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Abstract— The DC-DC voltage-mode controlled buck converter
is a nonlinear, nonsmooth system that presents different circuit
topologies within one switching cycle. This paper develops a
Takagi-Sugeno fuzzy approach for modeling this circuit to cap-
ture all the essential nonlinearities that occur in fast time scale.
Based on the resulting model, we propose tractable mathematical
stability analysis for identifying fast-scale instabilities of the
converter, more specifically the edge of bifurcation phenomena,
employing nonsmooth Lyapunov functions. The search for the
Lyapunov functions are formulated as Linear Matrix Inequalities
(LMI) feasibility problem which easily can be solved using up-
to-date interior point methods.

I. INTRODUCTION

C to DC converters have long been considered as an

exemplary case for studying nonlinear phenomena like
subharmonic oscillations and period-doubling bifurcation lead-
ing to chaos, which basically arised from their nonsmooth
dynamical nature. Accurate mathematical modeling of this
group of systems is of great importance mainly in respect to
the analysis of the instabilities that occur in fast time scale
which the time scale that the switching in the voltage and
current waveforms at clock frequency is observable. Problems
of this kind are not easy to handle mathematically, since the
resulting models are dynamical systems whose righthand sides
are not continuous or not differentiable. A number of methods
have been proposed for modeling and analyzing the stability of
switching power converters [1]-[3] in order to avoid unwanted
nonlinearities and chaotic behavior. In brief, the desired stable
period-1 operating mode of the converter is a limit cycle
whose period equals the period of the clock used in the PWM
voltage-mode controller. Variations in system parameters (for
instance supply voltage or load resistance) can cause the
converter response to enter into period doubling bifurcations.
Such bifurcations may lead to subharmonic oscillations, crises
and even chaotic behavior [4].

The most conventional approach for studying these limit
cycles is nonlinear discrete modeling [1] which generally
captures the essential properties of periodic orbits. In many
cases, including the voltage-mode controlled buck converter,
the derivation of the discrete map analytically is impossible
and one has to seek numerical methods. A powerful numerical
technique was proposed by the authors [5], [6] to determine
the stability of periodic limit cycle in DC-DC buck converter
operating in continuous conduction mode. In that study, ap-
plying Filippov’s method in combination with Floquet theory

makes it possible to directly infer the stability of the orbit
resulting from small perturbations.

In searching for an alternative approach for accurate mathe-
matical modeling and the most efficient, most straightforward
numerical method for rigorous stability analysis of the con-
verter to automatize the whole procedure, model-based Takagi-
Sugeno (TS) fuzzy system design [7], [8] can be considered
as a strong candidate. The behavior of these TS fuzzy models
is described by a set of rules on the form

IF 21 is F{ AND...AND z, is FJ
THEN & = A’z 4+ B'u+d’, j=1,...,1

Rule j

and the dynamics of this system can be described by:
T = 22:1 wl(z)(AMz + Biu+ a’) (D

where w’(x) are normalized membership functions of the
rule antecedents satisfying 0 < w’(z) < 1, Z;=1 wi(f) =1
and [ is the number of rules. The stability of these systems
is based on the existence of a common quadratic Lyapunov
function for all linear subsystems and sufficient conditions for
stability analysis based on that Lyapunov function [8], [9]. The
finesse of this analysis as a numerical approach comes from the
fact that the search for Lyapunov function can be formulated as
linear matrix inequalities (LMI’s). The optimization problem
can then be solved efficiently with less computational effort
using a widely available software like MATLAB.

There have been a number of successful applications of TS
fuzzy methods in power electronic converters [10]-[13]. In
terms of the model-based fuzzy approach that blends fuzzy
logic and the theory of modern control, the earlier papers
approximated the dynamical model of the converter by TS
fuzzy model, which is obtained using averaging technique.
While the averaging technique is suitable for deriving some
information about the stability and dynamic behavior in slow-
time scale, it cannot capture the events that occurs at clock
frequency. Therefore, the instabilities that may occur in fast-
time scale cannot be taken into account and be studied.

In the following parts of this paper, after presenting the
governing equations of the voltage-mode controlled buck
converter, section-3 is dedicated to extending the TS fuzzy
model method to consider all the possible nonlinear phenom-
ena that take place at fast time scale including subharmonic
oscillations, crises and chaotic behavior [4]. This demands the
integration of some discrete events with TS local linear models
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Fig. 1. The voltage mode controlled buck dc-dc converter.

to uniformly represent the nonsmooth dynamical behavior of
the converter. Stability conditions are discussed in section-
4 for the resulting TS model of the converter, based on
nonsmooth Lyapunov functions. The analysis can easily point
the deviation from period-1 stable operation via the resulting
LMI feasibility problem.

II. THE BUCK CONVERTER AND ITS MATHEMATICAL
MODEL

The voltage mode controlled buck converter circuit shown
in Fig. 1 is a nonsmooth dynamical system described by two
sets of differential equations:

Vin—0(t) . .
oty -7 S is blocking o
dt o(t)
i S is conducting
. 4
do(t) i(t) — %)
i~ C ®

Switch S, which is controlled by pulse-width modulated
signal, creates a discontinuity in the right hand side of (2).
In the voltage-mode control scheme, the output voltage is
compared with the reference voltage to generate a control
voltage signal veon, = A(v(t) — Vier) Where A is a feedback
amplifier gain. The error voltage is then compared with a
periodic sawtooth signal vyamp to generate the switching
signal: if Veon < Vramp then S is conducting and veon, > Vramp
then .S is blocking.

Normally, the output of the converter will be a dc voltage
with a periodic ripple, with a mean value close to the desired
voltage and a period that is equal to the period of the PWM
ramp signal (referred to as period-1 waveform), as shown in
Fig. 2. In Fig. 3, the same stable period-1 orbit is illustrated
in v — ¢ space where after the 9th time point the time-varying
switching surface return to the so-called the fixed point of
the cycle with Poincaré map X (0) [1], repeating the periodic
cycle.. It has been shown that if a system parameter (say, the
input voltage) is varied, the circuit may lose stability through
successive period-doubling bifurcation leading to chaos as
apparent in Fig. 4 [3], [4].

If we define x1(t) = v(t) and x5(t) = i(t), the equations
(2) and (3) can be written as:
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Fig. 2. The nominal period-1 operation of the buck converter: (a) the control
and ramp signals, (b) the output voltage, and (c) the output current. The
parameter values are Vi, = 24V, Vier = 11.3V, L = 20mH, R = 22,
C =47uF, A = 8.4, T = 1/2500s, the ramp signal varies from 3.8V to
8.2V.
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Fig. 4. Bifurcation diagram of the buck converter varying input voltage as
a parameter.



where we can define the state matrices:

As = {__1{;20 1{)0] » B= L?L] Vin )

The switching hypersurface(h) can be written as:
B(w(t),t) = 21(t) = Viet = <52 =0, AZ 0. (6)

where the periodic sawtooth waveform is defined as:

Uramp(t) = VL + (VU — VL)(% mod 1) (7)

In Fig. (3), the period-1 orbit is shown in v — ¢ space with
9 different time points. After the 9th point the time-varying
switching surface return to the so-called the fixed point of
the cycle with Poincaré map X (0) [1], repeating the periodic
cycle.

III. TS FUzZZY MODEL OF THE BUCK CONVERTER FOR
FAST-SCALE ANALYSIS

Universal approximation capability of the fuzzy models of
the form (1) is discussed in [8]. It has been shown that
the affine structure originally proposed in [7] and later in
many other applications can approximate any smooth non-
linear function to arbitrary accuracy. However, the function
approximation capability of the fuzzy models of the form
(1) is fundamentally inadequate to represent the discontinuous
dynamics and the ensuing nonlinear events in the example
buck converter. To empower the TS fuzzy modeling approach
to mathematically represent any switching events, we need
to introduce discrete states to interpolate with their associated
continuous states. Moreover, the conventional TS fuzzy model
can only approximate the functions satisfying local Lipschitz
conditions for any interval. Nevertheless, the mathematical
model of the buck converter (2), (3) does not fulfil this
property at the point of discontinuity according to the def-
inition of the Lipschitz condition [14]. For this reason we
need an extra element (discrete events) to hold the existence
(and uniqueness) of the fuzzy approximation representing
nonsmooth functions [14].

To overcome the shortcomings stated above, a novel TS
fuzzy modeling approach is synthesized and presented here to
enable modeling of the nonsmooth dynamical equations of the
buck converter. The behavior of these models can be described
by:

Rule j IF 2, is F7 (8)
L AJ(my)x + B (my)u + a? (m;)
THERE = { mt=(a,m), j=1,2, i=12

and by the appropriately restricting the inference parameters,
the dynamics of the discontinuous fuzzy system can be de-
scribed by:

{ &= 305y w (e ma) (A7 () + B (ma)u+ a (ms))
mt = ¢(z,m)

©))
where © € R" is the continuous state, m € M = {mj, ma}
is the discrete state, A%(m;) € R"*", Bi(m;) € R",

wl: R x M — [0 1], j € I, are continuous weighting
functions which satisfy 23:1 w?(z,m) = 1, [ is the number
of fuzzy rules and IV are fuzzy sets. The state space is the
Cartesian product "™ x M. The function ¢ : " x M — M
describes the dynamics of the discrete state. The notation m™
means the next state of m. Any value of discrete state m; € M
is associated with an affine subsystem like:

if Vo € A(myi)x + B(m;) + a(m;) thenm,; € M, i € {1,2}

Remark 1: In general a value of m; could be associated with
a subset of subsystem as:

if Vo € {3 cr12,.y w (z,m;) (A7 (m;)z + B (m;)u +
a’(m;))} then m; € {my, ma,...,my} when N is possibly
infinite [J

The transition from one discrete state to another means
the abrupt change from one set of fuzzy subsystems
representing a continuous vector field to another set, which is
formally described by the function ¢. For convenience, this
transition can be defined by a set of switch sets which in fact
represent the hypersurface (6). So a switch set can in general
be described as:

Sik ={x € R"my = ¢(x,m;)}, my #my, i,k €Iy
(10)
and, referring to the hypersurface equation (6), the switch set
can be defined as:

S12 = {o € R"a1(dT) = Vier < “5522,
S21 = {w € R'a1 (dT) = Vier > “5p2}

where d is the duty ratio at each instant. Now we define two
membership functions to exactly represent each vector field of
the buck converter as follows:

Fl(a1(1) = % + 79“(”2;?1(0)

where the state X (0) = [12.0747,0.6220]7 is the stable fixed
point of the system, which is an intersection point of limit
cycle with the poincaré map (Fig. 6) (see [1], [5], [6] for
the detailed derivation using Newton-Raphson method). The
main reason for selecting the fixed point for constructing the
membership functions is to minimize the error of the fuzzy
approximation at the switching instants. The shape of fuzzy
membership function illustrated in Fig. 5 is selected to exactly
model each vector field (2) and (3) as a smooth function.
Further detail and examples on defining the fuzzy set in
exact linearization method of smooth nonlinear functions is
discussed in [8].

The fuzzy model matrices are constructed directly using
(5) as Al(m1) = A%(m1) = Al(ma) = A%(ma) = A,
B(my) = B and B(mz) = [0 0]7. The discrete state m; is
associated with the switch-off vector field and ms is associated
with the switch-on vector field of the converter.

To verify the accuracy of how the new modeling approach
is able to represent the fast-scale nonlinearities of the system,
the time response of the TS fuzzy model of the converter and
the original system (Fig. 1) is compared under voltage mode
control. Figures 6, shows how the TS fuzzy model exactly
mimics the behavior of the original system both in stable

(1)

P2 (21(t) = 1= F (21(t))
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Fig. 5. The trapezoidal membership functions of the TS fuzzy model of
buck converter.
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Fig. 6. System output voltage and current time response shows period-1

behavior which is gone to unstable period-2 at time 0.105 with, (a) original
model (b) TS fuzzy model. Likewise the current time responses with (c)
original model (d) TS fuzzy model.

period-1 and when the system loses its stability to period
doubling bifurcation by changing the input voltage from 24V
to 25V. The bifurcation diagram produced using the new model
(Fig. 7) also shows the same successive subharmonics and
chaotic region comparing to the original system (Fig. 4).

IV. EXPONENTIAL STABILITY ANALYSIS

The exponential stability of a linear TS fuzzy systems
approximating a smooth function [8] is usually stated as
follows:

Proposition: The system & = Zé’:l wl (9) Az is exponen-
tially stable if there exist a matrix P = PT such that

P>0
{ (ANTP+PAI <0, Vi=1,2,...1 %

with considering the smooth quadratic Lyapunov function
candidate V(z) = T Pxz. The stability analysis of affine
TS fuzzy systems as described by (1) obtained from smooth
functions is also thoroughly discussed in [15].

Considering the fact that the proposed TS fuzzy model of
the converter represents a nonsmooth dynamical system, the
LMI formulation above for finding global quadratic Lyapunov
function in entire fuzzy state space is very conservative. Even
in the case of TS fuzzy model of smooth dynamical systems,
a global smooth quadratic Lyapunov function fails to exist
while the system is actually stable [15], [16]. Hence, very
few efficient methods are available (if there are applicable)
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Fig. 7. Bifurcation diagram of the TS fuzzy model of buck converter varying
input voltage as a parameter.

to formulate LMI stability conditions based on smooth Lya-
punov function. To overcome this conservative formulation for
the stability analysis of nonsmooth TS fuzzy model of the
buck converter, two natural extension are applied. First, the
Lyapunov function candidate is selected as discontinuous or
piecewise smooth functions. Second, the fuzzy state space can
be partitioned to different flexible regions for the system of
the form (9).

The method described in this section can be applied to the
proposed TS fuzzy model of the buck converter, and is based
on formulating the stability condition as LMIs.

Assume that the fuzzy state space is partitioned into A
detached regions €Q,,q € In where In = {1,...,A}. The
candidate Lyapunov function will be piecewise quadratic,
meaning that each local Lyapunov function has the structure:

V(z) =V,(z) = T P,# when (z,m)€Q, (13)

where 7 = ﬂ, P, = Lf:,‘l iq], g € R, pg € R, P, =
q q
PT € R" x R" and ¢ € Ia.

Let 27 denote the continuous state of @ in 2. Vg : Q27 —
R,q € Ia, is a (scalar) function which is assumed to be
continuously differentiable on closure of region €2, (cl. denotes
the closure of a set, which is the smallest closed set containing
the set). In fact, the scalar function V,(z,t) is used to measure
the fuzzy system’s energy in a local region €2,.

For the sake of relaxing the conservative formulation of
stability conditions, the fuzzy state space is partitioned into
A detached regions (24,q € Ia. A trajectory initiated in any
region at time ti, k = 1,2, ... can pass through another region
if ¢, < tg41. We define Ay, as a neighboring region which
means:

Agr = {z € R™|3t < to, such that x(t7) € Qq, z(t) € Q,.}
(14
A4y is given by the hypersurface of the form (6). Therefore, if
Agr # 0, Qg4 and Q, must be neighboring sets. As a sufficient
condition let:

In = {(g,7)[Agr # 0}

which is a set of tuples indicating that there is at least
one point for which the trajectory passes from 2, to 2,.

15)



Considering the fuzzy region portioning above, (13) is a
discontinuous Lyapunov function at the neighboring regions
Agr, (g,7) € In. Assuming t; < tiy4; for every trajectory
with initial point in any region, V (z) is piecewise continuous
function with respect to time.

Stability analysis as LMI

Stability conditions presented in this section are supposed
to be confined to a part of the continuous state space. It
is possible by expressing the region as positive (quadratic)
functions and employing a so-called S-procedure technique
[17], to substitute the confined conditions with unconfined
conditions. This procedure is indispensable to recast all of
the conditions on LMIs, so this is initially described in
general terms and then the stability theorem is formulated
with confined conditions in one LMI feasibility problem.

Let Qo, ..., Qs, be quadratic functions of the variable x €
R™ on the form:

Qr(zx) =2 Zpx +2cF +dy, k=0,...,s, (16)

where Z;, = Z,?. We consider the following condition on Qo:
Qo(z) > 0 in the region {z € R"|Fy(x) >0,k € I,} (17)

The confined condition (17) can be substituted by an
unconfined condition in the following way:

Lemma [17]: if there exist 6, > 0, k € I, such that

Vo e R", Qo(x) > Zzzl5ka(x)

then (17) holds. Hence, by introducing additional variables
0 > 0, k € I, condition (17) can be turned into an LMI
which can be written as:

Zy ¢ s Zy ¢
T |40 Co 0o Co
>
r Lg do] Tz Zk:15kx [Cg do} * (19)
The replacement of (17) by Lemma may be conservative.
However it can be shown that the converse is true in case
of single quadratic form, s=1/ [17] contingent on the existence
of some x such that Q1 (x) > 0. In case of hypersurface which

can be defined by Qx(z) =0, k € I, Lemma is true without
the restriction & > 0.

Now, by defining I = {é 8] where I € Rt x Rt

A(mi) = A(gli) B((T)ni) > My
the above procedure the

(18)

€ M and applying

stability conditions can be
stated. All conditions in the stability theorem are
described by Qo(z) > 0, where Qo(z) is a quadratic
function defined by (16). The first condition is defined
by two 1nequalmes QO( ) = &7(P, — al)# > 0 and
Qo(z) = #7(BI — P,)& > 0 where o and 3 are constants
which orlgmally represent class K function o : RT — RT
and 3 : RT — RT of ||z|| [14]. The second condition is
Qo(z) = —3T(A(m)TP, + P,A(m) + vI)i > 0 where
~v > 0 is a scalar constant. The third inequality condition is
Qo(z) = 7 (P. — P,)& > 0. The first and second condition
of the stablllty theorem should be satisfied in regions (2

and 7™ respectively. These conditions can be substituted
by the unconfined condition (19). The third condition is
satisfied on the hypersurface A7, which can be given by
Qr(z) =0, k € I, where each Qi (x) = 0 has the form (16)
with no limitation on ¢§; as mentioned before.

LMI problem If there exist Pq, q € I, constants

a > 0, puf >0, 1/‘” > 0, n{" and a solution to min 3
subject to the three conditions:

Sqij q 5
+Z'jq” {( 22} =1, q€ela
k
Sq qr qr
. B<P, gr[zq':T zr]mq,)em
(cx) dy,

Then the fixed point O is exponentially stable in the sense

of Lyapunov .

Remark 2: Without loss of generality, it is assumed
that the origin is a fixed point of the fuzzy system (9). For
the buck converter, the fixed point mentioned above is the
fixed point of limit cycle with a stroboscopic map [5] [

In order to verify the analysis presented above, the fuzzy
state-space F is first partitioned into A = 2 detached regions
Ian ={1,2}):

Q1 ={(z,m) e Flz e R*,m =mq}

Qo ={(z,m) € Flxz € R",m =ms} (20

Solving the LMI problem for the value of supply voltage Vi,
= 24V results in a solution:

~ 2.2526 —12.8865 —39.1678
P, = [—12.8865 0.0026 —103.3283 (21)
—-39.1678 —103.3283 0.0004
~ 2.2526 12.8865 —39.1678
P, = | 12.8865 387.3544 103.3283 (22)

—39.1678 103.3283 2235.9155

with the optimal value of § = 2.4962. Finding the feasible
solution to LMI problem as above clearly means that the sys-
tem is exponentially stable as it is readily perceived from Fig. 7
showing stable period-one response in this operating point. By
changing the supply voltage to Vi, = 25V no feasible solution
can be found for the LMI problem, which obviously implies
instability in new operating point. The stability analysis via
Filippov method also reconfirm the unstable period-1 orbit
coexisting with period-2 orbit for Vi, = 25V [5] and hence

IThe proof of this theorem is out of the scope of this paper and it will
present in later publications.



the prowess of new method for fast-scale stability analysis of
the converter.

It is worth noting that by neglecting the fuzzy state space
partitioning into two regions, no feasible solution can be found
for LMI problem while the converter response is actually in a
stable period-1 orbit. This indicates the essential role of region
partitioning of the fuzzy state-space in stability conditions
specifically in the case of nonsmooth system like the DC-DC
buck converter.

V. CONCLUSION

We have extended Takagi-Sugeno fuzzy modeling approach
to represent the discrete switching events of the DC-DC buck
converter, which take place in fast time scale and all nonlinear
phenomena induced by those switching events.

Based on the resulting TS fuzzy model proposed in this
paper, a rigorous mathematical stability analysis is presented to
give an insight into typical fast-scale instabilities affiliated with
the buck converter. All the stability conditions are formulated
as a Linear Matrix Inequality problem, based on the use of
piecewise Lyapunov functions to deal with the discontinuous
dynamics of the new TS fuzzy representation and to keep
away from the conservative formulation of finding a global
Lyapunov function that may misleadingly result in infeasible
solution. The TS stability analysis successfully predict the
emergence of period-doubling bifurcation, which up till now
could have only been achieved through complicated discrete
nonlinear modeling methods.

The proposed TS modeling and stability analysis approach
presented in this paper can also be applied to other types
of electronic power converters. Most importantly, the whole
modeling and stability analysis approach can be employed as a
framework to devise a new type of fuzzy model-based control
strategy to suppress unwanted chaos in the buck converter and
other related nonsmooth dynamical systems.
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