
Stability Analysis and Bifurcation Control of Hysteresis Current 
Controlled Ćuk Converter Using Filippov’s Method  

I. Daho*, D. Giaouris*(Member IET), B. Zahawi*(Member IET), V. Picker*(Member IET) and  
S. Banerjee** 

*School of Electrical, Electronic and Computer Engineering, University of Newcastle upon Tyne,UK. Ibrahim.daho@ncl.ac.uk 
** Department of Electrical Engineering, Indian Institute of Technology, Kharagpur, India. soumitro@ee.iitkgp.ernet.in 

Keywords: Ćuk converter, Bifurcation, Hysteresis controller, 
Filippov method. 

Abstract 

An autonomous Ćuk converter controlled by a hysteresis 
current controller is studied in this paper. Filippov’s method 
is employed for the first time to investigate the stability of an 
autonomous power converter. The Neimark bifurcation, via 
which the converter loses its stabile period one operation, was 
stabilized by applying two alternative control strategies based 
on the analysis of the behaviour of the complex eigenvalues 
of the monodromy matrix of the system.   

1 Introduction    

The Ćuk converter with hysteresis current control is an 
autonomous dynamical system as it is not switched at any 
specific clock frequency. To date, the number of studies 
carried out to identify the bifurcation and chaotic behaviour 
patterns of autonomous converters has been very limited. 
Conventionally, the stable operating range of the converter is 
assessed using the complex eigenvalues of the system’s 
Jacobian at the equilibrium points [1]. This technique can 
successfully determine the stability of the limit cycle; 
however, it offers little knowledge of how and why this loss 
of stability occurs. In this paper, Filippov’s method  is 
employed for the first time to investigate the stability of an 
autonomous power converter providing an insight into the 
nature of the problem, showing that the converter looses 
stability via a Neimark Bifurcation, thus allowing new control 
strategies to be developed to extend the range of stable 
period-one operation. The method has been previously 
applied to non-autonomous systems including the buck and 
the boost converters [2, 3].  

2 The Ćuk converter 

The Ćuk converter (Fig.1) is controlled by a hysteresis current 
controller, where the reference current iref is compared with 
the sum of the inductor currents i1+i2.  The switch S is turned 
ON when the sum of the inductor currents i1+i2 is lower than 
iref +∆i/2 and OFF when it goes above iref -∆i/2, where ∆i is 
the width of the hysteretic band. The reference current iref is 
related to the output voltage v1. If ∆i is sufficiently small, we 
can write: 
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Fig. 1: Ćuk converter under hysteretic controller. 

where k and µ are control parameters. The converter itself is 
governed by two sets of linear differential equations related to 
the ON and OFF states of the converter. The state equations 
of the system can be written as: 
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When the switch is turned OFF:   +−=−=
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The output voltages v1= x1, v2= x2, and the inductor currents 
i1= x3, i2= x4 are taken as the state variables of the system. In 
matrix form, we can write: 
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X= [v1 v2 i2 i1]
T and u is the input voltage Vin.  

Figs. 2 and 3 show inductor current waveforms for two 
different values of the control parameter k. Fig. 2 shows a 
stable operating condition (k=1.125) while a slow scale 
instability occurs when k=4.125, as shown in Fig. 3 (L1= 
L2=1mH C=47µF, R=75Ω, Vin=15V and µ=0.025). 
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Fig. 2:  Stable inductor current waveform i1 
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Fig. 3: Unstable inductor current waveform i1 

3 Stability analysis using Filippov’s method  

The new method is based on the Floquet multipliers (the 
eigenvalues of the monodromy matrix) of the system’s 
monodromy matrix W: i.e. the fundamental solution matrix 
over one full cycle. If the system is piecewise smooth (as is 
the case for the hysteresis current controlled Ćuk converter), 
the monodromy matrix may be broken into areas where the 
vector field is smooth and areas where the vector field crosses 
a switching manifold. Suppose a periodic orbit starts at t0 and 
is passing from the subsystem-1 given by the vector field f-

(x,(t)), intersects the switching manifold defined by the 
algebraic equation h(x(t),t) = 0 at tΣ, and goes to subsystem-2 
given by the vector field  f+(x(t)). It has been shown [4, 5] 
that when there is a transversal intersection, the state 
transition matrix across the switching manifold, called also 
the saltation matrix S, is given by: 
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Where tΣ+ and  tΣ- indicate the time instant just before and 
after the switching manifold, tΣ is the time at which the orbit 
crosses the switching manifold and n is a vector normal to the 
switching surface.                                                                        

Then at one switching point the monodromy matrix can be 
composed as:   
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      (7) Φ1( tΣ,t0, x(t0)) is the state transition matrix during the first 
time interval (i.e. when the switch is ON), Φ2(t0 +T, tΣ, x(tΣ))  
is the state transition matrix for the second interval (i.e. when 
the switch is open) and T is the switching period.  

Derivation of the monodromy matrix of the Ćuk converter  

The hysteresis current controlled Ćuk converter has two 
switching manifolds: one where the switch is turned OFF and 
the other when the switch is turned ON, as shown in Fig. 4. In 
order to derive the monodromy matrix of the system we need 
to know the two saltation matrices at the two switching 
manifolds. To study the stability of the period-1 orbit, it 
suffices to consider t varying from 0 to T. 
The switching hypersurface 1h  when the switch is turned 

OFF is given by: 
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The normal vector n is given by: 

]110[),(1 µ=∇= dThT Xn     (9) 

The two vector fields before and after switching OFF are: 
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Fig. 4: Phase space and the transversal intersection. 

And the saltation matrix at switching OFF is: 
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The switching hypersurface )( 2h when the switch is turned 

ON is given by: 
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The normal vector n is given by: 

]110[),(2 µ=∆= ThT Xn   (12) 

The two vector fields before and after switching ON are: 
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The saltation matrix at switching ON is: 
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The monodromy matrix of the system is then given by: 

)0,(),()0,( dTdTTT 1122 ΦSΦSW ×××=   (14) 

The state transition matrix during the first time interval (i.e. 
when the switch is ON) is given by Φ1(dT,0)=eA

1
dt. The state 

transition matrix for the second interval (i.e. when the switch 
is OFF) is given by Φ2(T,dT)=eA

 2
T(1-d). 

Hence, the Monodromy matrix becomes: 
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Calculation of switching period T  

In order to calculate the transition matrices we need to know 
the duty cycle d and the switching period T.  The duty cycle d 
can be calculated from the average model of the Ćuk 
converter. The switching period T can be calculated as 
follows: 

Let the duty cycle d = t/T and d′=  (1-d)T. The value of the 
state victor at t=dT is: 

∫ −+=
dT

dT dedTdT
0

)()0()()( ττ BXΦX 1A
1         (16) 

The state victor at t=T is:  
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ττ ττ dede

TddTTd
T

dT

T
dT

dT BB

ΦΦΦIX

21 AA

212

∫∫ −−

−

+×

′×′−=

)(

0

)(

1 )()]()([)0(

   (18) 

From the hypersurface at the switching OFF point 
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Substituting X (0) from (18) we can solve (21) using the 
simulating annealing (SA) method to obtain the switching 
period T. Knowing d and T, it is thus possible to calculate the 
state vector X (dT), X (0), the two saltation matrices S1 and S2,  
and hence the monodromy matrix of the system (14).  

Eigenvalues of the monodromy matrix 

Using the monodromy matrix, we can investigate the possible 
bifurcation behavior exhibited by the period-1 orbits. The 
stability analysis can be obtained by examining the evaluation 
of the eigenvalues of the monodromy matrix, as parameters 
are varied. If all the eigenvalues of the monodromy matrix are 
inside the unit circle, the system is stable. Any crossing of the 
eigenvalues out of the unit circle indicates a loss of stability. 

For Vin = 15V, L=1mH, C=47µF, R=40Ω, µ=0.025, k=1.125 
and d=0.5. The SA solution of equation (21) gives T =13.655 
µs. The state vectors when switching OFF,  X (dT), and when 
switching ON, X (0) can now be calculated from (16) and 
(17): 
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And the saltation matrices S1 and S2:  −−
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 The monodromy matrix is thus given by: 
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The eigenvalues of the monodromy are: 
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As all the eigenvalues are inside the unit circle, the system for 
the above parameters is stable as expected and shown in Fig. 
2. We will now examine the stability of the system as one of 
the control parameters k is changed keeping µ constant. Table 
1 shows the Floquet multipliers of the monodromy matrix as k 
is varied. The monodromy matrix has two real eigenvalues 
and a complex conjugate pair. As the system is an 
autonomous system, one of the real eigenvalues is always 1 
and the other is close to unity. Also, they do not significantly 
change with the changes in the bifurcation variable; therefore, 
the two real eigenvalues do not influence the stability of the 
system. As k increases the complex eigenvalues move out of 
the unit circle. A Neimark bifurcation occurs just before 
k=4.125, and the system loses stability as expected (shown in 
Fig. 3). Fig. 5 shows the locations of the eigenvalues as k is 
varied from 1.125 to 4.125. 

Table 1: Eigenvalues of the monodromy matrix as k is varied. 
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Fig. 5: Closed-up view of the locus of the eigenvalues. 

 
 

4 Controlling the Neimark Bifurcation  

Previously, the system has been studied [1] using the complex 
eigenvalues of the system’s Jacobian at the equilibrium 
points. This technique can successfully determine the stability 
of the limit cycle. However, it offers little knowledge of how 
this loss of stability occurs. The use of Filippov’s method 
offers a further insight into the converter’s operation. From 
the instruction of the monodromy matrix (14), it is clear that 
the saltation matrices S1 and S2 play an important role in 
determining the eigenvalues of the monodromy matrix and 
hence the stability of the system. This leads to the possibility 
of altering the stability of the system by changing the saltation 
matrices S1 and S2. This idea has been previously employed in 
stabilizing discontinuous mechanical systems [6-8]. Equation 
(1) shows that the saltation matrix S depends on the two 
vector fields (which cannot change) and on the switching 
manifold h. Based on this insight, two alternative methods are 
proposed below to control the Neimark bifurcation in the Ćuk 
converter and maintain stability over a much wider range of 
bifurcation variables.  

Changing the switching manifold by adding a small 
component to the control parameter µ 

This control method is based on altering the switching 
manifold by changing the normal vector n. This can be 
achieved by adding a small component a to the control 
parameter µ.  The new control law is given by: 
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 Hence, the normal vector will be: 

]110[ aT += µn   (23)       

It is obvious that the eigenvalues of the monodromy matrix 
will be a function of a. The question is, how can we calculate 
the value of a so that the stability characteristics remain the 
same over a larger range of k? For example, the value of a 
that keeps the absolute value of the complex eigenvalues at 
0.9998 can be calculated by solving the nonlinear equation. 

09998.0 =−× WI   (24) 
The results of this algorithm for various values of k are shown 
in Fig. 6. On the basis of the above observation, we have 
derived a look-up table which we have used to propose a 
supervising controller that adjusts the value of a depending on 
the value of k. The response of this controller is shown in Fig. 
7.  
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Fig. 6: Values of a for stable operation. 

K Eigenvalues 

Absolute  
value of the 
complex pair 

1.125 0.9963±0.0618i 1 0.9927 0.9982 
1.5 0.9970±0.0561i 1 0.9933 0.9986 

1.875 0.9976±0.0519i 1 0.9938 0.9989 
2.25 0.9979±0.0495i 1 0.9941 0.9992 
2.625 0.9983±0.0467i 1 0.9944 0.9994 

3 0.9985±0.0470i 1 0.9944 0.9996 
3.375 0.9987±0.0458i 1 0.9945 0.9998 
3.75 0.9991±0.0419i 1 0.9945 0.9999 
4.125 0.9991±0.044i 1 0.9871 1.0001 
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Fig. 7: Sum of inductor currents as k increases from 3.375 to 

4.125. 

Changing the switching manifold h by adding a signal 
proportional to the output voltage v2   

This control method is based on changing the normal vector n 
by adding a signal proportional to the output voltage v2 to the 
voltage feedback loop. This will change the second 
coordinate of the normal vector n. The new control law is: 
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This will effectively alter the switching hypersurface h to: 
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Hence, the normal vector will be: 

]11[ bT −= µn           (27) 

Now we can design a controller to place the absolute value of 
the complex eigenvalues inside the unit circle corresponding 
to stable period one operation. This can be acheived by using 
the strategy explained in the previous controller. The results 
are shown in Fig. 8. The response of this controller is shown 
in Fig. 9.  

Conclusion  

The monodromy matrix, which defines the state transition 
matrix over one full cycle, has been used to study the stability 
analysis of the Cuk converter with a hysteresis current 
controller. Analysis of the autonomous system reveals that the 
system loses stability via Neimark Bifurcation. Two control 
methods based on the location of the Floqute multiplier of the 
system have been proposed, to force the system’s eigenvalues 
within the unit circle and maintain stability for a wider range 
of values of the bifurcation parameters. 
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Fig. 8: Values of b for stable operation. 

0.2996 0.2997 0.2998 0.2999 0.3 0.3001 0.3002 0.3003 0.3004
3.6

3.8

4

4.2

4.4

4.6

4.8

5

Time (s)

i1
+

i2
(A

)

 
Fig. 9: Sum of inductor currents as k increases from 3.375 to 

4.125. 
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