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Abstract – This paper presents a novel neural network-based 
flux observer to solve the low speed problems associated with a 
model reference adaptive speed estimation scheme which is 
based on rotor flux.  A multilayer feedforward artificial neural 
network is proposed for rotor flux estimation which is more 
robust to noise and stator resistance variation and does not 
have dc-drift problems which are usually associated with these 
adaptive schemes.  A comparison between the performance of 
the neural network based strategy and conventional scheme is 
carried out using a validated simulation of an indirect vector 
controlled induction motor drive working at a low speed.   
 

I.  INTRODUCTION 

During the last decade there has been considerable interest 
in sensorless control of AC motors, particularly, induction 
motors.  Sensorless vector controlled induction motor drives 
are being vigorously developed for high performance 
industrial drive systems.  Elimination of the speed sensor 
reduces the drive cost and size, and should increase the 
system reliability and robustness, and reduce the noise 
sensitivity and maintenance requirements.  On the other 
hand, stability in the low and zero speed operation range, 
parameter sensitivity and high computational effort can be 
the main drawbacks of sensorless control [1].  Sensorless 
drives have been successfully applied for medium and high 
speed operation, but low and zero speed operation is still a 
critical problem.  Much recent research effort is focused in 
this area [1, 2].   

Estimation techniques in sensorless induction motor 
drives can be generally grouped into rotor saliency and 
terminal quantities-based techniques.  Terminal quantities-
based estimation strategies can be subdivided into Model 
Reference Adaptive Schemes (MRAS), observer-based 
schemes and Artificial Intelligence (AI) based methods.  
MRAS schemes are the most common strategies employed 
due to their relative simplicity and low computational effort 
[2].   

Among various MRAS schemes, Rotor Flux (RF), back 
EMF and reactive power techniques are the most popular 
strategies which have received a lot of attention.  Although 
back EMF based techniques avoid pure integration, they may 
have stability problems at low stator frequency and show low 
noise immunity.  The reactive power method is characterized 
by its robustness against stator resistance variation but 
suffers from instability [3].   

Rotor flux schemes suffer from parameter sensitivity, 
inaccuracy at low speed due to poor signal to noise ratio, 
dominant stator resistance drop and increased nonlinearity, 
deterioration of estimation at zero-speed operation and flux 
pure integration problems which may cause dc drift and 
initial condition problems [1, 3, 4].  To avoid problems 
associated with pure integration, a lot of strategies have been 
proposed for offset and dc drift compensation.  In [5], Low-
Pass Filters (LPF) with very low cut-off frequency have been 
proposed to replace the pure integrator, but they introduce 
phase and gain errors due to their natural delay which causes 
problems in the frequency range below the filter cut-off 
frequency [4, 6].  Programmable filters were also proposed to 
solve this problem by replacing the single stage integrator by 
cascaded filters with small time constants to attenuate the dc 
offset decay times.  In [7], a three stage programmable 
cascaded LPF is used for the accurate estimation of the rotor 
flux.  Another technique entirely replaces the voltage model 
with a state observer with current error feedback which 
reduces the scheme simplicity [3].   

Artificial neural networks have been proposed to model 
the machine stator flux from present samples of stator 
voltage and current components [6, 8].  

This paper proposes a novel neural network rotor flux 
observer to replace the conventional voltage model to 
improve the sensorless drive performance at low speed.  The 
proposed neural network observer shows robustness against 
stator resistance variation and high noise immunity.  It 
avoids using either a pure integrator or a low pass filter for 
flux estimation which eliminates integrator drift and initial 
condition problems.   
 

II.  RF-MRAS SPEED OBSERVER 

A.  Machine Model and Vector Control Strategy 
 

The induction motor mathematical model in d-q 
coordinates established in a rotor flux oriented reference 
frame can be written as:  

ψsqωeψsddt
d

isdRsvsd −+=  (1) 

ψ sdωeψsqdt
d

isqRsvsq ++=  (2) 



ψ rqωslψ rddt
d

irdRr −+=0  (3) 

ψrdωslψrqdt
d

irqRr ++=0  (4) 

where the stator and rotor flux linkages are given by:  
irdLmisdLsψsd +=  (5) 

irqLmisqLsψsq +=  (6) 

irdLrisdLmrd +=ψ  (7) 

irqLrisqLmψrq +=  (8) 
The state space representation of the induction motor with 

the stator currents and the rotor flux linkages components as 
state variables can be written as: 
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 (9) 
where Tr is the rotor time constant and is given by: 
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and σ is the leakage coefficient given by: 
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The electromagnetic torque and the rotor speed are given by: 
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where:  
Rs and Rr are the stator and rotor winding resistances; 
Ls, Lm and Lr are the stator, mutual and rotor inductances; 
P is the number of pole pairs; 
ωe , ωr and ωsl   are the synchronous, rotor and slip speed in 
electrical rad/s; 
vsd , vsq , isd , isq , ψrd and ψrq are stator voltage, stator current 
and rotor flux d-q components in the rotor flux oriented 
reference frame; 
Tem and Tl are the electromagnetic torque and the load torque 
respectively; 
J and B are the motor inertia and viscous friction coefficient 
respectively  

Under the rotor flux orientation conditions the rotor flux 
is aligned on the d-axis of the d-q rotor flux oriented frame 
and the rotor flux equations can be written as: 

0=ψrq  (14) 

isdLmrd =ψ  (15) 
The slip frequency can be calculated from the reference 

values of the stator current components represented in the 
rotor flux oriented reference frame as follow [4]: 
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and the electromagnetic torque equation can be written as: 
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where Kt is the torque constant given by: 

ψ rL r
L mPK t 2

3=  (18) 

In Indirect Rotor Field Oriented Control (IRFOC), the 
rotor flux position (θe) is given by:  
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The block diagram of a sensorless indirect rotor field 
oriented control induction motor drive is shown in Fig.1.  
Based on terminal voltages and currents, the observer 
estimates the motor speed and the rotor flux vector.  
Estimated motor speed is used to calculate the rotor flux 
position (θe ) as in (19) as well as in the speed control loop 
whereas the estimated rotor flux can be used in the flux 
control loop or to estimate the flux position in Direct Rotor 
Field Oriented Control scheme (DRFOC).   

i
i

T sd

sq

r
sl *

*

*
1=ω

ω̂ r

ψ̂ r

 Fig.1 Sensorless indirect vector control 
 
B.  RF-MRAS speed observer 
 

The basic concept of MRAS is the presence of a reference 
model which determines the desired states and an adaptive 
(adjustable) model which generates the estimated values of 
the states.  The error between these states is fed to an 
adaptation mechanism to generate an estimated value of the 
rotor speed which is used to adjust the adaptive model.  This 
process continues till the error between two outputs tends to 
zero [3, 4].  Basic equations of rotor flux based-MRAS can 
be written as: 
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The reference model (20) is based on stator equations and 
is therefore independent of the motor speed, while the 
adaptive model (21) is speed-dependant since it is derived 
from the rotor equation in the stationary reference frame.  To 
obtain a stable nonlinear feedback system, a speed tuning 
signal (εω) and a PI controller are used in the adaptation 
mechanism to generate the estimated speed.  The speed 
tuning signal and the estimated speed expressions can be 
written as [4]: 
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where "*" denotes complex conjugate.   
The block diagram of a RF-MRAS speed observer is 

shown in Fig.2.  The adaptive model represented by (21) can 
be replaced by a two layer linear neural network.  The 
application of this strategy avoids using mathematical model 
employing pure integration and the adaptation mechanism is 
integrated into the network tuning law which reduces the 
problem of tuning the PI controller gains [5].  However, in 
this paper a conventional current model (21) will be used as 
the adaptive model. 
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Fig.2 RF-MRAS speed observer 

 
Generally the RF-MRAS observer gives satisfactory 

speed estimation in the high and medium speed regions.  
When working at low speed the observer performance 
deteriorates due to the stator resistance mismatch, integrator 
drift and initial condition problems and sensitivity to current 
measurement noise.  Therefore an artificial neural network is 
proposed to replace the conventional voltage model flux 
observer (20) to improve the MRAS scheme performance at 
low speed.   
 

III.  NEURAL NETWORK FLUX OBSERVER 

A.  Artificial Neural Networks 
 Artificial Neural Networks (ANN) are based on the basic 
model of the human brain with the capability of 

generalization and learning.  They can be used as universal 
function approximators to represent functions with weighted 
sums of nonlinear terms [8].  This is useful when 
representing some systems which do not have an accurate 
mathematical model.  It has been shown that any nonlinear 
function can be represented by a three layer neural network, 
i.e. input, hidden and output layers, with a given number of 
neurons in each layer and that the accuracy of the 
approximation depends on the number of neurons in the 
hidden layer [9].  The unit of structure of ANN is the neuron 
which consists of a summer and an activation function as 
shown in Fig. 3.  The commonest type of ANN is the multi-
layer feedforward neural network which consists of layers; 
each layer consists of neurons as shown in Fig. 4 [5]. 

   
Fig.3 Structure of the artificial neuron 

  
Fig.4 Architecture of multi layer feedforward neural network 

 
Consider a neuron j in a layer m with n inputs in the (m-1) 

layer and a threshold (b).  The net input to the neuron is 
given by: 
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and the neuron output is given by: 
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where (g) is the activation function or the neuron transfer 
function.  The commonest activation functions are: threshold, 
linear, logsigmoid and tansigmoid activation [9].  In this 
paper, tansigmoid activation will be used and in this case, the 
neuron transfer function can be written as: 
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B.  Artificial Neural Network rotor flux observer 
In this type of learning a set of input/ target data is used to 

train the neural network.  This is called supervised learning 
due to the availability of a teacher in the form of target 
values [5].  At each time the neural network output is 
compared with the target value and a weight correction via a 
learning algorithm is performed in such a way to minimize 
the error between the two values.  This is an optimization 
problem in which the learning algorithm is searching for the 
optimal weights that can represent the solution to the 
approximation problem.  A lot of techniques have been 
proposed as learning algorithms such as: back propagation 
algorithm, Kalman Filter, least square method, etc.  A block 
diagram of the training process is shown in Fig. 5 [6]. 

  
Fig.5 Neural Network in training phase 

 
To estimate the rotor flux components in the stationary 

reference frame an 8-20-2 multilayer feedforward neural 
network is proposed as shown in Fig. 6.  To obtain good 
estimation accuracy, the inputs to the network are the present 
and past values of the d-q components of the stator voltage 
and current in the stationary reference frame.  This is 
different from [6, 8] which uses only the present samples. 
Since the inverter is current controlled, the filtered stator 
voltage is used instead of the inverter PWM voltage due to 
the unavailability of reference stator voltages as in the case 
of a voltage controlled inverter. Better performance can be 
obtained by increasing the number of inputs to include 
voltage and current samples from more than one time step in 
the past.  However, this may require larger training data and 
will need more computational effort to achieve good 
approximation accuracy.  The number of neurons in the 
hidden layer is chosen by a trial error technique to 
compromise between computational complexity if a larger 
number is selected and approximation accuracy if a smaller 
number is selected.  The output layer consists of two neurons 
representing the rotor flux components in the stationary 
reference frame.  Since the case is approximating a nonlinear 
function, tansigmoid activation functions will be used in both 
hidden and output layers.  To generate the training data, the 
vector controlled induction motor running at different speed 
commands in the low speed region and subjected to various 
load torques is simulated and the input/output training 
pattern is obtained with a sampling frequency of 2 kHz.  
4800 samples in the low speed region were obtained and are 
used to train the network.  The training is performed off-line 
using the Levenberg-Marquardt algorithm which is faster 
than the gradient descent back propagation algorithm.  After 
the training the Mean Squared Error (MSE) between targets 

and neural network outputs decays to 6 10-5 after 900 epochs 
as shown in Fig. 7.   
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Fig.6 Neural Network rotor flux observer 

To improve the speed estimation performance of RF-
MRAS at low speed, the trained neural network is proposed 
to replace the conventional voltage model (20) to benefit 
from its advantages such as: fault tolerance, noise immunity 
and fast processing speed and in this case the estimated 
speed is obtained through a low pass filter. 

0 200 400 600 800

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Epochs

M
S

E

 
Fig.7 NN performance during training 

  

IV.  SIMULATION RESULTS AND DISCUSSION 

To study the performance of the RF-MRAS speed 
observer, an induction motor vector control drive shown in 
Fig.1 is simulated using Matlab-Simulink when running at 
low speed region.  Induction motor parameters are given in 
table I.  Two RF-MRAS schemes will be compared: the first 
scheme uses the conventional voltage model (20) as a 
reference model whereas the other scheme makes use of the 
NN rotor flux observer discussed in section III instead.  
During the simulation, the sampling frequency of the NN 
flux observer is 1 kHz.  The drive is running under variable 
speed commands of 20, 30 and 40 electrical rad/s applied 
each 0.6s.  At each speed command, the motor is running at 
no load for 0.3 s and then is loaded with its rated load torque 
for 0.3s.  These speed commands are already seen by the NN 
observer during training.  The stator resistance (Rs) is set 
equal to its nominal value in the first 0.6s.  At t=0.6s and 1.2s 
a 5% and 10% step increase in the actual Rs is applied 
respectively.  The stator resistance value used in the 



conventional MRAS scheme is set equal to the nominal value 
during the simulation.  To study the effect of noise on the 
observer performance, white noise with power of 10-5 is 
added to the stator current measurement in both schemes.  
The flux estimation using both techniques is shown in Fig. 8; 
the flux estimated with conventional voltage model is 
mismatching the real machine flux when Rs variation occurs 
whereas NN flux observer is still tracking the real flux even 
in the presence of Rs variation.  Consequently, the estimated 
speed obtained from NN-MRAS is more accurate compared 
to that obtained from conventional MRAS as shown in Fig. 9 
due to the fault tolerance and noise immunity features of 
neural networks.  However the estimated speed using the NN 
scheme contains some ripples which depend upon the 
sampling time used in the NN observer to approximate the 
rotor flux.  Decreasing this sampling time may need a lot of 
training data [8].   
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Fig.8 Rotor flux estimation (a) Voltage model (b) NN 
model  

To test the generalization property of the neural network 
observer, the drive was run at different speed commands of 
20, 35 and 45 rad/s with the same conditions as the first case.  
The last two speeds were not seen during the training of the 
NN flux observer; 35 rad/s is inside the training range while 
as 45 rad/s is outside the training range.  Due to the complete 
tracking of the actual flux achieved by the NN observer, 
satisfactory speed estimation is still obtained by the NN-
MRAS scheme even in the presence of Rs variation and 
current measurement noise compared to the conventional 
scheme as shown in Fig.10.  However, the speed estimation 
at 35 rad/s is more accurate than that at 45 rad/s which 

proves that neural networks have better generalization 
property for the points which are within the training range 
compared to those which are out of the training range.    

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-10

0

10

20

30

40

50

Time (s)

E
st

im
at

ed
 m

ot
o

r 
sp

ee
d 

(r
/s

)

 
(a) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-10

0

10

20

30

40

50

Time (s)

E
st

im
at

ed
 m

ot
o

r 
sp

ee
d

 (r
/s

)

 
(b) 

Fig.9 Motor speed estimation (a) MRAS (b) NN-MRAS 
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Fig.10 Motor speed estimation (a) MRAS (b) NN-MRAS  



Finally, if a 1% mismatch in the initial condition of the 
integrator occurs, a drift occurs in the estimated speed which 
is not the case with the NN due to the presence of bounded 
tansigmoid (hyperbolic tangent) activation function in the 
hidden and the output layers [8].  The estimated speeds 
obtained by the two schemes are shown in Fig. 11.   

The simulation results of the conventional MRAS 
observer are obtained using pure integration.  However, if a 
low pass filter is used instead in both reference and adaptive 
models, the observer performance will be even worse 
especially at low speed below the cutoff frequency, which is 
not the case with the proposed hybrid MRAS-NN scheme 
which does not employ either pure integration or a low pass 
filter.  
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Fig.11 Motor speed estimation (a) MRAS (b) NN-MRAS  
TABLE I 

Induction motor parameters 
Machine 
parameter Value Machine 

parameter Value 
Rated Power 7.5 [kW] Rr  0.24892 [Ω] 
Rated 
Voltage 415 / 239 [V] Ls  106.37 [mH] 
Rated Speed 309.8 [elec rad/s] Lm 101.467 [mH] 
Rated Torque 48.39 [N.m] Lr  106.37 [mH] 
Rated 
frequency 50 [Hz] J  0.15 [Kg/m2 ] 
Rs 0.7866 [Ω] Pole number 4 

 

V.  CONCLUSION 

In this paper an ANN is presented as a rotor flux observer 
to replace the conventional voltage model used in RF-MRAS 
speed observer when working at low speed.  Results show 
that the NN model improves the MRAS observer 
performance at low speed operation compared with the 
conventional voltage model when stator resistance mismatch, 
measurement noise and drift problems take place.  Moreover, 
no stator resistance adaptation scheme is required.  Accurate 
rotor flux estimation is obtained using the neural network 
observer which can be used for flux control in the vector 
control drive.  The presented scheme still needs improvement 
to reduce the ripples of the estimated speed around the actual 
speed.   
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