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Abstract

The standalone photovoltaic-battery energy storage (PV-
BES) microgrid has gained substantial interest recently due
to its ability to provide uninterrupted power to consumers
in remote areas. In such microgrids, components must
be precisely sized and energy must be supplied most cost-
effectively at all times. This paper presents a cost-based
framework for determining the optimal size and energy man-
agement of standalone microgrids using reinforcement learn-
ing. Fundamental to this framework is two essential phases;
the first is finding the best size of PV-BES using an an-
alytical and economic sizing (AES) model based on mini-
mum levelized cost of energy (LCOE). The AES phase is
then followed by optimizing the energy management strat-
egy (EMS) of the microgrid using reinforcement learning to
provide optimum cost savings. The novelty in this work
can be outlined as optimizing both the size and EMS of a
standalone PV-BES microgrid using the AES model and Q-
learning in an integrated framework. This can lead to im-
proved performance demonstrated in reducing the LCOE,
decreasing diesel generator working hours, and enhancing
PV utilization and system efficiency. The results show an
advantageous reduction in total cost while meeting load re-
quirements. Additionally, the proposed framework is eval-
uated using several metrics to measure the impact of em-
ploying Q-learning against the AES-finite automata model.
For instance, a decrease of 22% in diesel generator working
hours and an increase of 6% in PV utilization while a re-
duction of 11% in the LCOE is accomplished. On the other
hand, the proposed framework is examined against two rule-
based EMSs, load following strategy (LFS) and cycle charg-
ing strategy (CCS), and outperforms these two EMSs in
terms of LCOE, PV utilization, and system efficiency.

Keywords— Sizing, Energy Management, Energy Stor-
age, Levelized Cost of Energy, Reinforcement Learning, Q-
learning.

1 Introduction
Alternative energy resources have been increasingly popular
in recent decades as a means of combating the environmen-

tal damage caused by reliance on fossil fuels. In modern
power systems, PV has become one of the leading renew-
able energy resources (RERs) since it is freely available, in-
exhaustible, and environmentally friendly [1, 2]. However,
the PV systems are weather-dependent as any change in
sunlight will have a noticeable effect on the generated en-
ergy. This is can be resolved by integrating energy storage
systems (ESSs) in the microgrid to store surplus PV en-
ergy and use it as needed. Moreover, the ESS can assist
in managing any challenges arising from the integration of
RERs, as well as maintaining the balance between produced
and consumed energy [3, 4]. A standalone microgrid con-
sisting of PV and BES is considered one of the simplest
forms of microgrids that play an important role in remote
areas [5, 6]. Despite the considerable benefits of PV-BES
microgrids, they face several challenges in terms of the re-
quired PV/BES capacity, and energy management of the
microgrid [7]. To achieve a cost-effective system, satisfy the
load, and minimize power losses, the optimal size of the mi-
crogrid components must be carefully allocated [8]. Also,
constructing a robust EMS is essential to provide a reliable
connection among all the components, and ensure optimal
exploitation of the RERs [9, 10]. To this end, finding the
optimal size-EMS combination is a persistent need for any
power system to attain the most desirable benefits in terms
of operation and cost. However, choosing suitable methods
to accomplish this is not a simple task, especially with the
presence of uncertainty in RERs and load.

Through the literature, there are many studies that have
addressed the problem of finding the optimal size-EMS com-
bination. These studies have spanned through various cate-
gories, such as analytical methods, evolutionary algorithms,
and machine learning algorithms. Meta-heuristic algorithms
have been utilized to determine the optimal size and place-
ment of PVs and BESs [11]. While other works applied an-
alytical methods to determine the penetration level of PV
units in a distribution network [12].

Machine learning (ML) algorithms have recently attracted
researchers in the domain of power systems, and have been
widely applied to solve the complexities that appeared with
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Nomenclature

α learning rate
β temperature coefficient of solar cell efficiency,

1/◦C
ηch battery charge efficiency
ηdch battery discharge efficiency
ηinv inverter efficiency
ηm PV module efficiency
ηpv PV overall efficiency
ηrt Round trip efficiency
ηsys system overall efficiency
ηtemp PV temperature efficiency
γ discount factor
A,B diesel generator consumption curve coefficients,

L/kWh
Apv PV total area, m2

at action performed at time t
BESC battery capacity, kWh
BHA battery hours of autonomy, hrs
Cch cost of charging battery energy system, $
Cdis cost of discharging battery energy system, $
CDSL total cost of diesel generator, $
Cfuel diesel generator total fuel cost,$/L
Cin,BES initial cost for battery, $/kWh
Cin,DSL initial cost for diesel generator, $/kW
Cin,PV initial cost for PV, $/kW
Cmicrogrid total cost of the microgrid, $
Com,BES O&M cost for battery, $/kWh
Com,DSL O&M cost for diesel generator, $/kW
Com,PV O&M cost for PV, $/kW
Cop,BES hourly operating cost of battery energy system,

$
Crep,BES replacement cost for battery, $/kWh
Crep,DSL replacement cost for diesel generator, $/kW
DEGBES battery energy system degradation rate
DEGpv PV degradation rate
EBES energy produced by the BES, kWh
Ech energy used to charge the BES, kWh
Edis energy drawn from the BES, kWh
EDSL energy produced by the diesel generator, kWh
Emicrogrid total energy generated by the microgrid, kWh
Epv energy produced by PV, kWh
Fcon diesel generator fuel consumption, L
fu fuel unit cost, $/L
H yearly module reference in-plane radiation,

kW/m2

INOCT solar radiation at NOCT, W/m2

Ipv solar radiation, kW/m2

j index of year
LDSL,h life time of diesel generators, hrs
LDSL,y calculated
LDSL life time of diesel generators, years
LCOE levelized cost of energy, $/kWh
MDSL diesel generator margin coefficient
N system lifetime, years
NOCT normal operating cell temperature, ◦C
PDSL(t) hourly generated power by diesel generator, kW
Pinput(t) sum of input power to battery at a specific hour,

kW
PL,av average hourly load, kW
PL,max maximum load, kW
PL(t) hourly load, kW
PPV,surplus surplus power generated from PV
Ppv(t) hourly power generated by PV, kW
PR,DSL diesel generator rated power, kW
PR,pv PV rated power, kW
Q(st+1, at) Q-value of the next state st+1 when perform-

ing the action at
Q(st, at) Q-value of the current state st when performing

the action at
r discount rate
R(st, at) reward given to the agent at state st when per-

forming the action at
st state of the system at time t
soc battery state of charge
socDSL battery soc for diesel generator operation
socmax maximum battery state of charge
socmin minimum battery state of charge
t index of hours in a year
Ta ambient temperature, ◦C
TC temperature of Pv cell, ◦C
Tref PV cell reference temperature, ◦C
WHDSL yearly working hours of diesel generator, hrs
ZDSL binary number for controlling diesel generator

operation
AES analytical and economic sizing
BES battery energy system
DOD battery depth of discharge
DSL diesel generator
EMS energy management strategy
ESS energy storage system
PV photovoltaic
RER renewable energy resource
RL reinforcement learning
SOH battery state of health

the inclusion of RERs [13, 14]. Reinforcement learning
(RL) is a promising scope of ML which allows an agent
to learn solving problems within its environment [15, 16].
RL has shown a great ability to optimize the behavior of
the components in the microgrid leading to excellent per-
formance [17, 16]. Q-learning is a popular RL approach

for solving sequential decision-making problems [18, 19]. Q-
learning is an off-policy algorithm that works in real-time
data management systems as it doesn’t require prior knowl-
edge of rewards or state transition probability. [20, 21].

Several researchers have utilized Q-learning to optimize
microgrid EMS, for instance, Foruzan et al. [22] employed
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an adaptive energy management method based on a multi-
agent Q-learning approach. The microgrid reduced its re-
liance on the main grid and thus RERs utilization increased
while the operational cost decreased. The authors in [23]
incorporated a Q-learning algorithm to optimize battery
scheduling in a microgrid. A number of factors were con-
sidered, including battery charge and discharge efficiency
and also, the nonlinear behavior of the microgrid due to in-
verter efficiency. Nyong-Bassey et al. [24] presented Model-
based reinforcement learning to improve the reliability of
intermittent RERs by combining Power Pinch Analysis
(PoPA) with several storage technologies. In [25], a real-
time incentive-based demand response program was created
using Q-learning. The algorithm aided the service provider
in purchasing energy from its customers in order to balance
load and supply while improving grid reliability. Nakabi
and Toivanen [26] suggested a new grid-connected microgrid
architecture including a wind generator, ESS, and a col-
lection of thermostatically controlled and price-responsive
loads. The EMS was designed to coordinate different en-
ergy sources, where several scenarios were explored using
deep Q-learning methods. A multi-agent energy manage-
ment approach in a grid-connected microgrid with a decen-
tralized operation was presented in [27]. Each microgrid
component was developed as an autonomous agent that uses
a model-free Q-learning approach to optimize its behavior.
Shang et al. [28] developed an EMS for minimizing microgrid
operational costs while accounting for battery degradation.
A combination of Q-learning and Monte-Carlo Tree Search
was used to optimize the microgrid.

The primary idea of the preceding studies is to harness
RL capabilities to optimize the EMS for different microgrid
structures, which is also the main aim of our work. How-
ever, the above literature addressed enhancing the EMS for
certain sizes of microgrids. This may happen because these
studies dealt with existing or presumed assets of the micro-
grid. In this paper, we target (for the first time) optimizing
both sizing and EMS for a standalone microgrid using RL.
Therefore, a framework for determining the optimal size-
EMS for a standalone microgrid is proposed. Firstly, an an-
alytical and economic sizing model is employed to obtain the
optimal size of the PV and BES for the standalone micro-
grid. Then, an RL algorithm (Q-learning) is implemented to
explore the best actions leading to optimal EMS. This can
be exploited to achieve additional cost reductions while en-
suring load satisfaction. Inspired by our previous work [29],
we present the following new key contributions:

• we employ and modify an analytical and economic siz-
ing (AES) model to determine the optimal size of PV
and BES in a standalone microgrid.

• we propose an integrated framework that incorporates
the AES model along with the Q-learning method to
optimize both size and energy management strategy
(optimal size-EMS combination).

• we investigate the impact of the Q-learning method on
the proposed framework for achieving substantial im-
provements in terms of system efficiency, PV utiliza-
tion, and cost savings.

• we validate the proposed framework against Automata

and two rule-based methods (load following and cycle
charging strategies) and illustrate the efficiency of us-
ing AES together with Q-learning on various evaluation
metrics.

The rest of the paper is structured as follows. Section 2
demonstrates the structure of the proposed microgrid with
the analytical and economic descriptions for PV, BES, and
DSL. Section 3 describes the proposed framework showing
the optimal sizing using AES and the leveraging of the rein-
forcement learning algorithm to construct the optimal EMS.
Then, the experimental results and discussion are presented
in Section 4. Section 5 evaluates the proposed Q-learning
framework against the AES-Automata approach and also
against two rule-based methods. Finally, Section 6 con-
cludes the paper.

2 Analytical and Economic Model

The Analytical and Economic Sizing (AES) model per-
formed in this work is inspired by our previous work pre-
sented in [30] for grid-connected PV-BES system, and then
modified in [29] to be applied for a standalone PV-BES-
DSL-Hydrogen system. For better applicability and cost-
effectiveness, we have modified the AES model to serve a
new standalone structure. This section introduces the struc-
ture of the proposed standalone microgrid and illustrates the
analytical models used for sizing each component in the mi-
crogrid. Also, the levelized cost of energy (LCOE) used for
obtaining the optimal size is discussed in this section.

2.1 Microgrid Structure

In this paper, we have used a standalone microgrid suit-
able for rural areas. The microgrid depicted in Fig. 1, is
equipped with the PV system, BES, DSL, DC/AC inverter,
and charge controller together with the needed connections
between these components.

Firstly, the allocated PV system is responsible for cover-
ing the current load, and if the load is satisfied, the excess
PV energy is then stored in the BES. Such a scenario might
happen during sunny periods when the PV system is capa-
ble to fulfill the required load and increase the level of stored
energy in the BES. This may not be the case at other times,
i.e., when the generated PV energy is insufficient to cover
the load, such as weather conditions or night times. On
the other hand, if the stored energy is sufficient to satisfy
the load, the BES is discharged until reaching the minimum
specified level. The BES here is considered the first backup
for the proposed standalone microgrid. It is continuously
checked for ensuring the efficiency of the proposed system.
The charge controller prevents the BES from being over-
charged or over-discharged and thus protects it from aging.
Since the load consumes AC power, the AC/DC inverter
must be utilized to convert the DC power generated by the
PV to AC power. Furthermore, the DSL is required in the
microgrid in situations where the PV-BES system is un-
able to meet the load. Therefore, the DSL acts as a second
backup to supply the load. In a standalone microgrid, the
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Figure 1: Schematic diagram of PV/BES/DSL microgrid

DSL is an elementary component that converts the chemical
energy in the fuel into usable electrical energy to be con-
sumed by the load. All the components in the standalone
microgrid must be allocated carefully, as well as, a robust
EMS has to be designed to guarantee the harmony of sys-
tem operations in the microgrid. The next section presents
the model used for sizing the assets in the microgrid, while
the proposed EMS is explained in the next sections.

2.2 Analytical and Economic Model

This part introduces the analytical and economic (AES)
model for allocating the best size of the components
in the above-mentioned microgrid structure. The main
aim of the proposed AES model is to specify the mini-
mum resources required to maintain the balance of the
microgrid. The AES model exercises a group of ana-
lytical equations to calculate the hourly power values
produced/consumed by the microgrid components, such as
the power values produced by PV/DSL, stored in the BES,
and consumed by the load. These power values combined
with cost specifications are then used to calculate the
minimum LCOE for the microgrid. PV, DSL, and BES
analytical models together with LCOE, are described below.

A. PV Model

The PV power production Ppv can be calculated using
a set of connected equations from Eq.(1) to Eq.(4). Ppv

can be defined as the multiplication of solar irradiance Ipv,
PV system efficiency ηpv, and PV panels area Apv. As in
Eq.(2), ηpv can be affected by several parameters, such as
module efficiency ηa, temperature efficiency ηtemp, inverter
efficiency ηinv, PV system degradation DEGpv, and project
lifetime N. ηtemp is the only time-varying parameter that
has an impact on ηpv which can be described using Eq.(3)
and Eq.(4). It should be noted that the description of all
required parameters used to implement the PV model is
listed in Table 1.

Ppv(t) =

{
Ipv(t) ·Apv · ηpv(t), Ipv(t) ≥ 0

0, Ipv(t) ≤ 0
(1)

ηpv(t) = ηa · ηtemp(t) · ηinv · (1− (N − 1)DEGpv) . (2)

ηtemp(t) = [1− β(TC(t)− Tref )] . (3)

TC(t) = Ta(t) + [(NOCT − 20)/800] · Ipv(t) . (4)

Table 1: PV analytical model Parameters [29]

Parameter Description Value

ηa PV module efficiency 14%

DEGpv PV degradation 0.5%

Tref Cell reference temperature 20◦C

NOCT Normal operating cell temperature 45◦C

Ta Ambient temperature of NOCT 20◦C

INOCT Solar irradiance at NOCT 800 W/m2

β Temperature coefficient of solar cell efficiency 0.005 1/◦C

H Yearly module reference in-plane radiation 1000W/m2

N PV lifetime 20 years

B. Diesel Generator Model

For standalone microgrids, DSLs are used to provide a
constant supply of power to the load. If the power provided
by the BES is inadequate to supply the load, the lack of
power is covered by the DSL. Any excess DSL power re-
maining after the load has been met will be used to charge
the BES. To ensure load satisfaction, the size of the DSL is
determined based on the maximum load PL,max. According
to the load profiles used in this study, PL,max is 26.6kW .
The size of the DSL is expressed by the following equation:

PR,DSL = MDSL · PL,max . (5)

where MDSL stands for the DSL margin safety coefficient
and is assumed to be 1.2. According to Eq.(5), PR,DSL=32
kW. The hourly output of DSL is illustrated in Eq.(6) and
subjected to the constraint in Eq.(7):

PDSL(t) =

{
ZDSL(t) · PR,DSL, BDSL(t) = 1

0, ZDSL(t) = 0
(6)

0 ≤ PDSL(t) ≤ PR,DSL . (7)

The operation of DSL is controlled by ZDSL which is
considered as a binary number that describes the state of
the DSL at a specific hour [31]. The condition for DSL
activation is linked with soc, such that if soc(t) ≤ socDSL,
the DSL operates at full capacity, where socDSL = 25%.

C. Battery Energy System Model

In a standalone microgrid, the BES enables a greater
amount of PV energy to be integrated into the grid, and
thus increasing PV utilization. For the purpose of minimiz-
ing the operational cost of the microgrid, determining the
BES capacity is essential [32]. Eq.(8) can be used to com-
pute the BES capacity BESC , which is expressed by BES
hours of autonomy BHA and the average hourly demand
PL,av [29]. PL,av is determined according to the load pro-
files which is used in this study and found to be 10.7 kW (for
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more details regarding load profiles, see Section 4). Three
values of BHA—12, 24, and 36 hours—are taken into con-
sideration in this work to determine the best size of the BES.
Selecting higher values for BHA will result in a higher ca-
pacity of the BES, which will accordingly increase the cost.
On the other hand, lower values will result in a decreased
capacity of the BES, which may be unable to serve the load
when PV energy is unavailable.

BESC =
BHA · PL,av

ηinv · ηch ·DOD
. (8)

soc(t) =
soc(t− 1) +

[Pinput(t)− Poutput(t)] · ηch
ηinv · BESC

, Pinput(t) > PL(t)

soc(t− 1)− Poutput(t)− Pinput(t)

ηinv · ηdch ·BESC
, Pinput(t) ≤ PL(t)

(9)

Pinput(t) = Ppv(t) + PDSL(t) . (10)

Poutput(t) = PL(t) . (11)

The state of charge of BES (soc(t)) reflects the available
capacity in the BES at a certain hour. soc(t) is hourly
calculated using Eq.(9). Pinput(t) is the total input power
to the BES and can be obtained using Eq.(10). In this work,
Poutput(t) is assumed to be as same as PL(t). The soc should
be preserved between two limit levels, socmax and socmin as
described in the following restriction:

socmin ≤ soc(t) ≤ socmax . (12)

The description of all parameters used in equations from
Eq.(8) to Eq.(12) is presented in Table 2.

D. LCOE Model

The levelized cost of energy (LCOE) is a cost-based cri-
terion used to compare and assess various RERs. The costs
are calculated over the project lifetime, providing a more

Table 2: All design parameters used for finding the size and soc
of the BES [29]

Parameter Description Value

DOD Depth of discharge 80%

ηch Charge efficiency 80%

ηdch Discharge efficiency 80%

ηinv Inverter efficiency 90%

socmin Minimum state of charge 20%

socmax Maximum state of charge 100%

ηrt Round trip efficiency 90%

DEGBES Battery degradation rate 0.1%

BHA Hours of autonomy 12, 24, 36 hrs

VBAT Battery voltage 48 V

accurate economic picture of the system under considera-
tion [29]. Generally, the LCOE is computed by dividing
the overall system cost during its lifetime by the energy
generated from the system during the same period. Ta-
ble 3 lists all the equations used for calculating the LCOE.
These equations include the total cost and total energy gen-
erated cost of the PV, DSL, and BES. The general form
of LCOE is presented by Eq.(13), where the total cost of
the microgrid Cmicrogrid (Eq.(14)) is defined as the sum of
the total costs for the PV, BES, and DSL as in Eq.(17),
Eq.(19), and Eq.(25), respectively. The Emicrogrid is the
denominator in the LCOE equation and can be found us-
ing Eq.(15), which represents the energy generated by PV
(Eq.(18)), BES (Eq.(20)), and DSL (Eq.(26)).

The total cost for any component in the microgrid can be
written as in Eq.(16), which represents the summation of the
installation cost Cin,system, the operation and maintenance
cost COM,system, and the replacement cost Crep,system. Ta-
ble 4 illustrates the cost specifications values for the PV,
BES, and DSL. For this study, the lifetime of the proposed
project is 20 years. Thus, the PV system has no replace-
ment cost since its lifetime is assumed to be 20 years. The
DSL is also selected to be replaced once after 10 years, while
the BES is replaced once after 12 years. Equations from
Eq.(22) to Eq.(24) are used to calculate the amount of con-
sumed fuel and its cost, as well as, the lifetime of the DSL
to find its replacement cost. A and B in Eq.(22) are the co-
efficients of the fuel consumption curve, 0.246 and 0.08145,
respectively [34].

Figure 2 shows a flowchart of the process of finding LCOE
for the standalone microgrid. In the first step, all required
data needed to calculate the total cost and energy cost for
every component in the microgrid are collected. These data
consist of fuel cost information, cost specifications, and mi-
crogrid components’ energy for each hour. Next, the fuel
cost, total cost, and total energy cost for every component
in the microgrid are computed for the first year. This follows
by finding the total annual cost and total annual energy cost
of the microgrid. This includes summing up the individual
annual costs and annual energy costs for each component.
The previous step is repeated until the end of the project
lifetime (N=20). Hence, the LCOE is found by dividing
the total annual cost by the total annual energy cost of all
components.

For finding the minimum LCOE, the LCOE with the
aforementioned steps is iterated for multiple PV and BHA
values. However, the results of finding the minimum LCOE
and its effectiveness on the optimal size of microgrid com-
ponents are explained in detail in Section 3.1. The next
section highlights how the AES model is utilized to find
the optimal size of the proposed standalone microgrid. The
proposed framework is described below.

3 The Proposed Framework

The proposed framework consists of two core phases;
firstly, the AES model is exercised to assign the best
size of the PV and BES through initial rule-based EMS
(EMSinitial). Secondly, the assigned sizes, in the previous
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Table 3: Equations used for calculations of the LCOE for PV, BES, and DSL in the standalone microgrid [29]

Performance measure Definition

Levelized cost of energy LCOE =
Total System Costs

Total load
($/kWh) =

N∑
j=0

Cmicrogrid

(1 + r)j

PL

(1 + r)j

. (13)

Total cost of the microgrid Cmicrogrid = Cpv + CBES + CDSL . (14)

Total energy generated by the microgrid Emicrogrid = Epv + EBES + EDSL . (15)

Total cost of a component Csystem = Cin,system + COM,system + Crep,system . (16)

Total cost of PV Cpv = Cin,PV +

j=N∑
j=0

Com,PV

(1 + r)j
. (17)

Total energy generated by PV EPV,total =

j=N∑
j=0

n=8760∑
n=0

Epv · (1−DEGpv)
j

(1 + r)j
. (18)

Total cost of BES CBES = Cin,BES +

j=N∑
j=0

Com,BES

(1 + r)j
+

∑
j=10

Crep,BES

(1 + r)j
, (19)

Total energy generated by BES EBES,total = ηrt ·
j=N∑
j=0

n=8760∑
n=0

Ech · (1−DEGBES)
j

(1 + r)j
. (20)

Energy used to charge BES Ech(t) =

{
Pinput(t) − Poutput(t), Pinput(t) > Poutput(t)

0, Pinput(t) < Poutput(t)

(21)

Fuel consumption Fcon(t) =

{
A·PR,DSL+B·PDSL(t), PDSL(t) > 0

0, PDSL(t) = 0

(22)

Cost of fuel Cfuel(t) =

{
Fcon(t) · Fu, Fcon(t) > 0

0, Fcon(t) = 0
(23)

DSL lifetime LDSL,y =
LDSL,h

WHDSL
. (24)

Cost of DSL CDSL = Cin,DSL +

j=N∑
j=0

Com,DSL

(1 + r)j
+

∑
j=LDSL,y

Crep,DSL

(1 + r)j
+

j=N∑
j=0

Cfuel

(1 + r)j
. (25)

Total energy generated by DSL EDSL,total =

j=N∑
j=0

n=8760∑
n=0

EDSL

(1 + r)j
. (26)

phase, are examined in the microgrid environment to op-
timize the EMS using a reinforcement learning algorithm.
The proposed framework of the standalone microgrid is il-
lustrated in Fig. 3.

In the first phase, the framework starts with finding the
best size of the PV-BES using the AES model which is ex-
plained in the next subsection in depth. The AES model

requires several sets of input data, such as load and PV pro-
files (discussed in the results section), as well as, the costs
and specifications of the components (see Section 2.2). The
AES model is based on finding the minimum LCOE of mul-
tiple generated scenarios, where each scenario has different
sizes of PV ranging from 10-100 kW, with an increase of 10
kW for each iteration. Three different values of BHA; 12,
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Fuel cost data:

Fu, A, B

Components cost data:

Cin, Com, Crep, r, N

Energy cost data: 

DEGPV, DEGBES, n, r, N, EPV, EDSL, Ech

Fuel 

cost calculation

Microgrid component 

cost  calculation

Microgrid component 

total energy calculation

Total cost=CPV+CBES+CDSL

Total energy= EPV,total+EBES,total+EDSL,total
N= 20

N= N+1

?

No

Yes

LCOE =σ𝟎
𝑵 𝑻𝒐𝒕𝒂𝒍 𝒄𝒐𝒔𝒕

𝑻𝒐𝒕𝒂𝒍 𝒆𝒏𝒆𝒓𝒈𝒚

Figure 2: The process chart of calculating the levelized cost of energy (LCOE) for the standalone microgrid while lifetime N=20
years.

Table 4: Cost specifications of PV, DSL, and BES [33].

Parameter Description Value

Cin,PV PV installation cost $1500 /kW

Com,PV PV O&M cost $30 /kW/Year

Cin,DSL DSL installation cost $500 /kW

Com,DSL DSL O&M cost $0.025/hour/kW

Crep,DSL DSL replacement cost Cin,DSL/10 years

Cin,BES BES installation cost $213/kWh

Com,BES BES O&M cost 3% of Cin,BES

Crep,BES DSL replacement cost Cin,BES/12 years

Fu Fuel unit cost 1 $/L

24, and 36 hours are also examined through the simulation.
The EMSinitial is developed from the logical and empirical
rules extracted from the analytical models explained in Sec-
tion 2. The LCOE is calculated for each scenario, then, the
optimal size is obtained by selecting the minimum LCOE of
the generated scenarios.

After determining the best size of the microgrid compo-
nents, an EMS is implemented using a Q-learning algorithm
which is referred as the second phase. At the beginning of
this phase, the Q-table is initialized to zeros and the re-
ward function is defined. The Q-table is updated for every
episode where each episode counts as one day. The agent
starts exploring the microgrid environment and based on
the current state, the agent decides to move to one of the
defined states by selecting a specific action. At the end of
the learning process, the final Q-table is generated show-
ing the Q-values for each state-action pair. Depending on
the resultant Q-values, the selection of the best actions takes
place leading to obtaining the optimal EMS. Eventually, the
proposed framework can create the optimal size-EMS com-
bination which is the main purpose of this research. Each
step of this framework is fully explained in the following
subsections.

3.1 Finding PV/BES Size using AES

AES is the first phase in the proposed framework illus-
trated in Fig. 3. The AES model was introduced in earlier
work [30] for a grid-connected PV-BES microgrid which in-
cludes the operations of selling and buying energy to/from

Load

Profiles

PV 

Profiles
Specification 

& Cost 

Parameters

Analytical and 

Economic Sizing 

(AES ) model

Best  size of PV and BES

Q-Learning 

EMSinitial

Update Q-table 

Measure Reward

Initialize Q-table

Choose Action

Perform Action

Extract the best actions from 

Q-table to achieve the minimum 

cost of size-EMS combination.

EMSoptimal

Figure 3: The proposed Framework consists of two phases:
1. applying the AES model to obtain the best size,

2. utilizing Q-learning in the EMS to extract
the optimal actions with minimum cost.

the grid. In this work, several alterations are used for ad-
justing the prior AES model to meet the requirements of the
proposed standalone PV/BES/DSL microgrid. The alter-
ations comprise various modifications on the Pinput, Poutput,
and cost analysis equations. This section elaborates on
these modifications, for instance, in equations Eq.(10) and
Eq.(11), the Pinput and Poutput are modified to suit the pro-
posed standalone microgrid. The part of the equation that is
related to grid connectivity (buy and sell energy) is replaced
by a new mathematical expression to involve the impact of
generated power of the DSL. Therefore, the amount of en-
ergy used to charge the BES is affected (see Eq.(21)). More-
over, the total cost, as well as the total energy generated by
the proposed microgrid, are also adjusted accordingly (see
Eq.(14) and Eq.(15)).
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Figure 4: Levelized cost of energy for the standalone PV-BES
microgrid using AES model, the PV, and BES sizes are picked

at minimum LCOE.

To find the optimal size-EMS combination, the AES
model should take several input data, such as load profiles,
PV profiles, and cost parameters for all microgrid compo-
nents. The purpose of the AES model is to produce many
scenarios with various PV and BES sizes to determine the
LCOE of each scenario. Fig. 4 demonstrates the calculated
LCOE values for the generated scenarios. Each scenario
represents one of three battery hours of autonomy (BHA)
for all values of the PV rated power ranging from 10 kW to
100 kW with a step of 10 kW each time. The values of BHA
used in this study are 12, 24, and 36 hours, (see Table 2).
Table 5 presents the optimal size for the components of the
proposed microgrid depending on the minimum LCOE of
all scenarios depicted in Fig. 4. Note that, the size of the
DSL is previously discussed in Section 2.2.

Allocating the sizes of the microgrid components is an
essential step to obtain the maximum of these resources
and avoid extra costs. However, combining the size of the
microgrid with an efficient EMS provides more benefits in
terms of cost and performance. The objective function and
Q-learning algorithm used for optimizing the EMS are de-
scribed in the following sections.

3.2 Objective Function and Constraints

In the previous subsection, we leverage the process of
finding minimum LCOE to find the optimal size of the
standalone microgrid. This is followed by the Q-learning
phase for obtaining optimal EMS. Therefore, as the pro-
posed framework consists of two consecutive phases, two
objective functions have been put in place to control the
output of each phase. The first objective function (obj1)

Table 5: The size of PV and BES in the standalone microgrid
based on AES model

Subsystem Size

PV system 50 kW

Battery energy system 218 kWh

Diesel generator 32 kW

of microgrid sizing is to minimize the LCOE of PV/BES
components while satisfying operational constraints. The
second objective function (obj2) is directed at minimizing
operational costs for EMS while meeting the load at all
times. Eq.(27) and Eq.(28) highlight the two objective func-
tions of the proposed framework. The state variables of the
optimization study are PV rated power, battery autonomy
hours BHA, and DSL working hours WHDSL. Optimizing
these values should result in achieving the defined objective
functions.

obj1 = min LCOE = min(

N∑
j=0

Cmicrogrid

(1+r)j

PL

(1+r)j

) , (27)

obj2 = min Cop,ESS = min(
−DEGBES ∗ (soc(t− 1)− soc(t))

(1− SOHmin)
) ,

(28)
where Cmicrogrid is obtained by Eq.(14). BES state of health
SOHmin is the ratio of remaining capacity in the BES to
initial capacity (in %). SOHmin can be found as follows [35,
36]:

SOHmin = DEGBES · socmin . (29)

For a standalone PV/BES/DSL system, the following op-
erational constraints should be satisfied. All these con-
straints have been explained in Section 2.2. Eq.(30),
Eq.(31), and Eq.(32) form the applied constraints related
to the sizing phase.

10kW ≤ PPV,rated ≤ 100kW (30)

12 ≤ BHA ≤ 36 (31)

0 ≤ PR,DSL ≤MDSL ∗ PL,max (32)

Additionally, Eq.(33) and Eq.(34) represents the con-
straints for EMS optimizing phase using Q-learning.

socmin ≤ soc(t) ≤ socmax (33)

Ppv(t) + PBES(t) + PDSL(t) = PL(t) , (34)

where PBES(t) is the hourly power drawn/stored from/in
the BES.

3.3 Reinforcement Learning

RL is a branch of machine learning concerned with how
an agent existing in an environment takes actions and moves
to other states to gain positive rewards [15, 37]. To be more
precise, a learning agent that exhibits sequential behavior
over the time step t is taken into account. At each time
step, the agent observes the state of the environment st∈S,
and makes a decision on which action to take at∈A. Then
the agent receives a reward R(t) on that transition and ob-
serves the new state st+1. It is assumed that the environ-
ment is stochastic and Markovian: that the next state st+1

is determined only by the current state and the current ac-
tion through the state transition probability P (st+1, st, at)
= P [st+1|st, at]. The mapping between the state and the
best action is discovered through trial-and-error interaction

8



between the agent and its environment. This paper identi-
fies the key features of such a learning agent and explores
how it can be used to control a microgrid. The agent must
therefore rely on knowledge that is generally insufficient for
making a deterministic decision on the best action. When
using RL to solve a real-world problem, situations like this
one are common, despite knowing that the agent does not
observe all available information, we proceed as though it
did. To summarize, an RL agent solves a Markov Decision
Problem (MDP) specified by a tuple of (S, A, P , R,) where
P and R are unknown.

There are several characteristics of the microgrid includ-
ing stochasticity, continuity, and partial observation. Since
the set of possible actions and states is continuous, the envi-
ronment is continuous. The assumption that the agent has
access to the environment’s actual state cannot be satisfied
in this situation due to partial observability [38].

One of the most well-known algorithms in RL is Q-
learning which evaluates the mapping process between
states and actions using Q-function. The following section
demonstrates the Q-learning and how the EMS in this
proposed work is modeled using this algorithm.

A. Using Q-learning to implement EMS

Q-learning is a reinforcement learning algorithm that
identifies the best action to take based on the current state
of the problem and is used for sequential optimization and
control in uncertain environments [39]. Q-learning is a
model-free algorithm where the agent in the environment
is trained to evaluate the quality of accomplished actions
telling the agent which actions to perform to learn the
optimal control policy. This paper considers an MDP with
an optimal policy π(s) defined as a deterministic mapping
between a set of states and a set of actions. Such that
there is one best action for each state or possibly several
optimal actions. It is important to recognize the ”value” of
a state-action pair, which the agent takes the advantage of
in selecting a particular action a in a particular state s for
the purpose of optimizing the objective function and this
value is called Q-value Q(st, at) [37]. The optimal policy
is denoted by π∗ and its Q-value is Q∗, where π∗(s) = arg
max Q∗(s, a). Q∗ can be learned recursively by random
approximation whose main iteration is defined by Bellman
equation:

Q(st, at) = Q(st, at)+α[R(st, at)+γ max
a

Q(st+1, a)−Q(st, at)]

(35)

Under appropriate assumptions, the series Q converges to
Q∗. The agent will eventually learn and converge to the Q
value of the optimal policy. Several such episodes will be re-
peated from the initial state to the final state for this task.
The term max Q(st+1, a) is the maximum of the Q-value of
the next state calculated with all possible actions. In this
paper, the Q-values are stored in Q-table. The initializa-
tion of this Q-table is random, then, the agent changes the
Q values using Eq.(35) as it engages with its environment.
Choosing the best action is very crucial, the agent must ini-

tially try several actions (explore the set of actions), and as
it learns, it will increasingly concentrate on the actions that
seem to be the best. There are various ways to handle ac-
tion selection, the selected approach in this paper is known
as the ϵ-greedy approach.
In Eq.(35), α is the learning rate that controls the rate

or speed at which the agent learns [15]. The value of α
is usually between 0 and 1, values closer to zero mean the
agent’s ability to learn is minimal and the Q-values are never
updated. On the other hand, setting α to values near 1
mean the agent learns fast and the learning process occurs
quickly, accordingly, in this research α is set to 0.5. R(st, at)
is the reward given to the agent based on the taken action.
γ is the discount factor that indicates how future rewards
are important to the current state [15]. The value of γ is
between 0 and 1, lower values state the agent only cares
about immediate rewards, while higher values express how
the agent accounts for future rewards. The value of γ used
in the simulations is 0.9. In this paper, the values for α and
γ chosen based on multiple experiments, where Q-learning
algorithm was tested over various possible α and γ values. It
is found that when α is between 0.5 and 0.6 and γ between
0.7 and 0.9 the best performance of the Q-learning algorithm
is obtained. Accordingly, α=0.5 and γ=0.9 are selected for
the experiments performed in this paper.

The definitions of the Q-learning element are explained
as follows:

• Environment: the environment in this study is the
standalone microgrid which has been described in Sec-
tion 2.1. The environment has several states and the
agent needs to interact with the environment to collect
data regarding its current state.

• Agent: the agent learns how to operate best in an envi-
ronment by experience. The agent is the learner that is
responsible for communicating with the environment,
gathering information regarding the current state, and
choosing an action to move the environment to the next
state. The more the agent is involved in the learning
process, the more the best decisions it can perform. In
this study, the agent is the EMS that is accountable for
managing the energy production by the components in
the microgrid, as well as energy consumption by the
load while ensuring minimum cost.

• State Space: in this research, the states are divided
into 24 states, where each state represents one hour in
the day. The agent needs to check the power generated
by the PV and DSL, power stored or drawn by the
BES, and the load power at each hour. Based on this
information the agent will make a decision on which
action to perform. Accordingly, the state space for this
problem is S={s1, s2, ....., s24}.

• Action Space: the actions selected in this work are re-
lated to BES operation. Charging/DSL OFF denotes
to charging the BES using surplus PV power after the
load is met. While charging/DSL ON relates to charg-
ing BES while DSL is ON using the extra power after
the load is satisfied. Here the DSL operates only for
one hour, and consequently the next hour the agent
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must decide whether to turn it on again or not depend-
ing on the BES soc (soc ≤ 25%). Finally, discharging
action refers to periods when there is no PV power,
nor DSL power, and the BES socmin < soc < socmax,
then this action must be selected to ensure covering the
load continuously. The action space is defined by A=
{charging/DSL OFF, charging/DSL ON, discharging}.

• Reward: provides feedback for a policy so that it can
learn desirable behavior. Positive rewards are given for
desirable behaviors and negative rewards for undesir-
able behavior. Reward formulation is discussed later in
this section.

As introduced in this section, the EMS is modeled as
an individual agent which makes decisions, responds, and
adapts to changes in the environment based on specific rules.
The environment is constantly changing and distinguished
by hourly available PV power output, load, and BES soc.
As the agent learns from the environment, it accumulates
rewards until it maximizes the total rewards received from
it. Algorithm 1 demonstrates the Q-learning algorithm used
to obtain the best actions leading to optimal EMS. The al-
gorithm starts with determining the values of α, γ, and ϵ.
Then an empty Q-table is initialized with 24 rows (states)
and three columns (actions). For the first hour in the day
when t = 0, the values of Pinput and Poutput are specified (see
Eq.(10) and Eq.(11)). Based on these values, all the possi-
ble actions are identified. Then, the agent chooses an action
from the action set based on the ϵ greedy algorithm by call-
ing the function ϵ greedy Action Selection. This function
returns an action at to be performed by the agent. The al-
gorithm iterates for 24 hours time steps until episodemax is
reached.

B. Reward Function

The reward function is designed to direct the EMS agent
to follow the optimal actions to achieve minimum operation
cost for the standalone microgrid while meeting the load re-
quirements. The reward is formulated based on maximizing
the cost of charging and discharging the BES and minimiz-
ing the working hours of DSL and, as a result, fuel consump-
tion. The operational cost is calculated hourly for every op-
erating component. For the action a1=charging/DSL OFF,
the reward equals the BES hourly operation cost (Cop(t))
multiplied by the charging energy Ech at that hour. Alter-
natively, when at= charging/DSL ON, the BES is charged
from the remaining DSL power after the load is completely
covered. It is important to note that DSL operates at 100%
of its capacity, and the amount of power generated from the
DSL always covers the load plus a safety margin of 10-20%.
The reward function for this action is calculated by taking
the negative of the operation cost of the DSL CDSL,OM mul-
tiplied by the hourly power generated by the DSL PDSL(t),
and then added to the hourly operation cost of charging the
BES. Finally, the reward for the discharging action a3 is
the Cop(t) multiplied by hourly discharging energy (Edis).
The value of Cop(t) is found using Equations (36) and (30),
which mainly depends on the BES state of health SOH, an
important indicator of battery life and reflects the ability of

Algorithm 1 Q-Learning for EMS Optimization

Input: α: learning rate, γ: discount factor, ϵ ∈ [0,1]
Output: A Q-table containing Q(S,A) pairs defining the

estimated output policy π∗

Initialize Q(st, at) ∀ st ∈ S, ∀ at ∈ A(st) arbitrarily
for episode ≤ episodemax do

Initialize the agent s0, t ← 0.
for t=0 to 23 do

at ← CALL ϵ greedy Action Selection(Q, s, ϵ)
Take action at, observe R and st+1

Update Q(st, at) using Eq.(35)
st ← st+1

if t=23 then
st is terminal

end if
end for

end for
Functionϵ greedy Action Selection(Q, st, ϵ)
k ← random number ∈ (0,1)
if k < ϵ then random action from A(st)
else

max Q(st, .)
end if
return selected action at
End Function

the BES to store and deliver energy [35, 36].

Cop,ESS(t) = Cin,BES
(−DEGBES ∗ (soc(t− 1)− soc(t)))

(1− SOHmin)
,

(36)
The idea behind the reward function is to increase utiliza-

tion of the energy stored in the BES (energy from the PV
system) while lowering the number of DSL working hours
(WHDSL) and as a consequence, minimizing the energy
drawn from the DSL. The reward function designed in this
work is illustrated in Eq.(37):

R(st, at) =
Cop,ESS(t) · Ech(t), at = charging/DSLOFF
− (CDSL,OM · PDSL(t)− Cfuel(t))
+ Cop,ESS(t) · Ech(t), at = charging/DSL ON
Cop,ESS(t) · Edis(t), at = discharging

(37)

After the proposed framework has been comprehensively
described, the next section addresses the results obtained
from this framework.

4 Experimental Results

The simulations were done on Matlab R2021a using real
data profiles for both PV and load. As a case study, the
hourly PV profiles are generated for Amman city, Jor-
dan based upon National Renewable Energy Laboratory
(NREL) [40]. Also, the load profiles are computed using
a short-term forecasting algorithm for a typical load pro-
file for a rural area in Amman. The algorithm is written
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(a) (b)
Figure 5: Data profiles used by the proposed framework divided into 24 hours for 365 days: (a) PV profiles, and (b) load profiles

by Matlab and performs an accurate computation of a year
ahead for hour-by-hour electrical load based on Ammanś
current load measurements. Note that the proposed frame-
work can be applied to any area with known PV and load
profiles. Fig. 5 illustrates the PV and load profiles described
here and plotted for 24 hours 365 days.

Firstly, the PV and BES having an initial EMS are exam-
ined using the AES model, and the optimal size is obtained.
Then, the EMS with the optimal size is implemented in the
Q-learning algorithm to find the best actions that lead to
optimal EMS. Finally, a validation process takes place to
compare the results obtained from the AES model and Q-
learning algorithm using several evaluation metrics. The
dataset used for the learning process is divided into 365
days, and 24 hours each day. The length of each episode is
the hours of one day, so the agent has been trained for 365
episodes.

Figure 6 demonstrates the accumulated Q-values returned
by the Q-function after the learning period has been com-
pleted. The Q-function returns the Q-values calculated for
every action (charging/DSL OFF, charging/DSL ON, and
discharging) over 24 hours and for 365 days (number of

Charging/DSL OFF

Discharging

Charging/DSL ON

Discharging Charging/DSL ON

Figure 6: Accumulated Q-values for 365 days of training data
showing the best actions to perform during a day to reach the

optimal EMS.

episodes), see section 3.3). According to the figure, the time
scale can be divided into five-time intervals. From midnight
to 4 AM, greater Q-values are obtained for the discharging
action, and the Q-values line for the charging/DSL ON are
rising from zero at midnight until it reaches its maximum
at 4 AM. This means that the agent learned that discharg-
ing is the best action to perform during this interval due to
the availability of power stored in the BES. From 4 AM to 8
AM; the Q-values for the two actions, discharging and charg-
ing/DSL ON are very close to each other, with the latter
higher. While the Q-values line for the charging/DSL OFF
action is having a steep rise from zero but it did not exceed
the charging/DSL ON and discharge lines. The dominant
action in this interval is charging/DSL ON. After 8 AM and
till 4 PM; there is a growth of the Q-values of the charg-
ing/DSL OFF action line, exceeding the other two lines;
discharging and charging/DSL ON actions. At this interval,
the power generated by the PV is used to cover the load and
charge the BES as well. From 4 PM to 8 PM: during this
interval, it can be observed from the figure the Q-values of
the discharging action surpass the charging/DSL OFF ac-
tion (which has a steep decline) and charging/DSL ON. This
is because the PV power is decaying, while the BES is com-
pletely charged by the surplus PV power. After 8 PM and
until midnight; the Q-values lines of charging/DSL ON and
discharging actions are adjacent with the charging/DSL ON
line exceeding the discharging line. From this figure, it can
be concluded the general structure for the EMS on a typical
day if is followed, an optimal operation of the microgrid is
achieved with minimum LCOE.

Figures 7 and 8 show PV, DSL, and load power over two
consecutive days at the beginning of January and June. PV
produces significant amounts of energy throughout the sum-
mer and is able to cover the load entirely, with any surplus
power being used to charge the BES. Accordingly, soc of
the BES reaches a maximum value during the PV peak pe-
riod as shown in Fig. 7. When the PV power drops during
night hours, the BES begins discharging to cover the load
instead of operating the DSL. Therefore, DSL power does
not appear in Fig. 7. However, in winter, the PV power
is insufficient to meet the load and charge the BES. As a
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result, the DSL must operate to cover the load and the ex-
tra power is used to charge the BES. As can be seen from
Fig. 8, the trend of the soc line is consistent with the power
generated from PV and DSL and consumed by the load.
Additionally, the action performed during the day from the
charging, discharging, and turning on DSL follows the same
rules as have been obtained by Q-learning Fig. 6.

5 Evaluation and Discussions

To illustrate the influence of harnessing reinforcement
learning on the proposed framework, we evaluate the ef-
ficiency of the proposed framework against two different
methods. The first compares the proposed framework
against the AES-finite automata model, and then an eval-
uation of the proposed framework against two rule-based
EMSs is demonstrated.

5.1 Evaluation Against Finite Automata
Method

Modeling the EMS using finite automata has many advan-
tages in terms of reducing the complexity of the system,
simplifying the process of adding or changing the operat-
ing conditions as well as, and increasing the ability to add
or remove components to the microgrid. To evaluate the
proposed framework, a comparison between the proposed
framework and a previous work reported in [29] is con-
ducted. The previous work utilized finite automata together
with AES to find the optimal size-EMS combination of a
hybrid standalone PV/BES/DSL/hydrogen system. In this
evaluation, the finite automata is employed with the AES
model on the standalone PV/BES/DSL microgrid. Then,
several evaluation metrics are introduced to highlight the
differences between the proposed framework and the AES-
finite automata model. The evaluation metrics of inter-
est are DSL working hours WHDSL, LCOE, system effi-
ciency (ηsys), and PV utilization (PVutilization). The reason
for choosing these metrics is their ability to emphasize the
changes that occurred after applying the proposed frame-
work. For example, the LCOE measures the profitability of
the microgrid during its lifetime, so minimizing the LCOE
is essential. Fig. 9 represents a bar chart comparing the pro-
posed framework and the AES-finite automata model. The
Figure shows the reduction in WHDSL from 693 hours to
537 hours when employing the proposed framework. Ad-
ditionally, there are improvements in system efficiency ηsys
and PV utilization PVutilization. The proposed framework
enhanced the PVutilization and ηsys by 6% and 3%, respec-
tively. All the improvements whether they are gains or drops
are listed in Table 6. The reason for the superiority of the
proposed framework over the AES-finite automata model is
that the latter explores all the possible paths and selects the
best path according to the given rewards that leads to the
optimal EMS with minimum operating costs. As the op-
timal size-EMS combination with the proposed framework
has been reached, improvements in the evaluation metrics
are notable.

Figure 7: Power production from PV and DSL and load power
consumption for random two consecutive days during June

Figure 8: Power production from PV and DSL and load power
consumption for random two consecutive days during January

Table 6: A comparison between the AES and Q-learning
algorithm using several evaluation metrics

Evaluation Metrics AES-FA Framework Improvements

WHDSL(hrs) 693 537 22.5% reduction

LCOE($/kWh) 0.188 0.1673 11% reduction

PVutilization 92% 98% 6% increase

ηsys 93% 96% 3% increase

5.2 Evaluation Against Rule-based Meth-
ods

Two rule-based methods are implemented to be evaluated

163.7 $/MWh
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Figure 9: A bar chart shows the improvements in the
evaluation metrics of the proposed framework compared to the

AES-finite automata model.
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against the proposed framework. These rule-based methods
are load following strategy (LFS) and cycle charging
strategy (CCS).
A. Comparison with Load Following Strategy (LFS)
The first rule-based EMS uses the principle of LFS, that
is the DSL is only capable of providing power to cover the
load. For every hour, the Pinput and Poutput (Equations (10)
and (11)) are specified. If the Pinput < Poutput, then the
load is supplied by the available energy and the BES soc
will be checked, if soc is greater than 25%, the load will be
supplied immediately by the BES. However, if the BES is
unable to fulfill the load, the DSL produces only enough
power to satisfy the load without the ability to charge the
BES [41]. On the other hand, if Pinput > Poutput, then the
load will be supplied by the available energy from the PV,
and the surplus energy will be directed to charge the BES.

B. Comparison with Cycle Charging Strategy
(CCS)
The rules used in this strategy follow the same rules as the
LFS, except that if DSL is in operation, its output will be
equal to the rated power. This means that the DSL will
supply the load at times when PV and BES are unavailable.
Any surplus energy generated from the DSL will be directed
to charge the BES until it reaches socmax [41].

Figure 10: A bar chart illustrates the evaluation of the
proposed framework against LFS and CCS

Table 7: A comparison between the AES and Q-learning
algorithm using several evaluation metrics

Evaluation Metrics Framework LFS CCS

WHDSL(hrs) 537 623 522

LCOE($/kWh) 0.1673 0.1922 0.2136

PVutilization 98% 96% 95%

ηsys 96% 94% 93%

Fig. 10 represents a bar chart demonstrating the oper-
ation cost for the standalone microgrid components. The
chart illustrates the amount of money in $ spent on the
operation cost of the microgrid per month during one year

when employing the proposed framework, LFS, and CCS. It
is clear that the proposed framework provides the minimum
values of operation cost over all months. The CCS has the
greatest operation cost values, whereas LFS has lower op-
eration cost values than the CCS but higher than the pro-
posed framework. It can be concluded that the proposed
framework surpasses the LFS and CCS in terms of opera-
tion costs, this is due to the feature that Q-learning adds
to the framework. Additionally, combining the best size for
the microgrid components (using the AES model) together
with the Q-leaning algorithm gives the proposed framework
its capability to obtain the optimal size-EMS combination.

Table 7 lists the WHDSL, PVutilization, LCOE, and ηsys
values for the proposed framework, LFS, and CCS. It can be
inferred that the proposed framework outperforms the LFS
by having smaller values in WHDSL, LCOE, PVutilization,
and ηsys (values in bold). When comparing the proposed
framework with the CCS, it can be noted that the frame-
work exceeds the CCS by having lower values in LCOE,
PVutilization, and ηsys. Due to the fact that DSL uses its
full power when PV or BES energy is not available, CCS
has fewer values of WHDSL. As a result, there will be more
energy than the load needs and the surplus energy will be
used to charge the BES. This rule for DSL operation has af-
fected the WHDSL values making them lower for CCS. The
result in the table justifies the importance of considering
the AES with Q-learning over two rule-based methods and
the effectiveness of the proposed microgrid in improving the
LCOE, ηsys, and PVutilization.

6 Conclusion

In this paper, an optimization framework for both size and
EMS of a PV/BES/DSL standalone microgrid is presented
based on reinforcement learning. The proposed framework
consists of two relevant phases; firstly, finding the optimal
size of a PV and BES using AES. The second phase involves
developing an EMS by leveraging the Q-learning algorithm
to find the most promising set of actions for the given en-
vironment. Using the proposed framework a 50 kW size of
the PV and 218 kWh capacity for the BES are obtained
after performing the first phase. Following that, the EMS
agent exploits these sizes and performs actions based on the
defined states and rewards to guide the agent in selecting
the actions with minimum operational costs. After the sec-
ond phase, the highest Q-values of the proposed actions are
aggregated for one day, such that the obtained actions rep-
resent the most efficient EMS.

To highlight the advantages of incorporating Q-learning
with the AES model, an evaluation study between the pro-
posed framework and the AES-finite automata framework is
carried out. Due to Q-learning, the diesel generator working
hours have been reduced by 22% compared to using AES-
finite automata, which reduced the LCOE by 11%. More-
over, there is an increase in PV utilization by 6% resulting
in system efficiency improvements of 3%. Additionally, two
rule-based EMSs are implemented for the standalone micro-
grid, their evaluation metrics are compared to those for the
proposed framework. The results obtained have shown an
advantageous reduction in LCOE while increasing PV uti-
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lization and system efficiency. We believe that reinforcement
learning can be used with already existing sizing methods
to extract manifold benefits in microgrids in terms of cost
reduction, increased PV utilization, and reduced diesel gen-
erator working hours.
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