
 

  
Abstract-- The nonlinear behavior of a self-excited, smooth air 

gap, cage induction generator feeding an inductive load is 
analyzed in this paper, allowing for the effects of machine 
saturation. The self autonomous system is shown to exhibit a 
transition from a periodic orbit to a quasi-periodic orbit through 
a Neimark bifurcation. 
 

Index Terms-- Bifurcation theory, induction generator, 
induction machine, inductive load, nonlinear dynamics 

I.  INTRODUCTION 
NDUCTION generators are widely used in conjunction with 
small hydro or wind turbine to produce electric power, 

mainly due to their low cost, compared with synchronous 
machines.  The generator in such applications is usually 
connected directly to the ac supply network which also 
provides the necessary reactive power for the production of 
the machine rotating magnetic flux. This need for reactive 
power limits the use of the induction machine as a stand alone 
generator for remote applications where a supply connection is 
not available. To overcome this problem the reactive power 
can be supplied from a capacitor bank connected across the 
stator terminals, allowing the machine to work as a Self-
Excited Induction Generator (SEIG) in the absence of a supply 
connection.  
 State space methods [1]-[4] have to be used to model and 
study the dynamics of these systems. The states of the system 
may be the machine currents, fluxes or a combination of these 
[5], [6]. The model must also include components that 
represent the magnetic nonlinearities (mainly cross-saturation 
phenomena) of the machine [7] as the machine is normally 
working with values of magnetic flux density near the 
saturation level. Hence the overall model of the system will be 
highly nonlinear and time varying. The dynamical analysis of 
the system is further complicated by the use of capacitor bank 
which provides the reactive power to the generator. This paper 
studies the dynamical behavior of self-excited induction 
generators and shows that it is possible to have bifurcation 
phenomena which force the system to change its desired stable 
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response. The bifurcation that causes this loss of stability is 
shown to be a Neimark bifurcation. 

The machine nonlinear model is presented and described 
and the operation of the self-excited generator on no-load, and 
when feeding a purely resistive load, is examined to show that 
the system exhibits a normal period one orbit. When linear 
inductive components are included in the load the machine 
undergoes a transition from a stable period one orbit to a 
quasi-periodic through a Neimark bifurcation.  

II.  MODELING OF THE SATURATED INDUCTION MACHINE  
The mathematical model of the induction machine uses 

four states (currents and/or fluxes) and is linear time-varying 
rotor speed depended. If the chosen states are the stator and 
rotor currents expressed at a Stationary Reference Frame 
(SRF) the model is: 

                            21 LILRIU rωdt
d ++=   (1) 

where U is the vector with the stator and rotor voltages, I is 
the vector with the stator and rotor currents, R is the resistive 
matrix, rω  is the rotor speed and L1, L2 are inductive matrices. 
To model the nonlinearity the last two matrices have to change 
and to be a function of the magnetizing current instead of 
being constant. Hence the 5 matrices of the magnetically 
nonlinear system are: 
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where Lm is the magnetizing inductance: mmm iL ψ=  

The cross-saturation inductance (Ldq) is [7]: 
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this equation can be simplified to: 
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where mm iddL ψ=  is the dynamic inductance. 
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The nonlinear curves of the magnetizing and dynamic 
inductance are taken from [7] and are shown in Fig. 1. 
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Fig. 1.  The saturated magnetizing inductance curve Lm and the dynamic 
inductance curve L. 
 

The direct and quadrature axis saturated inductances are      
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The stator and rotor dq axis inductance are as following   
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where Lsl and Lrl  are the unsaturated stator and rotor leakage 
inductance, respectively. The mechanical equation between 
the prime mover and the electrical torque is  

                                 
dt
dJTT me
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where  

                          ( )rqrdrdrqe iψiψPT −=
22

3  (7) 

III.  THE MACHINE PARAMETERS AND THE PROCEDURES OF 
RUNNING THE SEIG 

By using the equations that were presented in section II a 4-
pole start connected IG of 1.5kW, with a capacitor bank 
(135µF per phase) was simulated. The rated voltage and 
current of the machine were 220/380V and 7/4A respectively 
and the rated frequency was 50Hz. The stator and rotor 
resistances were 0.6Ω and 0.83Ω respectively while the stator 
and rotor impedances were 1.8Ω/phase and 1.8Ω/phase 
respectively. The prime mover was represented by a dc 
machine rotating at 1500rev/min. To represent the effect of the 
capacitor bank and the various loads that were applied the 
following dq equivalent circuit was used [8]: 
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Fig. 2.  Stator direct component without load, iCD is the capacitor current and 
iLd is the load current. 

A.  The Initial Self Excitation of the Induction Machine with 
No Load 

As the machine is working under no load the switch S 
remains open and hence the d-q voltages are: 
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C

uu sDsDCD
1  (8) 

                          ∫−=−= dti
C

uu sQsQCQ
1  (9) 

By using the mathematical model which is presented in 
section II and by using (8) and (9) it is possible to simulate the 
behavior of the IG which is driven by a dc machine at a 
constant speed of 1500 rev/min under no load. From that test 
it can be seen that as the stator voltage increases (entering the 
saturation area) so does the magnetizing current and hence a 
big drop of the magnetizing inductance is observed, Fig.4, 
which agrees with the curves shown in Fig.1. 
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Fig.  3.  Stator line to line voltage builds up without load. 
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Fig. 4.  Variation of magnetizing current (a) and magnetizing inductance (b) 
with voltage builds up without load. 

B.  The SEIG with a Resistive Load  
If the contactor S closes and the IG is supplying a resistive 

load the extra equations needed are: 
                                   LdLdCD Riuu −=−=  (10) 
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By using these equations the IG was simulated and its 
response is shown in Figs. 5 & 6. Initially the IG is under no 
load and at 0.1s a resistive load of 27Ω is applied. It is clear 
from that figure that there is a drop at the output voltage as the 
system has to supply the extra load. 
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Fig. 5.  Stator line to line voltage with a resistive load. 
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Fig. 6.  Load current  (iLD ) with a resistive load. 
    

From these figures it can be seen that (regardless of the 
voltage drop) the solution curve in the state space follows a 
closed curve of period 1. At this point it has to be stated that in 
practice another capacitor is used in series with the resistive 
load which greatly decreases the voltage drop but from the 
dynamical point of view the behavior of the system remained 
qualitatively the same (i.e. the system exhibits a similar stable 
period one orbit) and hence due to space limitation it is not 
shown. 

IV.  THE NONLINEAR BEHAVIORS OF SEIG FEEDING AN 
INDUCTIVE LOAD 

In this section a balanced three phase inductive load of 30Ω 
and 15mH per phase has been added to the system when the 
machine is driven at a constant speed of 1500rev/min. 
Therefore the equations describing this system are: 
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Thus the state equations of capacitor voltages of both axes are 
obtained by substituting (19) into (16) and (21) into (20).  

The response of the system was investigated for various 
values of the capacitance. For C=135µF (see Figs. 7 - 8) the 
response of the system is a period one closed orbit which 
indicates that the system operates within the desired 
specification. As this is a high order system it is not possible 
to plot all states and therefore only two representative states 
are shown in Fig. 8. All other combinations gave similar 
results and hence are not shown here. 
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Fig. 7.  Stator phase A current for C=135µF 
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Fig. 8.  Phase plane diagram for C=135µF 
 

When the capacitance is increased to 156µF the response of 
the system changes to what initially appeared to be a period 
seven limit cycle (Fig. 9). A closer look reveals that the 
solution does not follow any periodic pattern but is instead a 
quasi-periodic behavior.  By ignoring the initial transients the 
phase space was plotted using 5000 samples. Fig. 10 shows 
that the locus of the solution lies on a “toroid typed” manifold 
(difficult to visualize in such a high order).  
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Fig. 9.  Stator phase A current for C=156µF 
 

Apart from this to prove that the system exhibits a quasi-
periodic behavior it must be shown that the solution is dense 
on the torus, the Poincaré section is a closed orbit and also to 



 

show the bifurcation diagram. Other techniques can also be 
used like the Lyapunov exponent or the eigenvalues of the 
monodromy matrix of the period one orbit but in this paper 
only the first set is presented. 
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Fig. 10.  Phase plane diagram for C=156µF (5000 sample points)  (5000 
sample points) 
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Fig. 11.   Dense orbit in the torus 
 

Fig. 11 shows the 20000 samples after the initial transient 
of one of previous tori and is clearly demonstrated that the 
orbit is dense on the torus. Furthermore, by sampling the state 
vector when the current isD is zero the Poincaré map of the 
system is derived and as it can be seen by Fig.12 it is a closed 
orbit which again proves the statement that the orbit is quasi-
periodic.  

a) 
-12 -11 -10 -9 -8 -7 -6

3  

4  

5  

Current, i
sQn

  (A)

C
ur

re
nt

, i
rd

n  (
A

)

 

b) 
3  3.5 4  4.5 5  

1

2

3

4

5

Current, irdn  (A)

C
ur

re
nt

, i
rq

n  (
A

)

 

c) 

-12 -11 -10 -9 -8 -7 -6
1

2

3

4

5

Current, isqn  (A)

C
ur

re
nt

, i
rq

n  (
A

)

 
Fig. 12.  Poincare section of stator q-axis versus rotor q-axis sample. 

 



 

The final test is to create the bifurcation diagram of the 
system which in this cases it was chosen to be the sampled 
value of the q-axis stator current when the d-axis stator current 
is zero, the bifurcation variable was the value of the capacitors 
used in the capacitor bank. Fig. 13 shows that diagram and it 
can be seen that the system looses its stability through a 
Neimark bifurcation and hence the system exhibits a quasi-
periodic orbit [9].  
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Fig. 13.  Bifurcation diagram of stator q-axis current. 

V.  CONCLUSIONS 
 The performance of the self-excited induction generator 
with no load, resistive load and compensate capacitors is 
studied. The nonlinear model utilizing currents as state 
variables is then connected with an inductive load to the stator 
terminal. The nonlinear behaviors of the induction generator 
are investigated through a bifurcation diagrams, phase spaces 
and Poincaré sections while changing a control parameter, the 
self-excited capacitors. The results show that the autonomous 
dynamical system loses its stability from period one orbit 
moving to a quasi-periodic orbit as a result of small changes in 
the values of system parameters (in this case the self-excited 
capacitors). The practical experiments of the machine will be 
examined and compared with the simulation models in the 
future work.  
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