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Abstract – This paper presents the application of the wavelet 
transform in electric drives schemes.  Wavelets can significantly 
improve the behavior of a Kalman filter used for speed estima-
tion.  Furthermore an adaptive multiresolution wavelet analysis 
method is proposed for current denoising especially targeted for 
electric drives applications that have a V/f structure.  This 
adaptive method compensates for the delay problem that every 
wavelet based denoising scheme imposes.   
 

I.  INTRODUCTION 
 

In electric drives applications the use of signal transforma-
tions is very common.  Among others, the Laplace and the z-
transforms are used for designing controllers while the Fou-
rier transform is primarily used for designing filters that will 
remove unwanted noise components from useful measure-
ments.  A relatively new technique in this is the wavelet 
transform with most applications in fault detection and con-
dition monitoring [1-3].  It is found that the use of wavelets 
provides additional tools to monitor electric drives applica-
tions, with considerable advantages comparing to convec-
tional detection techniques, which for example measure the 

ti ∆∆  of the phase currents.  It is well known, in the digital 
signal processing community, that wavelets revolutionized 
data compression applications by offering compression rates 
which other methods could not achieve [4].  Another applica-
tion similar to compression is wavelet shrinkage, which al-
lows the denoising of useful signals without focusing on spe-
cific frequency coefficients [5].  As was reported in [5] sim-
ple drives denoising schemes (based on FIR filters) produced 
similar results to those of wavelets.  Hence wavelets should 
not be applied for these applications since they are more 
complex than simple FIR filters.  Wavelets can prove [5] to 
be more successful in speed sensorless applications, [6].  In 
these cases the useful information (rotor speed) is modulated 
by an injected high frequency signal and demodulating 
methods that are based on wavelets produce better results. 

Another equally popular method to estimate the rotor 
speed is to use a Kalman filter [7] which has good estimation 
characteristics but its correct use is heavily correlated with 
good estimate of the noise properties of the current sensors 
(as also be proved here).  An incorrect value of the covari-
ance of the measurement noise will significantly downgrade 
the overall performance of the drive. 

This paper addresses these two very important issues in the 
control of electrical machines, correct denoising and proper 
estimation of the noise components in the current measure-
ments.  The paper is organized as follows, initially the wave-
let transform and the Kalman filter are briefly described in a 
way suited to drives applications and then the problems of 
the Kalman filter are investigated.  A solution based on 
wavelets is proposed which greatly improves the behavior of 
the estimation technique.  The second part of this paper pre-
sents a significance improvement in denoising schemes that 
are applied to electric drives and is based on wavelets.  This 
is achieved by using an adaptive technique which changes 
the level of decomposition depending on the rotor speed. 
 

II.  WAVELET TRANSFORM 
 

According to Strang [8] a transform is nothing more than 
another way to view a signal (or a vector).  A transform, 
breaks a signal, f , into numerous fundamental components 
whose processing may help to reveal or remove specific 
characteristics of the signal.  This breaking is accomplished 
by finding the correlation of the signal under investigation 
and the fundamental components ...1,0, =ixi   The correla-
tion of continuous time signals is expressed by an integral: 

∫
+∞

∞−

⋅= dtxfci .  This is similar to the inner product of two 

vectors if it is assumed that the values of the two signals are 
"stored" in a vector with infinite entries.  It is well known 
from vector theory that when the inner product of two vec-
tors is zero then the vectors are orthogonal.  By extending the 
same concept to signals, if the correlation of two signals is 
zero then they are orthogonal: 

gfdtgf ⊥⇒=⋅∫
+∞

∞−

0  (1) 

In the classical Fourier transform the fundamental compo-
nents are complex exponentials, tje ω−  that extend from −∞  
to +∞  which can be proved to be mutually perpendicular 
(orthogonal) to each other.  These infinite complex exponen-
tials form a basis where all signals can be decomposed and 
hence studied.  The Fourier transform can be written as: 



 

( ) ∫
+∞

∞−

−= dtefF tjωω  (2) 

The correlation with one of these exponentials will pro-
duce a value and this will be the frequency component of the 
signal at that frequency.  By using all the exponentials and 
their correlations with the signal f, the frequency spectrum 
can be derived.  For example if the signal under considera-
tion is a pure sine wave then the frequency spectrum will be 
a Dirac pulse at the frequency of the sine wave, Fig. 1a. 

Unfortunately in reality and more importantly in real time 
applications it is impossible to study signals that extend from 
−∞  to +∞ .  Also there are applications (like fault detection 
and high frequency injection) where it is desirable to see 
when specific components appear in the signal.  Hence the 
signal has to be truncated; i.e. only a small portion of the 
signal can be studied at each time.  This effectively means 
that the fundamental component is multiplied by a window 
function ( )tw  (often a rectangular window) which is con-
tinuously shifted to cover the signal under study; this is the 
windowed Fourier transform: 

( ) ( ) ( )∫
+∞

∞−

−−= dtetwtfWF tjωττω,  (3) 

The effect of using windows is to smear and leak the fre-
quency components of the signal.  For example in the previ-
ous case with the sine wave the frequency spectrum will not 
be a pure Dirac pulse but it will be the convolution of the 
Dirac pulse with the ( )⋅sinc  function (Fourier transform of 
the rectangular window), Fig. 1b.  Hence if there are two 
frequency components that are close they may be shadowed 
by the main lobe of the ( )⋅sinc  function and hence falsely 
believe that there is only one frequency component.  To re-
duce the width of the main lobe the length of the time win-
dow must be extended but then it is possible that the two sine 
waves may not exist at the same time; hence the frequency 
spectrum will give an inaccurate representation of the signal.  
The time information is not lost in the frequency spectrum 
but it is well hidden under a series of subharmonics. 
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b:  
Fig. 1  Fourier transform of pure sine wave, of rectangular 

window, and windowed Fourier transform of pure sine wave. 

The goal in most applications is to be able to identify when 
an event takes place (time resolution) and what is its fre-
quency (frequency resolution).  From the previous analysis it 
is obvious that it is not possible to have perfect frequency 
and time at the same time.  To achieve this, the transforma-
tion must include windows whose size can vary and this is 
not possible with the windowed Fourier transform.  To solve 
this problem the wavelet transform is forcing the window to 
have a logarithmic coverage of the frequency spectrum by 
imposing that the frequency width of the window is 

constant/ =∆ ff .  This is achieved by using a version of the 
windowed Fourier transform over and over again for various 
lengths of the window.  Furthermore the fundamental com-
ponents of the decomposition are not truncated and shifted 
exponentials but other asymmetric and irregular small waves, 
i.e. wavelets.  The transformation now will include not only 
the shifts on the wavelet but also their scale: 

( ) ( ) ( ) ( )∫∫ 





 −=+=

−
dt

a
bttxadtbattxbac ψψ 2

1
,  (4) 

The asymmetric function ψ  is called the mother wavelet 
and it is shifted, scaled and compared (correlation) with the 
original signal.  Hence the wavelets achieve a logarithmic 
coverage of the time-frequency plane, Fig. 2, and they have 
arbitrary good frequency resolution for low frequency com-
ponents and arbitrary good time resolution for high fre-
quency components. 

 
Fig. 2  Time frequency plane for the wavelet transform 

 
An obvious consequence of this continuous scaling and 

shifting is that the wavelet transform involves “two times” 
infinite number of coefficients and hence it is unappealing to 
on-line applications, i.e. it does not constitute an orthogonal 
transformation.  In [9] Mallat proposed the fast wavelet 
transform which uses only a finite number of scales and 
shifts through successive high and low pass filtering.  Each 
scale is represented by a dyadic filter bank.  The outputs of 
the high pass filter are called details and the outputs of the 
low pass filter are called approximations.  Then the approxi-
mations from the current scale are filtered again by another 
set of 2 filters.  The successive filtering of the approxima-
tions at each scale accomplishes the fast wavelet transform, 
which is an orthogonal transformation.  The synthesis or the 
inverse wavelet transform is accomplished by using a similar 
process.  Before the synthesis bank the approximations and 
details can be process for example to remove unwanted noisy 
components. 



 

Since the wavelet transform is a linear transformation then 
the details and approximations of two different signals (a 
current measurement and the sensor noise) can be added to-
gether to produce the details and approximations that the sum 
of the two signals would produce (output of sensor).  Also it 
can be assumed that a pure noise signal will have coefficients 
with small absolute value.  Hence before the synthesis bank a 
threshold can be applied to the coefficients and if they are 
below a specific value they will be disregarded.  This is an 
irreversible operation and will also influence the useful sig-
nal but since that has more coefficients with high values the 
final result will be a slightly distorted, almost noised free, 
signal. 
 

III.  KALMAN FILTER 
 

The (digital) Kalman Filter (KF) is a stochastic posteriori 
estimator whose estimating gain (K) is continuously adapted 
to minimize the covariance of the error (P) between the real 
and the estimated state vector.  The system is described in the 
normal discrete state space form with the addition of two 
extra vectors that contain noisy signals, Figs.  3 & 4: 
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )kkkk

kkkkkk
VXHY

WUΓXΦX
+=

++=+1
 (4) 

 
The vector W represents the effect of the unmodelled un-

certainties and V represents the noise added at the (current) 
measurements by the sensors.   
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Fig. 3 Stochastic state space model 
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Fig. 4  Posteriori estimator 

 

The basic steps in designing a KF are: 
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where R and Q are the covariances of V and W respectively. 

Hence initially the error covariance is calculated and then 
the new state vector is predicted.  Based on these the opti-
mum KF gain is calculated and then through that the best 
state vector and error covariance are updated.   

The induction machine is modelled with dq quantities (in 
the stator reference frame) and the signal W represents the 
changes in the rotor and stator inductances and resistances.  
This happens due to temperature increases or magnetic 
nonlinearities (Eddy currents, saturation…).  The signal V 
again represents the noise that is added to the stator current 
measurements; the rotor currents cannot be measured and 
hence have to be estimated.  Therefore the KF will have to 
smooth the two stator currents and based on the stochastic 
model, the input signal and the noisy stator measurements to 
estimate the two rotor currents expressed at the stator refer-
ence frame.  The previous 5 equations show the estimated 
state vector heavily depends on the values of R and Q.  A 
large value of R (or small Q) means that the model is more 
accurate and hence the filter is focused on predicting the state 
vector by the first 2 equations.  If R is decreased (or Q is 
increased) then the KF assumes that the noise that is added to 
the measurements has a smaller effect than the model uncer-
tainty and will focus more on correcting the predicted values 
of the state vector, i.e. will increase the gain K.   
 
A. Practical problems by using a Kalman filter 
 

As indicated, the KF can estimate all four dq currents (sta-
tor and rotor) but this imposes a heavy computational effort 
on the overall drive.  Also, as for all drives estimating 
schemes, eventually it cannot cope with low speed operation 
since the induction machine then behaves like a resistance.  
Another practical problem is the correct choice of the meas-
urement and process noise covariance.  To test this sensitiv-
ity of the KF a simple V/f scheme, [10], was used where it 
was assumed that the applied torque on the rotor shaft can be 
measured.  Hence the KF will estimate the four dq currents 
and through that the electromechanical toque.  Using the 
value of the load torque and assuming negligible friction it is 
thus possible to estimate the rotor speed.  This is an idealised 
case which is found only in simplified studies, but this paper 
is focused on minimising the sensitivity of the KF rather than  
introducing a new scalar control or estimation scheme. 
 



 

B. Kalman filter and wavelets 
 

In Fig. 5i the error between the estimated and the real 
speed response of such a scheme can be seen.  This uses a 2 
pole induction machine with a constant load of 10Nm, a de-
sired speed of 40Hz and an acceleration of 50rad/s2.  The 
sampling frequency was 10kHz, the initial error covariance 
10I, the process noise 0.0001I and the measured noise rI.  
For fuller motor details see table I.   

If the KF had the wrong information (or simply the noise 
characteristics change) the estimating error would diverge to 
infinity with catastrophic results for the drive.  The result of 
this is shown in Fig. 5iii where it is clear that the overall be-
haviour of the KF is downgraded.  A possible solution to that 
problem is to use wavelets and their denoising properties but 
in reverse.  In this case all the coefficients with high values 
are disregarded and the synthesis bank works only with the 
noise components.  This will effectively remove any dc com-
ponent of the signal and the variance of the noise can be cal-
culated on-line by using the formula: 

( )( )∑
=

=
N

k
kh

N
Var

1

21  (5) 

where h is signal after the synthesis bank. 
 
 
 
 
 
 
 
 

TABLE I 
 RATED VALUES FOR DELTA-CONNECTED SQUIRREL CAGE IM 

 
Quantity  Value 

Power 7.5 [kW] 

Pole Pair Number, P 1 

Rated Frequency 50 [Hz] 

Rated Voltage 415 [Volts] 

Rated Torque 25 [Nm] 

Rated Speed 2860 [rpm] or 300 [rad/sec] 

Rated Current 13.5 [A] 

Stator Resistance, Rs 2.19 [Ω] 

Rotor Resistance, Rr 1.04 [Ω] 

Stator Leakage Inductance, ls 17.59 [mH] 

Rotor Leakage Inductance, lr 17.59 [mH] 

Mutual Inductance, Lm 0.55 [H] 

Estimated Inertia, J 0.221 [kg m2] 
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Fig. 5  Error between actual and estimated speed 

i r=0.1 and the KF has the correct information 
ii r=0.1 and the KF has correct information  
iii r=0.1 and the KF assumes r=0.01 

 
A similar result can be achieved by using the details di-

rectly and hence avoiding the extra computational effort that 
is required for the synthesis bank.  To insure the system per-
formance in the presence of non-white noise signal (which is 
commonly the case in real applications) the details of the first 
three levels (scales) were used and their variance was calcu-
lated on-line.  Fig. 6 shows the mean value of the on-line 
calculated variance of the details for first three levels.  The 
KF was continuously updated with that value and the im-
provement is clear in Fig. 5ii. 
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Fig. 6  Mean value of the variances of the 3 level details 

 
IV.  ADAPTIVE MULTILEVEL WAVELET ANALYSIS 

 
It was shown experimentally in [5] that when the wavelets 

are used to denoise the stator currents in a V/f scheme the 
results are not encouraging and simple FIR schemes pro-
duced better results.  This is due to the inherent delay that is 
caused by the alignment between the analysis and synthesis 
banks.  The main problem is that there is no coherent meth-
odology of how many levels of decomposition should be 
used and which wavelet is more appropriate.  A usual wave-
let choice is from the Daubechies family (DB1-DB43) which 
are compactly supported and has a high number of vanishing 
moments for a given support width.   In previous work [5] it 
was found that the best wavelet was the DB2 or DB3 wave-
let, but the main problem comes from the level of the analy-

iii

iii 



 

sis.  More layers give better performance but bigger delay.  
This delay is ( ) OrderFilter12 filtersofnumber ×−  for every level.  
This produced a peculiar relationship between the wavelets, 
level of decomposition and integral of squared error between 
the noise free and actual signal [5].  In IM drives the problem 
is complicated as the denoising process may be required on 
the stator currents.  These do not have the simple relationship 
that the voltage must follow: small amplitude at low fre-
quency and large amplitude when frequency is high (the 
voltage over Hertz ratio has to remain constant).  In the low 
frequency region the delay is not very important since it can 
cause a small phase shift, but in this region the level noise 
that is present can greatly influence the overall behaviour by 
affecting the peak values produced.  In the high frequency 
region the peak change is minor but the phase shift can now 
be more than a full cycle and hence to produce instability. 

Thus a new scheme is needed.  This scheme will adapt the 
level of the decomposition depending on the desired fre-
quency of the signal.  For example, if the frequency of the 
noisy signal is from 0 to 15 Hz then the 5th level will be used, 
if the frequency is from 15 to 30 Hz then the 4th, from 30 to 
40 Hz the 3rd, from 40 to 50 Hz the 2nd, and finally from 50 
and above the first level.  The only problem that arises with 
this pseudo-adaptive method is the “optimal” choice of these 
breaking points.  This is similar to the problem of gain sched-
uling in nonlinear control systems.  Only “knowledge based 
methods” (Fuzzy Logic, Neuro-Fuzzy) can be used, or trial 
and error techniques.  Here the changing points were found 
by trial and error methods.  This method is called Adaptive 
Multilevel Wavelet Analysis (AMWA). 

To test the AMWA denoising scheme a simple ramp ac-
celeration of a V/f scheme was used, there is no low fre-
quency voltage boost and the load torque is also zero.  The 
motor parameters are shown in Table I.  The acceleration was 
set to 20 rad/s and the V/f ratio is equal to 415/50= 8.3 V/Hz.  
The wavelet was the DB2 and the sampling period was set to 
1ms.  The sensor distortion used was a simple white noise 
signal with zero mean and variance of 1, Fig. 7.  The AMWA 
breaking points were chosen to be at 10Hz, 20Hz, 30Hz, 
40Hz, and 50Hz.  The resulted denoising current is shown in 
Fig. 8 and the Integral of Time Squared Error (ITSE) is 
shown in Fig. 9.  To compare with the classical wavelet de-
noising the 5th level decomposition was used alone and its 
ITSE is shown in Fig. 10. 
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Fig. 7  Noisy stator current signal 
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Fig. 8  Denoised stator current with the adaptive scheme 
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Fig. 9  ITSE for adaptive scheme 
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Fig. 10  ITSE for normal wavelet scheme 

 
It is clear from the previous figures that AMWA gave 

much better results.  Further tuning could improve the overall 
performance. 
 



 

V.  CONCLUSIONS 
 

The use of wavelets in various applications of electric 
drives was presented and shown to provide satisfactory re-
sults.  More specifically the wavelet transform can estimate 
the measurement noise covariance and through that update 
the KF, considerably improving the performance of that es-
timating method.  An adaptive multiresolution scheme was 
also proposed based on wavelets which helps with the main 
problem of applying wavelet denoising methods in electric 
drives.  The new scheme gave significantly better results than 
a normal wavelet scheme which makes application of wave-
lets in electric drives more attractive. 
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