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Control of switching circuits using complete-cycle
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Abstract— The bifurcation behavior of switching power elec-
tronic converters can be altered by appropriately changing the
switching manifold. This paper examines this bifurcation control
strategy and proposes new ways in which it can be implemented.
A detailed comparison which includes transients as well as steady
state properties is also presented. This method can be applied
to control any piecewise smooth system to stabilize a desired
periodic orbit.

I. INTRODUCTION

THE NONLINEAR behavior of the buck converter is a
well known and studied phenomenon [1]–[4]. Controlling

this pattern is a challenging topic as it is required to ensure a
stable period one operation over a wide range and at the same
time to be relatively simple and easy to implement in real
applications. Some of the existing methods of controlling this
behavior (OGY, Pyragas) may require high processing power.

A new simpler method have already been proposed by the
authors [5], [6] that also provides a good understanding of
the internal mechanisms that usually cause period doubling
bifurcations. This method was also used to control the buck
converter and it greatly extends the region where we have a
stable response [6]. This method is based on the calculation
of the Floquet multipliers which are the eigenvalues of the
monodromy matrix. The monodromy matrix, M(T, 0), is the
fundamental solution matrix (also called State Transition Ma-
trix or STM) over one full cycle. One of the basic properties
of the STM is that we can break the evolution of the system
to as many time intervals as we require, [7], [8]:

M(T, 0) = Φ(T, tn) × Φ(tn, tn−1) . . .Φ(t1, 0) (1)

where Φ(tk, tm) is the STM from t = tm until t = tk. If
the system is time invariant then the STM can be calculated
by the exponential matrix of the Jacobian of the vector field
for the duration of that time interval. On the other hand
if the system is time varying then there is no universally
acceptable analytical method and the usual choice is the
numerical integration of a matrix differential equation [9]:

Φ̇(t, t0) =
∂f(t, x)

∂x
× Φ(t, t0), Φ(t0, t0) = I (2)
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Fig. 1. General periodic orbit that crosses two switching manifolds

If the system is piecewise smooth (as is the case for most
power electronic circuits) then we can break the monodromy
matrix to areas where the vector field is smooth and to areas
where the vector field crosses a switching manifold (Fig. 1):

M(T + t0, t0) = S2 × Φ2(T + t0, t1) × S1 × Φ(t1, t0) (3)

The STM during the switching is referred to as the saltation
matrix S. If the transition is from f+ to f− (at t = tΣ)then S
is given by:

S = I +
(lim
t↓tΣ

(f−(x(t))) − lim
t↑tΣ

(f+(x(t))))nT

nT lim
t↑tΣ

(f+(x(t))) +
∂h

∂t
(x(t), tΣ)

(4)

The purpose of this paper is to propose a new control
strategy based on the monodromy matrix for stabilizing var-
ious closed orbits of the system. We also present a thorough
comparison between the various controllers. The application of
the control strategy is also extended to another dc-dc converter,
namely the boost converter.

II. BUCK CONVERTER - STABILITY ANALYSIS

The voltage controlled buck converter (Fig. 2) has been
studied by many researchers [3], [10], [11] and its bifurcation
structure is well known. The desired operation of this circuit
is a limit cycle around a pre-defined value whose period
equals the period of the ramp signal (vramp). If the input
voltage is changed then it is possible to have a period doubling
bifurcation and hence a new limit cycle will exist with a period
twice as the period of the ramp signal as shown in Fig. 3.

To study the period one limit cycle we study the system in
t ∈ [0, T ) so the switching manifold is smooth and is defined
as:

h(x(t), t) = x1(t) − Vref − VL + (VU − VL)t/T

A
= 0 (5)
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Fig. 2. The voltage mode controlled buck dc-dc converter.
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Fig. 3. Period one (a) and two (b) operation of the buck converter.

where x1(t) = v(t) and x2(t) = i(t). The vector normal to
h is

[
1 0

]T
and the two vector fields before and after the

switching are:

f+(x(t)) =
[

x2(t)/C − x1(t)/RC
−x1(t)/L

]
,

f−(x(t)) =
[

x2(t)/C − x1(t)/RC
(Vin − x1(t))/L

]
.

In that interval the monodromy matrix is given by:

M(T, 0) = Φ(T, tΣ) × S × Φ(tΣ, 0) (6)

and the saltation matrix is given by 1:

S =




1 0
Vin/L

x2(tΣ) − x1(tΣ)/R

C
− VU − VL

AT

1


 (7)

The state vector at t = tΣ can be found by numerically
solving a nonlinear equation. Hence the monodromy matrix
becomes:

M(T, 0) = eAstΣ × S × eAs(T−tΣ) (8)

Based on that it is possible to determine the stability of the
limit cycle. The evolution of the Floquet multipliers is shown
in Fig. 4 and hence it is clear that for Vin = 24V the system
is stable while at Vin = 25V the system has a stable period
two limit cycle.

1At this point we have to mention that there is one more saltation matrix
at t = T . Since at the point h is discontinuous the time derivative is infinite
and hence the second saltation matrix is the identity matrix.
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Fig. 4. Floquet multipliers, period 1. Squares indicate unstable system, solid
circles stable system.

TABLE I

DUTY CYCLES OF PERIOD ONE, FOR TWO VALUES OF THE INPUT VOLTAGE

Vin [V] state vector duty cycle
24 [12.01390.4861]T 0.5007
25 [12.02410.4843]T 0.4813

III. PERIOD DOUBLING CONTROL

A. General concept

Table I shows the duty cycle (d = 1 − tΣ) and the
corresponding state vector for Vin = 24 and Vin = 25 V.
It is clear from these values that the state vector at the instant
of intersection does not greatly change. Hence the STM before
and after the switching will not greatly alter. This implies that
the main reason for the occurrence of the bifurcation is the
change of the saltation matrix. So if we can reverse that change
without greatly changing the duty cycle of the system we can
stabilize the unstable period one orbit. To do that we have to
carefully examine the structure of the saltation matrix (eqn. 4).
Effectively S is determined by the two vector fields (which we
cannot change) and by the derivative of h with respect to time
and by its derivative with respect to the state vector (normal).

B. Buck converter - Period one

1) Control based on injected sine wave: The system can
be stabilized and the eigenvalues of the monodromy matrix
pushed inside the unit circle by changing the value of Vref

to Vref (1 + a sin(ωt)), where ω = 2π/T and the value of a
chosen to determine the desired location [6], [12]. The effect
of this change can be seen by studying the time derivative of
h:

h(x, t) = x1−Vref−Vrefa sin(ωd′T )−VL + (VU − VL)d′

A
= 0 ⇒

∂h

∂t
= −ωVref a cos(ωd′T ) − (VU − VL)

A
(9)

where d′ = 1 − d.
Notice that sin(ωt) at t = d′T is very small and hence the

influence on h will be very small. At the same time the value
of cos(ωt) will be large and will have a significant effect on the
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saltation matrix and hence the eigenvalues of the monodromy
matrix.

It is obvious from eqn. (9) that by altering the value of a it is
possible to change the eigenvalues of the monodromy matrix.
To optimally design the controller we can numerically solve
the following nonlinear transcendental equation which will
place the eigenvalues on the circle where the stable eigenvalues
lie:

|eig(M(T, 0)| − 0.82 = 0

Based on that we derived a lookup table (Fig. 5) and from
that a polynomial equation which determines the value of a
depending on the input voltage was derived:

a(Vin) = 0.0001V 2
in + 0.0037Vin + 0.0328

The corresponding response of the system for that controller
for a sudden 50% increase in the load resistance when Vin =
26V is shown in Fig. 6

24 26 28 30 32 34 36
-8

-7

-6

-5

-4

-3

-2

-1

0
x 10

-3

voltage, V

op
tim

um
 v

al
ue

 o
f a

 

Fig. 5. Optimum values of a for first controller.
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Fig. 6. Response of first controller, Vin = 25V, Steady state error=0.73V,
Overshoot=7.31%, ts = 0.018s.

2) Control based on signal proportional to the output
voltage: Another control method [5] is based on changes of
the normal of h. So we can slightly change the slope of h to:

h(x(t), t) = (1+a)×x1(t)−Vref − VL + (VU − VL)t/T

A
= 0
(10)

Giving a normal vector:

n =
[
1 + a

0

]
(11)

and saltation matrix:

S =




1 0
(1 + a)Vin/L

(1 + a)
x2(tΣ) − x1(tΣ)/R

C
− VU − VL

AT

1


 (12)

Instead of choosing the values of a by examination [6] an
optimum controller maybe obtained by placing the eigenvalues
on a circle of radius 0.82 which is the radius where the
eigenvalues are of the stable period one limit cycle.

|eig(M(T, 0)| − 0.82 = 0

The results are shown in Fig 7 (the response of this controller
is shown in Fig. 11b)
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Fig. 7. Optimum values for the second controller

3) Control based on signal proportional to the output
voltage and current: In this part of the paper we propose
a new controller based on the values of the output voltage and
the inductor current, giving a controller with two degrees of
freedom. The switching manifold h is changed to

h(x(t), t) = (1+a)x1(t)+bx2(t)−Vref−VL + (VU − VL)t/T

A
(13)

This will change the normal to nT =
[
1 + a b

]
and hence

the saltation matrix will be

S = I +

[
0 0

(1 + a)Vin/L bV in/L

]
(1 + a)(Rx2(tΣ)−x1(tΣ)

RC ) − bx1(tΣ)/L
− VU − VL

AT
(14)

Now the monodromy matrix will be a function of two
variables and we can appropriately tune one to stabilize the
system and the other to decrease the settling time or the
maximum overshoot of the system or even to minimize the
error. Fig. 8 shows the maximum absolute value of the Floquet
multiplier when b = 0 for various values of a. It is clear that
it is possible to place the eigenvalues of the system to almost
any location in the unit circle. Fig. 9 shows the maximum
absolute eigenvalue for variation of b with a fixed at −0.035
and −0.037 and Vin = 25V. It is clear that by introducing a
negative value of b we moved the eigenvalues closer to the
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TABLE II

RESULTS OF THIRD CONTROLLER, a = −0.037, Vin = 25V

b Error Overshoot Settling time
-0.2 1.243 8.305% 0.016 s

0 1.179 7.211% 0.0052 s
0.1 1.147 7.059% 0.0012 s

marginal stable case. To get a clearer picture of the influence
of the two variables, Fig. 10 shows the maximum absolute
eigenvalue for a series of values of a and b.
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Fig. 8. Maximum absolute eigenvalue for b = 0.
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Fig. 9. Maximum absolute eigenvalue for a = −0.035 and −0.037. The
turnaround is because at some point the second eigenvalue becomes bigger
than the first one

Fig. indicates that the introduction of b moves the eigen-
values closer to the marginally stable case which adversely
effects the overall control strategy, this pattern is stronger
when b is positive. However, an examination of Fig. 11 shows
that negative values of b make the system slower with more
oscillations while positive values reduce the steady state error
and increases the speed of the system (Table II). To derive the
settling time, after the resistance increase, we let the system
to settle down and we found the mean value of the sampled
voltage (Poincaré map). Then we found the samples that are
in a band of ±2% and if all the successive samples are in
this band then we recorded this time instant. The calculation
of the steady state error was done by finding the maximum
and minimum values of the voltage during the last cycles long
after the resistance increase. The mean value was used as a
steady state measurement and hence the error was calculated
by finding the absolute value of the difference between the
demanded voltage (Vref = 11.3V ) and this mean value. It
is believed that by further increasing the value of b we can
further minimize the error but for big values of b we faced
various numerical problems.

The comparison of Figs. 11 and 6 reveals that both con-
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 Fig. 10. Maximum absolute eigenvalue for a ∈ [−0.04, 0] and b ∈

[−0.1, 0.1].
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Fig. 11. Response of the system for a = −0.037 and b = −0.2, 0 and 0.1,
Vin = 25V

trollers give good results however, the controller which is
based on an injected sine wave signal has smaller steady state
error despite its comparative simplicity.

C. Buck converter — Period two

As with the control of the period one orbit it is possible
to stabilize the period two or any other limit cycle that we
desire. To demonstrate this capability of the proposed control
strategy we are going to employ the first controller based on
the injection of a sine wave signal due to its simplicity and
superior results.

For the period two cycle the monodromy matrix is:
M(2T, 0) = Φ(2T, tΣ3)×S3×Φ(tΣ3 , T )×S2×Φ(T, tΣ1)×
S1 × Φ(tΣ1 , 0). The value of S2 is the identity matrix as at
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t = T , h is discontinuous. The other two saltation matrices
are:

S1 =
[

1 0
sa 1

]
(15)

where

sa =
Vin/L

x2(tΣ1) − x1(tΣ1 )/R

C
− Vrefaω cos(ωtΣ1) −

VU − VL

AT

and

S3 =
[

1 0
sb 1

]
(16)

where

sb =
Vin/L

x2(tΣ3) − x1(tΣ3)/R

C
− Vrefaω cos(ωtΣ3) −

VU − VL

AT

This time the supervising controller is required to place the
eigenvalues of the system on a circle of a radius 0.6792 which
is the location of the eigenvalues of the stable period two cycle.
Hence

|eig(M(2T, 0)| − 0.6792 = 0

Resulting values are shown in Fig. 12. Fig. 13 shows the
response of the controller. At t = 0.1s Vin is changed from
31V to 32V which will lead to a period four stable orbit.
At t = 0.14s the load resistance is increased by 50% again
resulting in a stable period two orbit after an initial transient.
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Fig. 12. Optimum values for the period 2 controller

D. Boost converter

To demonstrate the power of this method we apply the same
controller to control a period one limit cycle in the current-
mode controlled boost converter. We recognize the fact that
usually the stable period one region of the boost converter
is extended by using a slope compensator but we want to
demonstrate that the method that we propose here is not only
applicable to one converter but can be applied to almost any
piecewise system.

In the case of the boost converter the bifurcation variable
is the Iref and the switching manifold: h(x, t) = x2 − Iref ,
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Fig. 13. Sampled response of the period 2 controller

where x1 is the output voltage and x2 is the inductor current.
The two vector fields are:

f−(x) =
[−x1/RC

Vin/L

]
, f+(x) =




x2R − x1

RC
Vin − x1

L


 (17)

The controller will change the reference current from Iref to
a × Iref × sin(ωt)

Hence the resulted saltation matrix is given by:

S = I +
(f+ − f−)nT

nT f− +
∂h

∂t
|t=tΣ

=




1
x2(tΣ)

C

(
Vin

L
− Irefaω cos(ωtΣ)

)

0 1 − x1(tΣ)

L

(
Vin

L
+ −Irefaω cos(ωtΣ)

)




(18)

Instead of

S = I +
(f+ − f−)nT

nT f−
=




1
x2(tΣ)

C
Vin

L

0 1 − x1(tΣ)
Vin




By numerically solving

|eig(M(T, 0)| − 0.997 = 0

we got the following values of a Fig. 14. The location of the
eigenvalues was chosen to avoid high values of a resulting in
a significant change in the shape of the period two limit cycle.

The sampled response of the controller is shown in Fig. 15.
At t = 0.1s we change the reference current from 0.49 A to
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Fig. 14. Optimum values of a, boost converter

0.51 A and then at t = 0.105s we increased the load resistance
by 50%.

 

Fig. 15. Response of the boost converter under the period doubling controller

IV. DISCUSSION

The results presented in this paper show that all three
controllers are easy to implement and produce good results
which greatly extend the desired periodic pattern for a big
range of the bifurcation parameter. The comparison clearly
shows that the sine wave based controller produces the best
results with smaller steady state error, smaller settling time and
an overshoot of less than 9% when the resistive load suddenly
increases by 50%. Another advantage of this controller is that
it does not require the information of the state vector and
is only dependent on the bifurcation variable. This makes it
extremely attractive especially for apparitions using the current
controlled boost converter since the bifurcation variable can
be the demanded current which as chosen by the user. The
response of the second controller is also satisfactory and it
does not require any extra sensors since the output voltage is
used anyway for the feedback controller. However, there is a
larger steady state error and a longer transient period. The ad-
dition of the current signal in the supervising controller (third
controller) improved the response of the system, decreasing
both settling time and overshoot but it has the disadvantage of
needing an extra sensor to measure the inductor current. This
is a problem especially for the buck converter which usually
does not require a current control loop as it is a minimum
phase system [13]. Combination of different controllers have
also been tried but the improvements where not sufficient to
justify the increased complexity.

V. CONCLUSIONS

A new, versatile control method has been proposed that can
be applied to any power electronic switched system stabilize
to stabilize any periodic orbit. We have demonstrated the
universality of the method by suing it to control various limit
cycles for the step up and down converters. It is clear that
this method can easily be adopted for practical use as they
provide good results without any extra complicated bifurcation
or chaotic control law. In all cases the system is robust, with
small steady state error and small settling time and maximum
overshot.

APPENDIX

Parameters of buck converter: Vin = 24V , Vref = 11.3V ,
L = 20mH, R = 22Ω, C = 47µF, A = 8.4, T = 1/2500s,
the ramp signal varies from 3.8V to 8.2V.

Parameters of boost converter: C = 10µF ,L = 1.5mH ,
R = 40Ω, T = 100µs and Vin = 5V .
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