
10], model reference adaptive systems (MRAS) [4, 11–14]
and artificial intelligence (AI)-based methods [3, 15].
Recent work uses predictive current control for sensorless
IM drives [16]. MRAS observers are well-established
sensorless techniques that have attracted much attention
because of their simplicity and direct physical
interpretation. Various MRAS schemes have been proposed
in the literature based on rotor flux [11], back electromotive
force [12, 13], active or reactive power [13, 15] and stator
current [14]. Improving the performance of these schemes
at very low speed still remains challenging. The stability
problem in the regenerating operation at low speed is
another issue for sensorless IM drives. This problem has
been extensively reported [4, 15, 17, 18].
AI techniques, especially neural networks (NNs), have

been widely employed in various applications in the past
two decades [19]. Various NN-based techniques have been
successfully applied to sensorless drives [15, 20–26].
A sensorless full-order speed adaptive flux observer was

originally proposed by Kubota et al. [5] based on adaptive
control theory. This observer uses the stator-current error in
speed estimation and does not suffer from drifting problems
except if the gains are poorly selected. The adaptation
mechanism is derived using Lyapunov’s theorem and was
shown to be based on a combination of the rotor flux vector
and the stator-current vector error. Compared with a
stator-current error-based MRAS estimator, the adaptive
flux observer [5] needs more effort in the design stage to
choose the adaptation loop parameters in addition to the
gain matrix parameters [14].
However, as shown by Suwankawin and Sangwongwanich

[27], stability problems at low speeds in the regenerating
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mode may appear when using the scheme proposed in [5]
unless the gains are properly selected or unless the
adaptation law is modified. A general stabilising gain for
this observer was derived in [28]. The present paper
introduces another approach based on NNs to solve the
instability problems at low speed and during regeneration.
A stator-current MRAS scheme has been recently

introduced by the authors for rotor speed identification of
IM drives [29]. That was a modification of the stator
resistance estimation system presented in [22]. In this
scheme, the reference model comprises of the measured
stator current components. This makes the reference model
free of pure integration problems and insensitive to motor
parameter variations. A two-layer linear NN stator current
observer is used as an adaptive model where the rotor speed
is one of the NN weights. A back-propagation learning
algorithm is used to train the NN online to update the value
of rotor speed so as to minimise the error between the
measured and estimated currents [29].
Rotor flux is needed for stator current estimation in the

adaptive model and conventionally either a voltage model
(VM) [30] or a current model (CM) flux observer [22] has
been employed. However, as described in [29, 31], the use
of a CM gives instability in the regeneration. Furthermore,
a VM is not suitable for low-speed applications. Therefore
an off-line trained multilayer feed-forward NN is proposed
in this paper to solve the flux estimation problem. By using
this NN, flux estimation is independent of rotor speed and
does not require the use of pure integration.
Early simulation results given in [29] clearly showed

superior results when employing the NN flux observer in
terms of stator resistance sensitivity and stability over the
whole speed control range. The instability behaviour of the
scheme in regeneration when using a CM flux observer was
experimentally validated in [31] using only encoded results.
The purpose of this paper is to experimentally investigate

the performance of the stator-current MRAS scheme based
on two different flux estimation topologies, CM and NN, in
sensorless mode of operation.
The proposed stator-current MRAS schemes using CM and

NN flux observers are experimentally validated based on a set
of benchmark experimental tests using a 7.5 kW vector
controlled IM drive. In this paper, sensorless mode of
operation is considered when the drive is running both at
low speed and in the regenerating mode.
Experimental results show the great improvement in

low-speed operation performance using the proposed
MRAS speed estimator which employs NN flux observer
especially for regeneration. Sensorless results also confirm
the instability problem in speed estimation when employing
the CM for flux estimation in the regenerating-mode
low-speed region of operation.
2 NN stator-current MRAS observer

For the stator-current MRAS observer the reference model
will consist of the measured stator currents [22, 29], and
hence the IM itself works as a reference model. This has
the advantages of avoiding pure integration and the
estimator is less parameter sensitive. A stator current
observer can be represented by a linear two-layer NN with
the motor speed expressed as one of its weights. A
back-propagation learning algorithm is used to minimise the
error in current estimation and hence in generating the
estimated speed.
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The rotor flux of the induction machine can be expressed
either based on stator or rotor equations.
The VM flux estimator is based on the stator equation,

which estimates the rotor flux in the stationary reference
frame from the monitored stator voltages and currents [3]

pcra = Lr
Lm

vsa − Rsisa − sLspisa
{ }

(1)

pcrb = Lr
Lm

vsb − Rsisb − sLspisb

{ }
(2)

The CM is also used to obtain the rotor flux components in
the stationary reference frame based on the rotor equations
as [3]

pĉra = Lm
Tr

isa −
1

Tr
ĉra − v̂rĉrb (3)

pĉrb = Lm
Tr

isb −
1

Tr
ĉrb + v̂rĉra (4)

The stator equations in the stationary reference frame can be
written as

sLspisa = vsa − Rsisa −
Lm
Lr

pcra (5)

sLspisb = vsb − Rsisb −
Lm
Lr

pcrb (6)

where σ is the leakage coefficient given by

s = 1− L2m
LsLr

(7)

Substituting the rotor (3) and (4) into (5) and (6) yields

sLspisa = vsa − Rsisa

− Lm
Lr

− 1

Tr
ĉra − v̂rĉrb +

Lm
Tr

isa

{ }
(8)

sLspisb = vsb − Rsisb

− Lm
Lr

− 1

Tr
ĉrb + v̂rĉra +

Lm
Tr

isb

{ }
(9)

Hence, the stator current equations in the stationary reference
frame can be written as

sLspisa = vsa − Rsisa +
Lm
LrTr

ĉra +
Lm
Lr

v̂rĉrb −
L2m
LrTr

isa

(10)

sLspisb = vsb − Rsisb +
Lm
LrTr

ĉrb −
Lm
Lr

v̂rĉra −
L2m
LrTr

isb

(11)

Equations (10) and (11) can be used to represent the stator
current observer. The discrete form of these equations can
IET Electr. Power Appl., 2013, Vol. 7, Iss. 7, pp. 597–606
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Fig. 1 NN-based stator current observer discrete representation

a α-axis
b β-axis
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be obtained by using the backward difference method as [2]

pîsa = îsa(k)− îsa(k − 1)

T
(12)

pîsb = îsb(k)− îsb(k − 1)

T
(13)

where T is the sampling time. Substituting (12) and (13) into
(10) and (11) yields

îsa(k) = 1− TRs

sLs
− TL2m

sLsLrTr

{ }
îsa(k − 1)

+ TLm
sLsLrTr

ĉra(k − 1)

+ TLm
sLsLr

v̂rĉrb(k − 1)+ T

sLs
vsa(k − 1) (14)

îsb(k) = 1− TRs

sLs
− TL2m

sLsLrTr

{ }
îsb(k − 1)

+ TLm
sLsLrTr

ĉrb(k − 1)

− TLm
sLsLr

v̂rĉra(k − 1)+ T

sLs
vsb(k − 1) (15)

Hence, the stator current equations of the induction machine
can be written as [22, 29, 30]

îsa(k) = w1 îsa(k − 1)+ w2ĉra(k − 1)

+ w3ĉrb(k − 1)+ w4vsa(k − 1)

îsb(k) = w1 îsb(k − 1)+ w2ĉrb(k − 1)

− w3ĉra(k − 1)+ w4vsb(k − 1)

(16)

where

w1 = 1− TRs

sLs
− TL2m

sLsLrTr
; w2 =

TLm
sLsLrTr

;

w3 =
TLm
sLsLr

v̂r; w4 =
T

sLs
(17)

where T is the sampling time for the stator current observer.
Equation (16) can be represented by a two-layer linear NN

with weights as defined in (17) as shown in Fig. 1. This NN
will represent the adaptive model for the stator-current MRAS
scheme wherew3, which contains the rotor speed information,
is adjusted online in such a way as to minimise the error
between actual and estimated currents [29].
To derive the weight adjustment law of the NN stator

current observer, define the energy function E to be
minimised

E = 1

2
12(k) (18)

where

1(k) = is(k)− îs(k) = isa(k)− îsa(k) isb(k)− îsb(k)
[ ]T

= 1a(k) 1b(k)
[ ]T

(19)
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To obtain a minimum squared error between actual and
estimated stator current, the weight adjustment has to be
proportional to the negative of the error gradient with
respect to the weight as

Dw3 /− ∂E

∂w3
(20)

The weight adjustment law can be written as

Dw3(k) = −h
∂E

∂w3

= h 1a(k)ĉrb(k − 1)− 1b(k)ĉra(k − 1)
{ }

(21)

where η is a positive constant called the learning rate. Large
values of η may accelerate the NN learning and
consequently fast convergence, but may cause oscillations
in network output whereas low values will cause slow
convergence. Therefore the value of η has to be chosen
carefully to avoid instability.
The new weight can be written as

w3(k) = w3(k − 1)+ Dw3(k) (22)

To ensure accelerated convergence, the last weight change is
added to the weight update as [3]

w3(k) = w3(k − 1)+ Dw3(k)+ aDw3(k − 1) (23)

where α is a positive constant called the momentum constant.
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Fig. 2 NN-based stator-current MRAS speed observer using CM
flux observer

Fig. 3 NN stator-current MRAS speed estimation performance in
the regenerating mode using CM flux observer; simulation

Fig. 4 NN rotor flux observer
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The motor speed can be estimated from the weight w3 as

v̂r(k) =
sLsLr
TLm

w3(k) (24)

It must be noted here that a similar approach was described in
[30] using the VM for the rotor flux estimation. However, as
will be described later, many problems are associated with
using such model especially at low speed. In this paper,
two other rotor flux estimators, based on CM and NN, will
be employed and compared when the sensorless drive is
operating at low speed and during regeneration.

3 Rotor flux estimation problem

Since rotor flux estimation is required for the stator-current
MRAS scheme as shown in (16), a VM and CM flux
observers can be used.
The VM was used in [30] for rotor flux estimation.

However, the main drawback associated with VM
implementation is the use of a pure integration which can
cause dc drift, sensitivity to machine parameter variation,
accurate stator voltage and current acquisition. These
problems are not investigated in [30] and no low-speed
results were shown especially during regeneration. Hence,
the VM is unsuitable for low-speed operation.
The CM can also be used to avoid these problems. As given

in (3) and (4) this model gives the rotor flux components in
terms of stator current components and the rotor speed.
The block diagram of the NN-based stator-current MRAS

scheme using a CM rotor flux observer is shown in Fig. 2.
Since rotor flux estimation using a CM depends on the

estimated speed, any deterioration in speed estimation is fed
back to the flux observer causing instability in the
regenerating mode of operation. Deterioration of rotor flux
estimation affects the stator current tracking causing
instability of the speed estimation using the CM flux
observer. Simulation results showing this unstable
behaviour are obtained when the drive is subjected to a
speed reversal command from 40 to − 40 rpm at 25% load
torque with nominal machine parameters. The speed
estimation performance of the stator-current MRAS scheme
using the CM rotor flux observer is shown in Fig. 3.
To overcome this problem another approach for rotor flux

estimation is proposed here which uses an off-line trained
NN. To estimate the rotor flux components in the stationary
reference frame, a multilayer feed-forward NN [26] can be
used.
This network is an 8-25-2 multilayer feed-forward NN as

shown in Fig. 4. The number of neurons in the hidden layer
is chosen by a trial and error technique. The inputs to the
network are the present and past values of the α–β
components of the stator voltage and current in the
stationary reference frame. The output layer of the NN
consists of two neurons representing the rotor flux
components in the stationary reference frame. Since the
case is approximating a non-linear function with bipolar
input/output pattern, hyperbolic tangent (Tan-Sigmoid)
activation functions is used in both hidden and output
layers. Training data were obtained based on experimental
data by running the encoded vector drive in the low-speed
region (100 to −100 rpm) including zero speed at different
load levels ranging from 0 to 25% of the rated load [26].
Hence, an NN, which is suitable for general purpose IM
drives applications, is developed which focuses on the
600
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behaviour at relatively light load. This suits low speed, low
torque applications such as fans, centrifugal pumps and
blowers. Small and large references speed changes were
applied to the drive during the training phase to include all
the possible operating conditions.
The reference vector control stator voltages and measured

stator currents are transformed from three phase (a, b, c) to
two phase (α, β) for the NN training data. A low pass filter
IET Electr. Power Appl., 2013, Vol. 7, Iss. 7, pp. 597–606
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Fig. 5 NN observer simulation testing

No-load
a Rs 50% variation
b Rr 50% variation
25% load
c Rs 25% variation
d Rr 25% variation

Fig. 6 NN-based stator-current MRAS speed observer with NN
flux observer
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(LPF) with 40 rad/s cut-off frequency was used to remove
drift and noise from the reference stator voltage signals.
The present and past samples of filtered stator voltages and
stator currents components are obtained, which will be used
as inputs to the NN model.
The outputs from the CM, which are obtained from stator

currents components and encoder speed, are used as target
values for the NN. This is an effective way to obtain the
correct values of the rotor flux, since the obtained signals
are relatively noise and harmonic-free including all the
drive non-linearities. Moreover, the CM flux observer
produces accurate flux estimation at low speed.
Since the measurements are generated at different scales for

voltage, current and flux, scaling of the data variables is
necessary to increase the numerical stability of the data
processing. Furthermore, the scaling level is determined by
the type of activation function being used. With hyperbolic
tangent sigmoid function used in the hidden layer of the
NN, training data have to be normalised to lie in the range
between − 1 and 1. The training is performed off-line with
Matlab-Simulink using the Levenberg–Marquardt training
algorithm. A 5000 input/output pattern was used to train the
NN. After the training the mean squared error (MSE)
between targets and NN outputs decays to a satisfactory
level (4.5 × 10− 4) after about 2200 epochs.
The NN observer is best trained on the actual motor and

inverter used, but in mass production this may not be
practical. If the drive is designed as a single unit, then the
NN observer would only have to cope with any parameter
variations, which occur during the production run. Some
further tolerance could be built-in by training on a range of
motors.
IET Electr. Power Appl., 2013, Vol. 7, Iss. 7, pp. 597–606
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This is a disadvantage of the proposed method, which
would become more marked where an integrated drive is
not feasible. Maybe a single inverter controller is to be used
with a range of motor ratings. If a single training session
were used then the performance of the NN observer would
be poorer at extremes of the range of sizes. One
compromise would be to train the observer on a number of
motors. Then, during commissioning select using the
motor’s nameplate rating the particular set of NN
parameters deployed.
The proposed NN flux observer is trained to match the

performance of the CM, which is free from stator resistance
601
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Fig. 7 NN stator-current MRAS speed estimation performance in
the regenerating mode using NN flux observer; simulation

Fig. 8 Experimental system platform

Fig. 9 Sensorless performance for test 1, 12.5% load

Speed response
a and c Stator-current MRAS-CM
b and d Stator-current MRAS-NN
Rotor flux estimation at regeneration
e CM
f NN

www.ietdl.org
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Fig. 10 Sensorless performance for test 2, 10% load

a Stator-current MRAS-CM
b Stator-current MRAS-NN
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dependency and dc drift problems. Once the NN is trained it
accurately matches the CM.
To test the NN observer sensitivity to parameter variation,

simulations have been conducted with variations in Rs and Rr.
These two parameters are the most crucial parameters that
affect speed estimation especially at low speed. The
performance of both observers is compared with the actual
rotor flux output from the motor model when the vector
Fig. 11 Sensorless performance for test 3, 20% load

50 rpm
a Stator-current MRAS-CM
b Stator-current MRAS-NN
−50 rpm
c Stator-current MRAS-CM
d Stator-current MRAS-NN

IET Electr. Power Appl., 2013, Vol. 7, Iss. 7, pp. 597–606
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control drive is working in encodered mode with and
without load. The performance of VM and NN flux
observers for 50% increase in Rs at no-load and for a 25%
increase in Rs at 25% load is shown in Figs. 5a and c,
respectively, where the NN shows less sensitivity to Rs

variation than the VM. NN observer also shows good
performance with 50% Rr variation at no-load as shown in
Fig. 5b. With a 25% variation in Rr at 25% load, the CM is
603
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slightly affected by this change, and since the NN was trained
to match the CM performance it is similarly affected as shown
in Fig. 5d. These results, shown in Fig. 5, demonstrate that the
NN observer can handle the parameter variation problem with
a good level of robustness.
However, unlike the CM, the NN is able to estimate the

values of the rotor flux components without needing rotor
speed information. Hence, it is possible to use the proposed
NN for rotor flux estimation in the new MRAS scheme.
The block diagram of the stator-current MRAS scheme

employing an NN for rotor flux estimation is shown in
Fig. 6. In this scheme, two NN are used, an online-trained
linear NN for stator current estimation and an off-line
trained non-linear NN for rotor flux estimation. Compared
with the unstable performance shown in Fig. 3, a stable
performance for regeneration has been obtained using this
scheme as shown Fig. 7.
4 Experimental results

In this section, the new stator-current MRAS scheme based
on CM and NN flux observers is experimentally
demonstrated in the sensorless mode of operation. The
experimental system platform is shown in Fig. 8. It consists
of a 7.5 kW, 415 V, delta-connected three-phase IM loaded
by a 9 kW, 240 V, 37.5 A separately excited dc load
machine controlled by a 15 kW four-quadrant dc drive. The
induction machine parameters are given the Appendix.
A dSPACE DS1103 control board is used to control the

IM, Hall effect current sensors are used to measure the
motor line currents. The actual motor speed is measured by
a 5000 pulses/revolution incremental optical encoder. The
Fig. 12 Sensorless performance for test 4, ±25 rpm reversal, 25% loa

a Stator-current MRAS-CM
b Stator-current MRAS-NN
Rotor flux estimation performance at regeneration
c CM
d NN
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inverter switching frequency is 15 kHz, with a dead time
period of 1.5 μs, and the vector control is executed with the
same sampling frequency. The observer and the speed
control loop have a sampling frequency of 5 kHz and the
speed measurement is executed with a sampling frequency
of 250 Hz.
The main focus of this paper is given to the sensorless

operation of the proposed scheme at low speed and with
regeneration. The two structures of the new scheme will be
compared: current MRAS-CM using CM flux observer
(Fig. 2) and current MRAS-NN using NN rotor flux
observer (Fig. 6). In the following tests, the estimated speed
is used for speed control and field orientation where the
drive is working as sensorless indirect rotor flux oriented.
The encoder speed is used for comparison purposes only.
Tests are conducted at low speed and at or around the zero

speed region based on recommended benchmark tests [26, 32,
33]. Selected experimental results for the tests are shown in
the following sections.
4.1 Test 1 – stair case speed transients from
100 to 0 rpm to −100 rpm at 12.5% load

In this test, the sensorless vector control drive is subjected to a
stair case speed demand from 100 rpm to zero speed in a
series of five 20 rpm steps continuing to − 100 rpm, at
12.5% load.
The performance of CM- and NN-based schemes is shown

in Figs. 9a–d. The stator-current MRAS-CM scheme shows
instability in the regenerating operation wherease the
stator-current MRAS-NN scheme shows stable operation.
Using an NN for rotor flux estimation gives stable speed
d

IET Electr. Power Appl., 2013, Vol. 7, Iss. 7, pp. 597–606
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estimation performance in the regenerating mode since flux
estimation is independent of the estimated speed. This
improves stator current tracking leading to stable speed
estimation performance. Rotor flux estimation performances
for CM and NN in regeneration are shown in Figs. 9e and f.
4.2 Test 2 – speed step down from 20 to 0 rpm
in three steps each of 10 rpm

The results of this test at 10% load are shown in Figs. 10a and
b. Better zero speed performance is obtained from the
stator-current MRAS-NN scheme compared with the
CM-based scheme. This is due to better rotor flux
estimation using the NN at zero speed.
4.3 Test 3 – sensorless load disturbance rejection

Sensorless performance of the stator current-based schemes
for 20% load torque disturbance rejection at 50 rpm is
shown in Figs. 11a and b. Similar response is obtained
from the two schemes. To examine the sensorless
performance at regeneration, both stator current-based
MRAS schemes are subjected to a 20% load torque
application at − 50 rpm. Results shown in Figs. 11c and d
reveal that the instability obtained from the stator-current
MRAS-CM with regeneration is completely removed by
using the NN rotor flux observer.
4.4 Test 4 – speed reversal with load

This last test shows the drive performance for a very low
speed reversal under load torque. A ± 25 rpm speed
reversal demand was applied to the drive when working at
25% load. Unstable performance is obtained from the
CM-based scheme in contrast to the stable performance for
the NN-based scheme as shown in Figs. 12a and b. CM
and NN flux estimation performance is shown in Figs. 12c
and d.
5 Conclusions

This paper has experimentally investigated the sensorless
performance of a stator current-based MRAS estimator with
different rotor flux observers. Using a VM causes problems
at low speed because of stator resistance sensitivity and the
need for pure integration for flux. A CM can be used
instead to estimate the rotor flux from the measured stator
currents and the estimated speed. However, any
deterioration in speed estimation is fed back to the CM flux
observer causing instability in the regenerating mode of
operation. Hence, a multilayer feed-forward NN is used to
overcome this problem for rotor flux estimation from
present and past samples of the stator voltage and current.
Using the NN flux observer gives less sensitivity to stator
resistance variations compared with the VM. Since the flux
estimation is independent of the rotor speed stable operation
has been obtained for regeneration.
The proposed schemes have been experimentally validated

using a 7.5 kW vector controlled IM drive. These results
confirm the improvement in sensorless performance using
the new scheme at low speed with stable regeneration
performance.
IET Electr. Power Appl., 2013, Vol. 7, Iss. 7, pp. 597–606
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7 Appendix

7.1 Motor parameters

A 7.5 kW, three-phase, 415 V, delta-connected, 50 Hz,
four-pole, star equivalent parameters are: Rs = 0.7767 Ω,
Rr = 0.703 Ω, Ls = 0.10773 H, Lr = 0.10773 H, Lm = 0.10322
H and J = 0.22 kgm2.
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