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Abstract 

Renewable energy sources have been widely adopted to stop global warming. This growing adaptation has led to a significant 
change in topologies of traditional power networks, and now we have the concept of a microgrid. Model Predictive Control is 
an advanced method that is used to control power systems while satisfying several constraints to achieve an optimal solution 
based on various criteria. Although, Model Predictive Control is robust and has several advantages, its implementation is often 
very complex and requires high computational power. On the other hand, ε-variables based control strategies, which are practical 
methods to model control strategies in microgrids, are able to simplify the control structure allowing more scalability and even 
resilience. This paper presents, a hybrid method to simplify the implementation of Model Predictive Control using ε-variables 
and make it more effective on complicated energy systems. Our results demonstrate that combining Model Predictive Control 
with ε-variables can significantly simplify the control structure and hence allow for more complicated control strategies to be 
employed in order to provide extra benefits to the energy system like scalability and robustness.   

1 Introduction 

The development of renewable energy sources (RESs) and the 
increased usage of energy storage have led to the conversion of 
the traditional power network to novel topologies such as 
microgrids (MGs). MG that integrates different types of energy 
sources such as RESs (photovoltaic (PV) panel, wind), energy 
storage systems (battery, hydrogen, pumped hydro (water)), 
diesel generator, and load and control devices have been 
presented in [1], [2]. Also, a MG can decrease the network 
congestion in energy sources and reduce power losses and 
running costs by operating in a more decentralized way [3]–[5]. 
However, a MG has extra difficulties in terms of controllability 
because of unexpected power changes in real-time operation, 
intermittent energy generation, and random energy 
consumption [6], [7]. Therefore, advanced control technologies 
are required to ensure a satisfactory energy management 
system [8], [9]. 

In existing literatures, authors have reported several methods 
such as Fuzzy Logic Controller, Rule-Based Control, Linear 
Quadratic Integrator, Hysteresis Controller, Power Pinch 
Analysis and so on to control MG systems [9]–[12]. Moreover, 
a complex energy management strategy (EMS) algorithm was 
exploited using mixed-integer programming by Niu et al. [13] 
and Terlouw et al. [14]. Furthermore, Wu et al. [15] used 
stochastic dynamic programming. In contrast, a stochastic 
optimization algorithm was utilized by Acquah and Han [16] 
and Conte et al. [17]. Nevertheless, Model Predictive Control 
(MPC) is an advanced and more effective control scheme than 
traditional control strategies which cannot forecast 
uncertainties or disturbances. Also, MPC has a fast transient 
response [7] because the leading role of MPC is to integrate 
between new updated data and forecasts. By doing so, the 

MPC can make better decisions for the future demeanour of 
the system using various constraints [18].  

A MPC has three main components (i) predictive model, (ii) 
objective (cost) function, and (iii) solving algorithm [19]. 
MPC can be effectively utilized in various ways to better 
control MG system compared to the other control strategies. 
For instance, the understanding of MPC is straightforward and 
intuitive. Also, it is flexible to implement in many power 
converter topologies. It works by taking into consideration 
several constraints and uncertainties [20]. On the other hand, 
it utilises complex algorithms and it imposes a high number of 
control parameters, so it requires longer time to solve than the 
other methods. In other words, it needs high processing power 
and computational time [21]. Hence, it needs to be improved in 
terms of complexity and scalability. 

On the other hand, in [18] it was first proposed a new method 
to systematically model EMSs using a concept based on 
evolution operators and the state of the directed graph that 
represents the system. This method is based on the so called ε-
variables describing the evolution and hence the control 
approach of a multi-vector energy system [22]. Key to this 
approach is that every asset in the system is being represented 
by a node and every flow of energy and/or matter is represented 
by an edge between the nodes (see Fig. 1).  

More specifically, according to [18], a hybrid energy system 
can be easily described using graph theory. In other words, 
complex energy systems can be illustrated in such a way to 
simplify their analysis, operation and management with the 
help of graph theory enhanced by using the aforementioned 
evolution operators. This methodology says that any energy 
system comprises of three main elements: flows, accumulators, 
and converters. The flows represent the flow of energy and/or 
matter, the accumulators accumulate energy or matter, and the 
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converters convert energy/matter to energy/matter. Finally, the 
control statements that operate the converters are the evolution 
operators that describe the EMS employed by the multi-vector 
system [23]. In this paper, we follow a similar approach with 
the goal of producing a more systematic approach to design 
MPC for hybrid energy systems. As a proof of concept, we use 
a simple energy system, Fig. 2, where flow is power, an 
accumulator is the battery (BAT), and converters are the 
photovoltaic (PV) array, utility grid (GR), and load (LD). The 
graph of that system us shown in in Fig. 1 and the assets of the 
microgrid system can be divided into two sets such as 
RsAccumulator = {BAT} and RsConverters = {PV, GR, LD}, [18]. 
As can be understood clearly from Fig. 1, the flow can be 
defined as the connection between two nodes: for instance, PV 
to BAT and BAT to LOAD. Hence the set of flow in this paper 
can be considered as: Flow =  {(Electrical) Power}. 

 
Fig. 1. The illustration of directed graph 

This paper proposes a novel hybrid method to implement the 
MPC while keeping the same advantages of MPC but making 
it more scalable and straightforward using the EVM. This 
method can be called as hybrid MPC-ε-Variable Method 
(MPC-EVM). 
 
2 Methodology 

2.1 Structure of the PV-Battery-Grid System (PBG) 
As shown in Fig. 2, the MG system is composed of a PV, a 
battery used as an energy storage system, and a utility grid 
system. The PV is utilized to meet the daily load demand for 
the MG system. Red and orange line might be be-directional; 
however, they were considered as one-directional in the paper. 

 
Fig. 2. Structure of the PBG system 

2.2 The Implementation of MPC 

As illustrated in Fig. 3, the MPC mechanism forecasts system’s 
behaviour and optimizes its performance using the dynamic 
model (10), cost function, and constraints (1-9) in order to 
generate the best decision [24]. 

   
Fig. 3. The schematic of MPC 

The MPC is implemented and calculated by employing the set 
point values, past inputs, outputs, and predictions of the future 
output values. It computes a set of Nc values of the input which 
can be represented as u(k + Nc− 1) at kth sample. In other 
words, the set consists of the present input and future inputs are 
u(k) and Nc− 1, respectively. On the one hand, calculating a 
set of Np predicted outputs y(k + Np) continues until the 
system reaches the optimum values. Another prominent 
characteristic of MPC is ‘receding horizon control’ to gain the 
dispatching strategy. It the worthy of note that only the first 
move is applied, then a new sequence is estimated at the k + 1. 
This step is re-applied for each sampling k time as represented 
in Fig. 3 [24].  

2.2.1 The constraints of the components of PBG 
The PV system is used to supply the load demand and charge 
the battery. It runs depending on several constraints at 
sampling time k, as follows:  

0  ≤  PPV(k) ≤  PPV
max (1) 

0 ≤ PVLD(k) ≤  PVLD
max (2) 

0  ≤  PVBAT(k) ≤  PVBAT
max (3) 

where PPVmax, PVLDmax, and PVBATmax represent the 
maximum energy from the PV to the load, to the battery and 
the grid, respectively. Also, the sum energy for meeting the 
load demand and charging the battery can be symbolized as 
PPV as below:  

PPV (k) = PVLD (k) + PVBAT (k) (4) 

The battery is exploited both in charging and discharging mode 
relying upon whether the sunlight is sufficient or not. Hence, 
the charging and discharging of the battery can be defined by 
an equation as follows: 

SOC (k+1)= SOC (k)+ 
ηchPVBAT(k)

C
- 

BATLD(k)
C(ηdis)

 
(5) 

In addition, constraints related to the battery can be 
represented as below: 



3 
 
 

 SOCmin ≤ SOC(k) ≤ SOCmax (6) 

0 ≤ BATLD(k) ≤ BATLD
max (7) 

where SOC is the state of charge of the battery, SOCmin  and 
SOCmax  represent the minimum and maximum of SOC of the 
battery, respectively. BATLD

max and C are consecutively 
hourly allowable maximum discharging power and battery 
capacity. Lastly, 𝜂𝜂𝑐𝑐ℎ and 𝜂𝜂𝑑𝑑𝑑𝑑𝑑𝑑 are the charging and discharging 
efficiency of the battery, respectively. 

The utility grid is exploited to meet the load demand when the 
PV panel and the battery are insufficient. This is the last option 
because this scenario is more expensive and not 
environmentally friendly. The only advantage of its 
exploitation is to be available at any time except for blackout. 

Moreover, the constraints related to the grid system and load 
can be written as: 

0 ≤ GRLD (k) ≤ GRLD
max                             (8) 

PVLD (k) + BATLD (k) + GRLD (k) = PLD(k) (9) 

where GRLD
max is represents the maximum quantity of power 

from the utility grid. 

2.2.2 Objective Functions of PBG 
The cost functions of the PBG system are: 

• To minimize the energy consumption from non-RES: 
∑ w1

2GRLD(k)2k+Np
k  

• To increase the life cycle of battery: 
∑ w2

2(PVBAT(k)2 + BATLD(k)2)k+Np
k  

• To maximize the practicality of the renewable energy 
usage: ∑ w3

2(PVLD(k)2 + PVBAT(k)2)k+Np
k  

 
where Np is the prediction horizon w1, w2, and w3 are 
represent the cost weight factors. 

The linear state-space equation can be defined according to the 
battery equation. In general, the linear state-space equation can 
be represented as follows: 

x(k + 1) = Ax(k) + Bu(k) 

y(k) = Cx(k) + Du(k) 

(10) 

where x is the state vector and SOC of the battery in this 
system, u is the input vector known as control vector as well 
and PVLD, PVBAT, and BATLD. Lastly, y is the output vector and 
GRLD in the system. A, B, C, and D can be defined depending 
on Eq. (5). x, u, and y illustrate as follows: 

x(k) = [SOC(k)] (11) 

u(k) = [PVLD(k); PVBAT(k); BATLD(k)] (12) 

y(k) = [GRLD(k)] (13) 

2.2 The Implementation of hybrid MPC-EVM technique 
As illustrated in Fig. 4, the ‘data’ that are exploited by the 
hybrid MPC-EVM technique as input data are initially obtained 
using the MPC method. The ‘data’ are GRLD, PVLD, PVBAT, and 
BATLD in Fig. 4. Then, the evolution operators are calculated 
based on the state of the accumulators and the converters. More 
specifically:  

• The evolution operator for the converters can be defined 
by three factors and symbolized by binary variables: ϵiAv, 
ϵi
Req, and ϵiGen represent the availability of power, 

requirement for load, and potentially desired condition, 
respectively as shown in Fig. 4. The availability of energy 
relies upon the condition of the accumulators. In other 
words, the binary variable, ρ is 0 or 1 depending on the 
accumulators, as can be seen below: 

ϵiAv = LAccumulatorAv (ρiSOAcc
BAT) (14) 

ϵi
Req = LAccumulator

Req (ρiSOAcc
BAT) (15) 

ϵiGen = LAccumulatorGen (ρiSOAcc
BAT) (14) 

εi(k) = ϵiAv(k)˄ϵi
Req(k)˄ϵiGen(k) (15) 

where LAvailability  and LRequired are the logical operators ‘and’ 
or ‘or’, while the general condition relies upon the condition of 
converters in general. Also, εi(k) is state of converter i, ϵiAv(k) 
and ϵi

Req(k) are boolean variables that determine the 
availability and requirement of converter i.  
 
 

 
Fig. 4. The illustration of the proposed method (MPC-EVM)
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• The power flows are calculated by multiplying equation 
(12) and (17), and equation (13) and (17). 

• The last step is to calculate the evolution operator for 
accumulator: 

SOAccBAT(k+1)=SOAccBAT(k)+
FPV→BAT

Power (k)-FBAT→LD
Power

Battery Capacity
 

(16) 

• SOAccBAT(k)∈[0,1] 
 

Depending on their working situation (activated or not), the 
converters are illustrated as: εi(k) ∈ {0,1} where i ∈
RsConverters. 

3  Results 

3.1 Simulation results of hybrid MPC-EVM technique 
Load and PV array data for 24-hours were obtained from the 
building in the UK for the simulation. Initially, we used the ε-
variables to implement the MPC with the ε-variables, and we 
got identical results with the normal MPC, implying that the 
proposed method does not alter the basic goals and behaviour 
of the MPC. Having said that, using the ε-variables, we can 
easily expand to more complicated systems and more 
complicated control constraints by modifying the logical 
operators of the ε-variables. As an example, initially when the 
SOC is below 30%, the MPC will import energy from the grid, 
as illustrated in Fig. 5. However, there are cases where this 
may happen close to a point where the PV will produce enough 
power to compensate for the slight drop of SOC below 30% 
and hence increase the system’s autonomy from the main grid. 
So, in this case, and without changing the MPC structure the 
evolution operator of the converter “Grid” will contain another 
term that will be logical 0 when it is anticipated that the PV 
will produce sufficient power in 1 or 2 samples. Since, in this 
work, this evolution operator uses the AND logical gate, when 
this new binary variable is 0, the evolution operator will also 
be 0 and hence the system will not import energy from the 
main grid, Fig. 6. However, the hybrid MPC-EVM will import 
energy from the utility grid between at 12 AM and 8 AM to 
meet the critical load demand. 

4 Conclusion 

To conclude, there are many reasons to utilize the MPC 
technique to manage the MG power system. The MPC can 
predict power generation and consumption and cope with 
uncertainties and disturbances by employing cost functions 
and constraints. However, the implementation of MPC is not 
straightforward especially in complex microgrid systems. 

Also, it requires high processing power and computational 
time. To overcome these problems, the EVM has been 
employed with the MPC technique in this paper. Using this 
hybrid method, the complexity of the MPC implementation is 
mitigated, and the scalability and controllability of the PBG 
system are improved at any given time. In other words, the 
system's control is made more straightforward using the MPC-
EVM technique. In this paper we first demonstrated that the 
MPC and the MPC-EVM produce the same results, and then 
as a case study we gave an example of how the EMS can easily 
be altered without having to do any changes within the MPC. 
In future work, the scalability of the proposed method will be 
fully demonstrated on a real system that was built in Xanthi, 
Greece and that employs a fuel cell and an electrolyser in order 
to have complete autonomy from the main grid.  

 
Fig. 5. Power flows using standard MPC 

 
Fig. 6. Power flows using hybrid MPC-EVM 
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