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Abstract JSJ

An autonomousCuk converter controlled by a hysteresis, € vi
current controller is studied in this paper. Fitpfs method
is employed for the first time to investigate thabdlity of an
autonomous power converter. The Neimark bifurcatiaa
which the converter loses its stabile period onerafion, was
stabilized by applying two alternative control stgies based T ey

on the analysis of the behaviour of the complexiglues + <t
of the monodromy matrix of the system. K

i1t+ip

1 Introduction Fig. 1:Cuk converter under hysteretic controller.

The Cuk converter with hysteresis current control is
autonomous dynamical system as it is not switchedny
specific clock frequency. To date, the number afdis
carried out to identify the bifurcation and chadiehaviour
patterns of autonomous converters has been verigetdm
Conventionally, the stable operating range of theverter is When the switch is turne@N:
assessed using the complex eigenvalues of the negste

Jacobian at the equilibrium points [1]. This techi can |y =X3_ % ¢ -_X

Wherek andp are control parameters. The converter itself is
governed by two sets of linear differential equagioelated to
the ON andOFF states of the converter. The state equations
of the system can be written as:

successfully determine the stability of the limiycke; ¢ cr' ? VC 2)
however, it offers little knowledge of how and wthjs loss | x =X X , X, =-I
of stability occurs. In this paper, Filippov's meth is L L L

employed for the first time to investigate the digbof an When the switch is turnedFEF:
autonomous power converter providing an insigho ittie '

nature of the problem, showing that the convertasés (== x, X . _ X
stability via a Neimark Bifurcation, thus allowimgw control |* “c crR' 2?2
strategies to be developed to extend the rangetaifles X X V (3)
o —_" o —_72 in
period-one operation. The method has been preyiou s L %4 ‘_T+T
applied to non-autonomous systems including thek tarx
the boost converters [2, 3]. The output voltages;= x;, Vo= X, and the inductor currents
i1= X3, i,= X4 are taken as the state variables of the system. In
2 The Cuk converter matrix form, we can write:
TheCuk converter (Fig.1) is controlled by a hysteresigent X = A;X+Bu forON state 4
controller, where the reference curregt is compared with
the sum of the inductor curreritgi,. The switch S is turned X = A,X +Bu for OFF state (5)

ON when the sum of the inductor currengsi, is lower than \here
it +4i1/2 and OFF when it goes abovi -4i/2, wherei is

the width of the hysteretic band. The referenceertii, is -1YCR 0 1C ©
related to the output voltage. If 4i is sufficiently small, we | 0 0 -1C O
can write: Il -y /L o0 O



0
-1/CR O 1/C 0 0
0 0 -YC 0| gy=
2 = ’ - 0
-1/L 0 0 O vin
0 -1/L 0 O L

X=[v1 V2 i, i4]" andu is the input voltag#/..

(im, . £ (x(0) —tim o, T (<D

: dh
n"lim,_, f_(x(t))+a

| +

(6)

t=ty

Wheret;, and t,. indicate the time instant just before and
after the switching manifold; is the time at which the orbit
crosses the switching manifold ands a vector normal to the

Figs. 2 and 3 show inductor current waveforms for twwitching surface.

different values of the control parameterFig. 2 shows a
stable operating conditionk£1.125) while a slow scale
instability occurs wherk=4.125, as shown in Fig. @.;=
L,=1mH C=47pF, R=7%), V;,=15V andu=0.025).
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Fig. 2: Stable inductor current waveform i
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Then at one switching point the monodromy matrix can be
composed as:

W(to +T,1, X(to)) = )
D, (to +T,t5, X(t5)) X Sx D4t 1o, X(to))

@( ty,t, Xtp)) is the state transition matrix during the first

time interval (i.e. when the switch @N), ®(ty +T, ty, X(t5))

is the state transition matrix for the second waéfi.e. when

the switch is open) anflis the switching period.

Derivation of the monodromy matrix of thek converter

The hysteresis current controlleduk converter has two
switching manifolds: one where the switch is tureF and
the other when the switch is turn®N, as shown in Fig. 4. In
order to derive the monodromy matrix of the systeenneed
to know the two saltation matrices at the two shiiig
manifolds. To study the stability of the period-ibit it
suffices to considervarying from O tor.

The switching hypersurfacdy, when the switch is turned

OFF is given by:

h (X, (dT)) = x3(dT) + X, (dT) =k + 16 —%i (8)
The normal vecton is given by:
n' =0h(X,dT) =[x 011] (9)

0.49 0. e (&) 0.5 The two vector fields before and after switchDgF are:

Fig. 3: Unstable inductor current waveform i

- ) ) - =% /RC+x,/C =% /RC+x,/C
3 Stability analysis using Filippov’s method X;/C %, /C

. - = f =
The new method is based on the Floquet multipliers (the(X) =X /L+%,/C - -x/L
eigenvalues of the monodromy matrix) of the system’s V, /L ; ~X L+Vi IL | _
t=dT t=dT

monodromy matriXWV: i.e. the fundamental solution matrix
over one full cycle. If the system is piecewise smoothgas i
the case for the hysteresis current controliedt converter),

the monodromy matrix may be broken into areas where the
vector field is smooth and areas where the vector field crosses
a switching manifold. Suppose a periodic orbit starts and

is passing from the subsystem-1 given by the vector field
(x,(1), intersects the switching manifold defined by the
algebraic equatioh(x(t),t) = O atty, and goes to subsystem-2
given by the vector fieldf.(x(t)). It has been shown [4, 5]
that when there is a transversal intersection, the state
transition matrix across the switching manifold, called als

the saltation matris, is given by: And the saltation matrix at switchif@FF is:

T T
15.001 15.002

v, (V)

Fig. 4: Phase space and the transversal interaectio

15.003

—-f_)n'

(f.
S, (dT) =1
(@D =1+ (10)



The switching hypersurfacéh,) when the switch is turned From (16)

ON is given by:

(X, (7)) = X5 (T) + Xo(T) ik + o + -
The normal vecton is given by:

n' =Ah,(X,T) =[x 011]

The two vector fields before and after switchd are:

=% /RC+x,/C =% /RC+x,/C
X, /C X3/C
f_(x)= f.(x) =
=% /L -x/L+x,/C
=X IL+Vi /L Vin /L

The saltation matrix at switchir@N is:

(f, —f_)n"
n'f

S,(T)=1+

(11)

(12)

=T

(13)

The monodromy matrix of the system is then given by

W(T 0) =S, x®,(T,dT) xS, x®, (dT 0)

The state transition matrix during the first tinmgeirval (i.e.

when the switch i©N) is given by®,(dT,0)=¢"1". The state
transition matrix for the second interval (i.e. whae switch

is OFF) is given by®,(T,dT)=¢"* 279,

Hence, the Monodromy matrix becomes:
W(T,O) - 82 x eAZT(l_d) xSl x eAldT

Calculation of switching period T

In order to calculate the transition matrices wedch&® know

(14)

(15)

the duty cycled and the switching perio@l. The duty cyclel
can be calculated from the average model of €hek
converter. The switching period can be calculated asapg the saltation matrices &nd S:

follows:

Let the duty cycled = t/T andd’= (1-d)T. The value of the

state victor at=dT is:
dT

X(dT) =@, (dT)X () + [T Bdr
0

The state victor atT is:

;
X(T) =X (0) = ®,(dT)X(dT) + jeAz(T‘”Bdr

dT
Substituting (16) into (17)

X(0)=[l =@ ,(dT)®,(dT)] " x @ ,(d'T)

dT T
x J'eAl(dT_r)Bdr+ IeAZ(T"T)Bdr
0 dT

From the hypersurface at the switch@§F point

X3 (dT) + X, (dT) =k — o5 +%

(16)

(17)

(18)

(19)

X3(dT) +x,(dT)=[0 0 1 1]
dT
x[‘l’l(dT)X(OH IeAl(dT_T)Bdrj (20)
0
Hence

dT
001 1]><[(I>l(dT)X(0)+ jeAﬂdT‘”Bdr]
0 (21)

Ai
[ k=g +2 =0
[ ”’“2}

SubstitutingX (0) from (18) we can solve (21) using the
simulating annealing (SA) method to obtain the ehiitg
periodT. Knowingd andT, it is thus possible to calculate the
state vectoX (dT), X (0), the two saltation matric&s andS;,
and hence the monodromy matrix of the system (14).

Eigenvalues of the monodromy matrix

Using the monodromy matrix, we can investigatepbssible
bifurcation behavior exhibited by the period-1 ¢sbiThe
stability analysis can be obtained by examiningeb@uation
of the eigenvalues of the monodromy matrix, as patars
are varied. If all the eigenvalues of the monodranatrix are
inside the unit circle, the system is stable. Argssing of the
eigenvalues out of the unit circle indicates a lofsstability.

For Vi, = 15V, L=1mH, C=47F, R=40Q, 1=0.025,k=1.125
andd=0.5. The SA solution of equation (21) givEs13.655
ps. The state vectors when switch@gF, X (dT), and when
switching ON, X (0) can now be calculated from (16) and
a7):

X(dT) =[14.988729.9487 0.42530.4259"
X (0) =[14.988230.00240.3250.3247"

1 0 0 0
00154 1 06171 06171
-0025 0 00013 -0.9987

—-0.0250 0 -0.9987 0.0013

1 0 0 0
| 00118 1 04700 04700
271 -0025 0 00005 -09995
-0.0250 0 -09995 0.0005 |

The monodromy matrix is thus given by:

0.9881 0.0005 01454 -0.1462
WO.X0).T) = -0.0027 09958 -0.1468 0.1447
’ "/ 7| -0.,0065 0.0135 1 0.0060

0.0068 0 —0.0008 1



The eigenvalues of the monodromy are:

1
0.9927
0.9963+ 0.0618

eig(W (0, X (0),T)) =

As all the eigenvalues are inside the unit cirttie, system for

the above parameters is stable as expected andshdvig.

2. We will now examine the stability of the systamone of
the control parameteksis changed keeping constant. Table

1 shows the Floquet multipliers of the monodromytriraask
is varied. The monodromy matrix has two real eigdumes
and a complex conjugate pair. As the system is
autonomous system, one of the real eigenvaluebvisya 1
and the other is close to unity. Also, they do sighificantly
change with the changes in the bifurcation variatblerefore,
the two real eigenvalues do not influence the Btalif the

4 Controlling the Neimark Bifurcation

Previously, the system has been studied [1] usiagbmplex
eigenvalues of the system’s Jacobian at the edquilib
points. This technique can successfully deterntieestability

of the limit cycle. However, it offers little knoedige of how
this loss of stability occurs. The use of Filippevhethod
offers a further insight into the converter's opiena From
the instruction of the monodromy matrix (14), itciear that
the saltation matrice$; and S, play an important role in
determining the eigenvalues of the monodromy medrixl
hence the stability of the system. This leads &opbssibility

of altering the stability of the system by changihg saltation
gratricesS; andS,. This idea has been previously employed in
stabilizing discontinuous mechanical systems [6E&juation
(1) shows that the saltation matr& depends on the two
vector fields (which cannot change) and on the chwig
manifoldh. Based on this insight, two alternative methods ar

system. Ask increases the complex eigenvalues move outrbposed below to control the Neimark bifurcatiortieCuk

the unit circle. A Neimark bifurcation occurs jubefore
k=4.125, and the system loses stability as expdstemivn in
Fig. 3). Fig. 5 shows the locations of the eigengala is
varied from 1.125 to 4.125.

Absolute

value of the
K Eigenvalues complex pair
1.125| 0.9963+0.0618 1 0.9927 0.9982
1.5 0.9970+0.0561if 1] 0.9933 0.9986
1.875| 0.9976+0.0519 1 0.9938 0.9989
2.25 | 0.9979+0.0495i 1 0.9941 0.9992
2.625| 0.9983+0.0467 1 0.9944 0.9994
3 0.9985+0.0470i] 1| 0.9944 0.9996
3.375| 0.9987+0.0458 1 0.9945 0.9998
3.75 | 0.9991+0.0419i 1 0.9945 0.9999
4,125| 0.9991+0.044i 1 0.9871 1.0001

Table 1: Eigenvalues of the monodromy matrik &svaried.
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Fig. 5: Closed-up view of the locus of the eigeneal

converter and maintain stability over a much widirge of
bifurcation variables.

Changing the switching manifold by adding a small
component to the control parameter

This control method is based on altering the swigh
manifold by changing the normal vector This can be
achieved by adding a small componentto the control
parameter. The new control law is given by:

(1s(dT) +x(AT) = k= (u - apa(a) £ 5 22
Hence, the normal vector will be:
n" =[u+a 01 1] (23)

It is obvious that the eigenvalues of the monodramatrix
will be a function ofa. The question is, how can we calculate
the value ofa so that the stability characteristics remain the
same over a larger range kf For example, the value af
that keeps the absolute value of the complex erjerg at
0.9998 can be calculated by solving the nonlingaaton.

|0.9998x1 —~W|=0 (24)
The results of this algorithm for various valuekaire shown

in Fig. 6. On the basis of the above observatioa, have
derived a look-up table which we have used to psepa
supervising controller that adjusts the valua depending on
the value ok. The response of this controller is shown in Fig.
7.
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0.01 4

Optimum value of a

0.009

0.008

0.007
4.125
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K

4.725 4.925

Fig. 6: Values of for stable operatian
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Fig. 7: Sum of inductor currents &sncreases from 3.375 to
4.125.

Changing the switching manifold h by adding a slgna
proportional to the output voltage v

This control method is based on changing the nowaetiorn
by adding a signal proportional to the output \gdts to the
voltage feedback loop.This will change the second
coordinate of the normal vector The new control law is:

(16(T) + x,(A) = k= (dT) +bro (@) £ (25)

This will effectively alter the switching hypersadeh to:

by = (Xg(dT) + X, (dT)) = k + £, (dT) ~ b, (dT) —%‘ (26)
Hence, the normal vector will be:
n" =[g -b 1 1] 27) [1]

Now we can design a controller to place the absolatue of
the complex eigenvalues inside the unit circle esponding
to stable period one operation. This can be actdiyeusing [2]
the strategy explained in the previous controlldre results
are shown in Fig. 8. The response of this contraleshown
in Fig. 9.

3]

Conclusion

The monodromy matrix, which defines the state ftaoms
matrix over one full cycle, has been used to sthéystability [4]
analysis of the Cuk converter with a hysteresisresur
controller. Analysis of the autonomous system resviiaat the
system loses stability via Neimark Bifurcation. Twontrol [5]
methods based on the location of the Floqute nlidtipf the
system have been proposed, to force the systegeselues
within the unit circle and maintain stability forvéider range [6]
of values of the bifurcation parameters.

[7]

(8]
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4.725 4.925

Fig. 8: Values ob for stable operation.
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Fig. 9: Sum of inductor currents &sncreases from 3.375 to

4.125.
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