
On the Derivation of the Monodromy Matrix of the Buck 
Converter  

 

Damian Giaouris, Bashar Zahawi and Volker Pickert 
University of Newcastle upon Tyne 

School of Electrical, Electronic and Computer Engineering 
Merz Court 

NE1 7RU Newcastle upon Tyne, UK 
{Damian.Giaouris, Bashar.Zahawi,  

Volker.Pickert}@ncl.ac.uk 
 

 
 Abstract - The study of bifurcations phenomena in the dc-
to-dc buck converter, which may not be common in smooth 
dynamic systems, is based on the derivation of an iterative 
map that approximates the operation of the converter.  This 
paper presents a quantitative proof for the derivation of the 
total fundamental solution matrix before, during and after the 
system changes topologies as a result of the converter 
switching.  The proof is based on upper semi-continuous 
Filippov inclusions applied on transversal intersections of the 
discontinuous hypersurface. 
 
 
 Index Terms - Buck converter, bifurcation analysis, 
Filippov inclusions, discontinuous systems.  
 

I.  INTRODUCTION 

 The first qualitative studies of nonlinear power   
electronics models were presented in 1984 by Brockett and 
Wood [1] and were later continued by Hamill and Jeffries 
[2], who effectively triggered the study of what was 
referred to until then as ‘unknown’ or ‘unwanted’ 
instabilities.  Hamill and Jeffries [2] modeled a switched 
mode power converter with an iterative map and the 
previously mentioned instability is shown to exist for a 
particular set of parameters.  The loci of these parameters 
were determined by the Cobweb diagram of the map.  
Bifurcation and chaotic phenomena may appear in much 
simpler circuits, like a series RLD (resistor-inductor-diode) 
circuit with a nonlinear diode.  A boost converter under 
current control has also been shown to exhibit chaotic 
patterns [3].  These bifurcation phenomena, referred to as 
border collision, are not common to other smooth systems 
and can only be found in nonlinear, non-smooth systems 
and in the power electronics case controlled by a pulse 
width modulator.   
 One way to study the bifurcation phenomena of 
periodic systems; like the buck converter; is to find the 
Poincare map and its eigenvalues that are identical to the 
Floquet multipliers of the systems, i.e. the eigenvalues of 
the total solution matrix.  The problem with this approach 
is the calculation of the fundamental matrix of the buck 
converter, since the state space is separated into two (or 
more) parts from a hypersurface that describes the 
discontinuity of the vector field due to the switching of the 
inverter. 

 This paper presents a rigorous mathematical derivation 
of the previously mentioned fundamental solution matrix 
and hence through that it is possible to describe the state 
solutions before, after and, for the first time, during the 
crossing of the hypersurface defined by the switching 
discontinuities of the converter.  The existence and 
uniqueness of the solutions are examined using methods 
first developed to study systems of differential equations 
with discontinuous right hand sides using differential 
inclusions [4 - 6].   
 

II.  SYSTEM ANALYSIS 

A. Fillipov Theory 
A system is called continuous if its mathematical 

model can be described by a set of differential equations: 
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where f is a smooth vector field in a given domain.  The 
existence and uniqueness of that system is guaranteed by 
the Lipschitz theorem [5] which states that when there exits 
a constant L such that 
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and f is linearly bounded, then (1) has a unique solution 
which depends only on the initial condition.  
 If the system is not continuous in time then a variation 
of the above theorem [4, 7] can guarantee a solution 
(referred to as a Caratheodory solution).  But if the system 
is discontinuous in x then the above methods cannot be 
applied.  Instead a Filippov solution can now be defined [5] 
that uses set valued functions, i.e. functions that return a 
single vector when f is continuous and the convex closure 
over the limits of the discontinuity when f is discontinuous: 
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where N are the sets that contain the points of 
discontinuity, is the intersection of all N sets with 

Lebesgue measure zero, 

I
0=Nµ

( )δ,xB  is a ball of radius δ and 

co  denotes the smallest closed convex set. To insure 
existence, but not uniqueness, of the solution, F has to be 
upper semi-continuous, closed, convex and bounded [5], 
(2) is generally referred to as Filippov Inclusion (FI). 
 

B Mathematical model of the buck converter 
The open loop buck converter described by (4) and (5) 

is an autonomous, linear, piecewise system: 
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It is obvious from (4) and (5) that there is a discontinuity 
when the main switching element S passes from conduction 

to blocking, since 
L
v

L
vvin −≠

−
 and vin ≠ 0.  Normal 

techniques for analyzing the stability of the converter are 
not applicable as small changes in the supply voltage may 
cause unacceptable output behavior due to the 
discontinuous characteristics of the system [8 & 9]. 
Various closed loop control techniques are therefore 
applied to compensate for possible voltage changes. Fig. 1 
shows such a scheme with a closed loop proportional 
voltage controller.  
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Fig.  1 Closed loop, voltage controlled buck dc-dc converter 
The buck converter shown in Fig. 1 has been simulated 
using the following data: L=20mH, R=22Ω, C=47µF, 
A=8.4, VL=3.8V, VU=8.2V, vin=24V, vref=12V. Fig. 2 
shows output voltage, inductor current, control and ramp 
signals. 
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Fig.  2 Simulated output voltage, inductor current, control and ramp signal 
 

Under normal conditions the output of the converter 
will be a periodic signal with a mean value close to the 
desired voltage and a period that is equal to the period of 
the PWM signal.  If the input voltage is increased above a 
specific value [3], the system will change its frequency 
characteristics to period 4, 8 and at some point due to a 
border collision (or crisis) the system will enter into a 
chaotic region.   

In this paper, the total fundamental solution matrix 
(also called monodromy matrix) of the system before, after 
and during the discontinuous hypersurface is calculated. 
The system will be shown to have discontinuous and not 
just non-smooth vector fields and the existence and 
uniqueness of the solution will be analyzed by studying the 
system as a Filippov Inclusion [5]. 
 
 



 

III.  EXISTENCE AND UNIQUENESS 

The closed loop equations of the buck converter are 
given by: 
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Defining x1 = v and x2 = i result in:  
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 (10) 
The discontinuity can be represented by a hypersurface (h) 
that splits the state space into two parts: 
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where T is the time period. Equations 10 and 11 state that 
the hypersurface is non autonomous and this directly 
implies that the closed loop system is also non autonomous 
since the crossing of the state vector on the hypersurface 
will be explicitly depended on time (among others).  
Furthermore, since the stability properties can be derived 
by the monodromy matrix, only one cycle has to be 
studied, hence: 
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T
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When the switching occurs: ( )dVVVv LULramp −+= , 
d= duty cycle 
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Hence the two dimensional state space is separated in three 
parts: 

2RXX =∪Σ∪ +−     (15) 
 
where 
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( )( ){ }0:2 >∈=+ thRX xx  and 

( )( ){ }0:2 =∈=Σ thR xx  and ( ) 0=ΣLµ  (i.e. zero 
Lebesgue measure). 
              

 (8) and (9) can be written as an upper semi continuous 
FI: 
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(16) has a solution in the sense of Filippov if the vector 
field enters the hyper-surface Σ instantly.  Since there is 
only one discontinuity: 
 

( )
( )

( ) ( ){ }
( ) ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

∈
Σ∈

∈

=∈

++

+−

−−
•

Vt
ttco

Vt

t
xxf

xxfxf

xxf

xFx
,,

,,,,

,

,    (17) 

where ( ) ,,
1

1
2

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

=−

L
xv

C
R

xx

t
in

xf ( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

=+

L
x

C
R

xx
t

1

1
2

,xf   

 
I.e. at the switching hypersurface 
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system has discontinuous vector fields. The convex hall is 
defined as: 
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The normal to the hypersurface is:  
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Therefore the projections of f- and f+ on S are given by: 
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i.e. a transversal intersection as shown in Fig. 3. 
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Fig.  3 A transversal intersection 

 
A system that transversally intersects the hypersurface has 
a unique solution [6]. 
 

IV.  CALCULATION OF THE OVERALL MONODROMY 
MATRIX 

Assuming that the initial state vector starts at V_, (t = 
t0) then after some time (t = tΣ) (or t=dT) the solution will 
transversally intersect the hypersurface Σ, as defined 
previously (Fig. 4).  Before the intersection the system is 
smooth and therefore a fundamental matrix may be defined 
as: 
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After the intersection another fundamental matrix may also 
be defined as:  
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For the switched system, the monodromy matrix 
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Fig.  4 Derivation of the saltation matrix 

 
In which S (called saltation matrix) is the matrix that 
defines the solution on the hypersurface at t = tΣ given by 
[6]: 
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The numerator of (22) can be calculated to  
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The first part of the denominator of (22) can be expressed 
to
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and the second part of the denominator of (22) can be 
determined to: 
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The saltation matrix S becomes now: 
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V.  CONCLUSION 

 The effect of the discontinuity of the buck converter’s 
vector field on the fundamental matrices, which are defined 
in the smooth areas separated by the switching 
hypersurface, has been studied by applying Filippov 
inclusions to explain the behavior of the system on that 
hypersurface.  A mathematical description is presented of 
the state solutions before, after and, for the first time, 
during the crossing of the hypersurface, as defined by the 
switching discontinuities of the converter. The work 
presented here can be used to study the stability and the 
bifurcation phenomena of the buck converter either by 
using Lyapunov functions (presented in [7] for 
discontinuous systems) or by using the Floquet multipliers 
of the monodromy matrix. 
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