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Abstract: The energy sector is undergoing a paradigm shift among all the stages, from generation 

to the consumer end. The affordable, flexible, secure supply–demand balance due to an increase in 

renewable energy sources (RESs) penetration, technological advancements in monitoring and con-

trol, and the active nature of distribution system components have led to the development of mi-

crogrid (MG) energy systems. The intermittency and uncertainty of RES, as well as the controllable 

nature of MG components such as different types of energy generation sources, energy storage sys-

tems, electric vehicles, heating, and cooling systems are required to deploy efficient energy man-

agement systems (EMSs). Multi-agent systems (MASs) and model predictive control (MPC) ap-

proaches have been widely used in recent studies and have characteristics that address most of the 

EMS challenges. The advantages of these methods are due to the independent characteristics and 

nature of MAS, the predictive nature of MPC, and their ability to provide affordable, flexible, and 

secure MG operation. Therefore, for the first time, this state-of-the-art review presents a classifica-

tion of the MG control and optimization methods, their objectives, and help in understanding the 

MG operational and EMS challenges from the perspective of the energy trilemma (flexibility, afford-

ability, and security). The control and optimization architectures achievable with MAS and MPC 

methods predominantly identified and discussed. Furthermore, future research recommendations 

in MG-EMS in terms of energy trilemma associated with MAS, MPC methods, stability, resiliency, 

scalability improvements, and algorithm developments are presented to benefit the research com-

munity. 

Keywords: microgrid; control and optimization; energy management; model predictive control; 

multi-agent system; energy trilemma 

 

1. Introduction 

The impact of energy generation through conventional fossil fuels on satisfying the 

increase in electricity load demand, emissions, socio-economical, environmental, and cli-
mate changes is raising alarm to look for alternative low carbon, sustainable, renewable 
energy sources (RES), storage systems, and networks [1]. The Net Zero goals of countries 

around the world, especially, the UK (target to decarbonize all sectors by 2050, and 100% 
zero-carbon generation by 2035) shows significant green movement towards carbon neu-

trality by encouraging production and utilization of power from RES [2]. The rise of RES 
penetration and record-breaking generation of zero-carbon power in the last few years in 
the UK (43% and 41% of the total in years 2020–2021) [3], and around the globe (~30 % in 

2020–2021) [4] shows the global trend in the transition of the energy sector. Furthermore, 
the awareness and importance of it can be seen around the globe through the actions, 

funding by respective governments, and global summits such as UN COP26 [5]. 
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1.1. About Microgrids 

The paradigm shift in the modern power system that has more renewables, distrib-

uted energy resources (DERs), flexible loads, and smart users, the smart grid (SG) concept 
has been gradually shifting towards the combination of microgrids (MGs) having control-

lable nature with several players interconnected and acting simultaneously towards 
achieving their objectives. MG is a combination of several system components such as 
RES, energy storage systems (ESS), heating and cooling systems, and local loads including 

active buildings (ABs) that can act as consumers/prosumers, etc. MGs can operate in both 
grid-connected and/or islanded modes in a controlled and coordinated way. The benefits 

of MGs are twofold. At the local level, the MGs enable better control and intra/interoper-
ability of the different components in it. At the power system level, the microgrids im-
prove reliability and provide techno-socioeconomic benefits to both end-users and energy 

system operators [6]. With different characteristics, control abilities, and modes of opera-
tion, MGs control and energy management (EM) is an important task. In the present work, 

the MGs-EMS objectives, control, and optimization approaches are presented from the 
energy trilemma perspective. Depending on the application, the nature of MGs varies 
among type (AC, DC, and hybrid), mode of operation (grid or islanded), and control ar-

chitecture (centralized, decentralized, distributed, and hierarchical). An overview dia-
gram of MGs type, mode, control, and optimization methods shown in Figure 1. Techni-

cally, MGs are classified as AC, DC, and hybrid AC-DC MGs based on the economic con-
siderations and elements presented in them. 

 

Figure 1. MG components, type, mode of operation, control, and optimization methods. 
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Although AC MGs are widely present in the energy infrastructure [7,8], low voltage 
(LV) DC MGs are becoming popular. An interesting recent review work [9,10] presented 
a comprehensive feasibility study of the massive deployment of RES in LV DC MGs and 

their impact on technological, and social developments through key performance indica-
tors such as health and environment, affordable electricity rates, quality of life, commu-

nity participation, etc. The key recommendations provided are related to efficient opera-
tion in both islanded and grid-connected modes, bus configurations, and voltage stand-
ardization of LV DC MGs. Furthermore, in [10], hierarchical control architecture that used 

different approaches in primary, secondary, and tertiary control levels discussed for LV 
DC MGs. 

1.2. Concepts of MG Energy Management and Control 

Formation of MGs is becoming more common because of their standalone/grid-con-

nected operation, easy integrating capability to new RES, ESS, energy-positive buildings, 
and ability to offer services to neighbor energy systems. Therefore, EM in MGs is an im-

portant task to be performed for efficient operation as the variability and uncertainty of 
renewables, storage characteristics, and loads further complicate it. This can be achieved 
through the different control and optimization methods that provide optimal control and 

cost-effective utilization of MG assets. Usually, review works mostly focused on the con-
trol and optimization methods and presented from the operational point of view of MG-

EMS. There is a lack of understanding of control and optimization methodologies from 
the perspective of the energy trilemma (flexibility, affordability, and security). Usually, 

energy trilemma (as sustainability, affordability, and security) perspective studies are 
done for the whole energy systems, network level integration of different energy systems, 
their planning and operation [11], and cost-efficient expansion and planning [12,13] to-

wards indexing economic energy goals and compare energy system performance at the 
country level [14]. However, addressing the energy trilemma perspective in the MGs-EMS 

has never been presented in the literature. The flexible, affordable, and secure operation 
of microgrids results from an efficient EMS that is possible through advances in control 
and optimization approaches. 

An efficient EMS reduces the system’s operational costs and avoids supply-demand 
imbalances. As a result, several control architectures have been developed for MG energy 

management. MGs-EMS with centralized, decentralized, distributed, and hierarchical 
control architectures that use several optimization algorithms are implemented in the lit-
erature [15,16]. In centralized architectures, there will be a single control unit that receives 

(sends) commands from (to) and manages the MGs components. Due to this nature, the 
obtained centralized control solutions are mostly feasible and optimal. However, gather-

ing all the information and process in a single unit increases the number of control and 
optimization variables. This leads to an increase in complexity and requires efficient, fast 
solvers. Furthermore, the control system is vulnerable to single-point failures and also 

raises several privacy and security concerns [17]. Decentralized control architectures are 
introduced to avoid the shortcomings of centralized control methods by collecting the in-

formation locally and giving the control ability to each subsystem based on the global 
objective [18]. The local control action is taken based on the subsystem operational con-
straints only, and the local actions are aggregated to form the optimal solution for the 

whole system. Due to this, the computational burden is less on the central control unit and 
minimizes computational complexity. Despite the advantages, decentralized control sys-

tems also have some drawbacks such as more local units, which require more sensory 
equipment and infrastructure. Moreover, the global system constraints are not satisfied 
always, and the solution obtained may not be feasible or optimal [16]. Among the stated 

categories, due to the increase in the importance of privacy, flexible operation, and to im-
prove the utilization of local generated renewable power, decentralized and distributed 

architectures gained prominence over centralized ones during the last few years. Along 
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with the above methods, there have been numerous studies that use the combination of 
these methods and form hierarchical or non-hierarchical methods. 

A computerized system consisting of numerous interactive, intelligent agents is 

known as a MAS. MAS methods are applied in areas such as monitoring, diagnostics, 
markets, protection, control and automation, energy management of SG and MGs, and 

their scheduling due to the characteristics and design possibility to make agents intelli-
gent [19]. Along with the agent-based approaches, methods with predictive and feedback 
nature such as MPC-based methods have gained a lot of attention in recent years for MGs-

EMS as they provide distributed control and avoid single-point failures in the system. 
This is evident in the review works and statistics mentioned in the later sections of this 

paper. The MAS concept is widely used for the energy systems such as MGs to develop 
decentralized and distributed control architectures. Recent studies that use MAS for EMS 
with various sources and loads are identified for islanded and grid-connected MGs 

[20,21], multi MGs [22], MG clusters [23], LV MG [24], DC MG [25], and hybrid AC-DC 
MG [26]. MAS-based consensus control approaches to balance power generation and de-

mand in MGs are given in [27]. A comprehensive overview of technologies, techniques, 
and their solutions for managing RES integration, variability, and load fluctuations, while 
matching energy demands in smart cities MGs are presented in [28]. In [29,30], reviews of 

several MG structures and their EMS control methods discussed. Along with EMS, stabil-
ity studies in MG and their control techniques are reviewed in [31]. The EM control and 

optimization of ABs that act as MGs and participate in providing services to energy net-
works are given in the review paper [32]. The review of hybrid renewable and heat recov-
ery energy systems presented in [33]. The impact of distributed ESS in the MGs is re-

viewed in [34]. The above papers provided reviews of control and EM of MGs that gave 
importance to one or more of its components and focus on the specific requirements such 

as stability, flexibility, and reliability of the system. To achieve MG optimal operations 
and energy management, a wide variety of optimization algorithms were employed to 
solve control objectives using the MAS and MPC-based methods [6]. Table 1 summarizes 

the review papers published in the last few years that mainly concentrated on MAS and 
MPC-based EM control and optimization approaches for MGs. 

Table 1. Review papers for MAS and MPC-based energy management in MGs. 

Review 

Work on 
Reference Main Contributions 

MAS 

Thirunavuk-

karasu et al., 

2022 [6] 

A review article comprehensively presented several hybrid, MAS, metaheuristic, and other 

non-conventional optimization methods that address the EMS problem in MG. The objectives 

of EM discussed are demand-supply forecast, unit commitment, demand management, and 

economic dispatch. Also, optimization of the design of MG parameters presented. 

Al-Saadi et al., 

2021 [34] 

Centralized, decentralized, multi-agent, and intelligent-based control strategies for distrib-

uted storage systems in MGs along with control complications and proposed solutions are 

reviewed in this work. Focus is given to multi-agent and RL-based control strategies. 

Bhargavi et al., 

2021 [27] 

Distributed consensus control approaches and their review for MGs power management us-

ing MAS are presented. The optimization approaches such as PSO, GA, FUZZY, and MPC are 

discussed in tertiary control for EMS of DC MGs with objectives of minimized operation costs 

and balanced energy storage. 

Azeroual et al., 

2020 [35] 

Discussed EM in MG simulation tools, especially the multi-agent platform in JADE linking 

with Simulink using a co-simulation platform called MACSimJX. 

Rwegasira et 

al., 2019 [36] 

Focus on control algorithms and simulation tools for DC MG load shedding. Mainly, analyzed 

and stressed the importance of distributed MAS approaches in load shedding and other con-

trol operations. 

Khan et al., 

2019 [19] 

Efficient control and EM of a distributed grid with MAS techniques along with storage and 

renewable energy sources are discussed along with the protection point of view. Different 
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control architectures and the distributed optimization techniques used to optimize opera-

tions, and maximize reliability also reviewed. MAS characteristics and advantages are pre-

sented. 

MPC 

Kamal and 

Chowdhury, 

2022 [37] 

From regulating voltage and managing frequency to power flow management and economic 

optimization, the MPC has emerged as a promising alternative to existing approaches. MPC 

has the predictive model that is the most precise. 

Konneh et al., 

2022 [38] 

The superiority of MPC to numerous strategies used to model uncertainties is highlighted in 

this review work for both grid-connected and islanded systems. It showed the characteristics, 

strengths, and weaknesses of many modeling methods of MPCs, and some of their modifica-

tions for dealing with uncertainty in MGs.  

Babayomi et al., 

2022 [39] 

MPC enables multivariable control of power electronic systems while addressing physical 

limits without requiring a cascaded structure. These characteristics result in fast control dy-

namic response and good performance for non-linear systems. MPC is more flexible and has 

multivariable and intuitive characteristics for the smart grid and microgrid systems. 

Hu et al., 2021 

[40] 

This work presented a complete overview of MPC in individual and interconnected MGs, 

including control strategies at the converter and grid levels applied to three layers of the hi-

erarchical control architecture. This assessment demonstrated that MPC is emerging as a via-

ble alternative to traditional approaches in voltage regulation, frequency control, power flow 

management, EM, and economic operation optimization. 

Tarragona et 

al., 2021 [41] 

This study summarized the most recent enhancements to solve computational difficulties, as 

well as an examination of the objective functions used in each study, which were mostly fo-

cused on minimizing energy costs, peak power, and CO2 emissions. MPC is the most promis-

ing technology to reduce the running cost of the MG. 

Villalón et al., 

2020 [42] 

This review revealed that predictive control approaches are used on microgrids for the three 

control levels and with model modifications to account for uncertainties in order to enhance 

performance and dynamic response. For microgrid applications requiring various degrees of 

control, predictive control appears to be a very promising control strategy. 

Gholamza-

dehmir et al., 

2020 [43] 

The primary goal of this study was to review sophisticated control strategies and their effects 

on technical systems and building structures in terms of energy and cost savings. Predictive, 

responsive, and adaptive versus weather, users, grids, and thermal mass should be the goals 

of these tactics. Even though MPC is the most often used in construction, it is not ideal for 

systems with uncertainties and unexpected data. In order to address these problems, adaptive 

predictive control systems are being developed. 

Fontenot and 

Dong, 2019 [44] 

Different kinds of control systems and optimization techniques such as rule-based control, 

optimal control, agent-based modeling, and MPC were compared, and concluded as MPC is 

the most effective for the MG systems. 

Sultana et al., 

2017 [45] 

MPC is gaining popularity due to its adaptability, capacity to be applied in any application 

regardless of field, and the availability of fast computers. The work described here will assist 

researchers in further exploring the versatility of this controller for design, analysis, and im-

plementation in renewable energy systems. 

The present review work related to MG-EMS, their control, and optimization is fo-

cused on energy trilemma as flexibility, security, and affordability [11] are also the major 
requirements of MG structure. As MGs comprise more of active, controllable, and ICT 
components, the study of energy management from the perspective of energy trilemma is 

meaningful and achieving it at the level of MGs can be propagated to the whole energy 
system. Hence, a study that gives a perspective of energy trilemma in MG-EMS and their 

insights that are beneficial to advancements in control and optimization methodologies 
are needed. As of the authors’ knowledge, this review is the first of its kind in presenting 
the MG energy management concept along with the categorization of objectives, control, 

and optimization methods from the energy trilemma perspective. 
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1.3. Objectives of EMS and Energy Trilemma 

The objectives associated with MG-EMS categorized in terms of energy trilemma, i.e., 

the cost-efficient (affordable), flexible (sustainable), and secure system operation. Mini-
mizing energy bills and operating costs, economic dispatch problems (EDP), and maxim-

izing individual/cumulative benefits are some of the objectives associated with afforda-
bility. Utilization of DERs, peak load reduction, day-ahead appliance scheduling, internal 
energy trading, maximizing local RE utilization, energy availability, and economic emis-

sion cost reduction is useful in making the MG system more flexible and sustainable. Sup-
ply-demand balancing, minimizing load shedding, mitigating load curtailment due to at-

tacks/faults, MG OPF/DOPF, frequency, and voltage regulation make the MG system se-
cure. Overall, MG objectives achieved by controlling and optimizing each component’s 
objectives in a coordinated or cooperative way. The objective categorization in EMS of MG 

into flexibility, security, and affordability point of view helps in choosing the method for 
EM and highlights the requirements for futuristic developments to achieve specific or 

whole system goals. This review work provides more insights and identifies potential fu-
ture research directions that should be accounted for EMS of MGs. The definitions of en-
ergy trilemma related to MG-EMS can be made as follows: 

(i) Flexibility in EMS: MGs to meet the demand using available energy resources with 
the goal of minimal emissions, flexible in operation considering local as well as up-
stream constraints from operators. In terms of control and optimization, MG changes 

such as adding energy sources or storage systems or any active/passive loads should 
accommodate by the EMS and provide flexible, scalable operation. 

(ii) Security in EMS: This category deal with various aspects/characteristics of MG com-

ponents that have security-related issues, i.e., how they coordinate and make deci-
sions without system failure. For example, switching between grid-connected and 

islanded modes of operation, safe and secure information exchange between differ-
ent components. 

(iii) Affordability in EMS: This deal with the optimal and economical operation of all the 

MG components. The objectives that are related to cost come under this category. 
Cost-efficient and affordable operation of MGs and their components are the most 

addressed problems, and they include UC, EDP, cost minimization, and individual 

or system-level benefits maximization. 

Figure 2 shows the simplest classification of the objectives under each element of tri-
lemma based on the definition discussed above. 

 

Figure 2. MG-EMS objectives and their relation to energy trilemma. 

  



Energies 2023, 16, x FOR PEER REVIEW 7 of 33 
 

 

1.3.1 Factors Affecting the Energy Trilemma 

MG-EMS enables flexibility in terms of the local energy generation and storage facil-

ities, and effective management of MG components. The objectives such as day-ahead or 
real-time scheduling, plug-and-play capabilities of MG components, economic emission 

reduction, demand side management (DSM) including demand response (DR), load shed-
ding, and self-sufficient energy nature to reduce peaks with storage systems affect the 
flexibility element of the trilemma. The secure operation of MG infrastructure depends on 

the supply-demand balance either in the islanded or grid-connected mode of operation, 
stability, frequency, voltage regulation, and communication among different entities. The 

security of MG-EMS is affected mainly by the uncertainty and variability of RES, ESS, and 
buildings. Furthermore, information exchange and/or delays among MG components 
play a role in MG system security. For example, in the MAS architecture, how an EV agent 

securely sends and receives information from MG energy sources and has the necessary 
charge for the next usage. Finally, the most addressed problems of MG-EMS were EDP, 

cost minimization, and benefits maximization for individual components, which are cat-
egorized as the affordability. The summary of MG components with their characteristics 
that affect the element of energy trilemma presented in Table 2. Therefore, it is essential 

to address the control and optimization methods developed for EMS in MGs that account 
for energy trilemma. 

Table 2. Characteristic categorization of MG components. 

Component Characteristics Affected Item of Energy Trilemma 

RES (PV, wind, and other) Uncertainty, variability Flexibility, security 

ESS Short-team storage Flexibility, security  

EVs Uncertainty Security, flexibility 

Loads Controllability, uncertainty Flexibility, affordability 

Buildings (Residential, industrial, com-

mercial) 

Comfort-level, controllability, uncer-

tainty 
Flexibility, security, affordability 

Fuel cells, electrolyzers, hydrogen tank Mid and long-term storage Affordability, flexibility, security 

The control and optimization methods that are the focus of this paper are MAS and 

MPC-based approaches due to their popularity among other methods for MG-EMS. As 
methodological advantages and capabilities of these control methods for MG-EMS, un-

derstanding them from the energy trilemma perspective will be beneficial to identify the 
research gaps in recent MG changes and their advancements with rapid changes in tech-
nology, digitalization, and the importance to privacy and security. The detailed energy 

trilemma view of MAS and MPC methods is presented in later sections. The main contri-
butions of this review work are summarized below: 

1. Presenting the energy trilemma perspective of objectives and their control methods 
in MG-EMS. 

2. Understanding of trilemma perspective of MGs can be beneficial to the whole energy 
system. 

3. The significance of MAS and MPC-based methods and their challenges for achieving 
efficient EMS in MGs are discussed using the existing research. 

4. Future recommendations that include all the trilemma elements in the control and 

optimization methods for EMS are provided for the research community. 

The organization of the paper is given below: Section 2 is the detailed methodology 
for selecting the research articles from the available literature. Section 3 specifically dis-

cussed MAS and MPC control, optimization methods involved in the energy management 
of the MGs, and the perspective from energy trilemma. Section 4 provides our recommen-
dations and challenges for future energy systems/MGs from the understanding of existing 
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research in terms of MAS and MPC-based methods. Section 5 presents the conclusions 
drawn from this review. 

2. Methodology of the Review 

Microgrids are a popular research topic, and significant research development has 

been published addressing various aspects such as generation, storage systems, and their 
management (RES, DERs, batteries) to energy trading using peer-to-peer methods. 
Around 35,000 papers have resulted from the keyword “microgrid” in Scopus showing 

the level of interest in this research area among the power and energy community. Many 
research articles (~2000) are published related to the MG, smart energy system, and EM 

that are evident from the databases such as IEEE and Scopus. This study conducts a sys-
tematic literature review to examine several factors, analyzes and classifies MAS, MPC-
based control, and optimization methods for MGs-EMS from the perspective of energy 

trilemma. To do so, a relatively large number of papers dedicated to the subject are 
acknowledged, introducing the taxonomy of control and optimization methods for the 

MG system. The focus of the paper is confined to the methods that use MAS, and MPC-
based approaches for EM in MGs as there is a need for an increasing trend of independent 
behavior in the present dynamic energy system environment. MAS approaches suitable 

for such kind of systems and observed increasing interest in applying MAS technologies 
to the current MGs scenarios as they provide features such as active/reactive, social, scal-

able, and decentralized/distributed control. Moreover, due to the advancement in compu-
tational abilities, communication and privacy requirements, and lack of understanding of 

interactions between the control and optimization methods related to “complexity”, “un-
certainty”, and “forecasting”, MAS, MPC approaches seem to be beneficial for MGs-EMS. 
As RES introduces intermittency and uncertainty to the MGs, MPC-based methods pro-

vide better control as it involves the forecasting information. For this systematic review, 
the papers screened through the keywords “microgrid”, “energy management”, “control 

and optimization”, “MAS”, and “MPC” along with decentralized, distributed, and hier-
archical control architectures. Figure 3 shows the number of publications that use the MAS 
and MPC-based methods for MG control. It justifies the focus of this review on MAS and 

MPC methods for EMS in MGs. 

 

Figure 3. Papers published with keywords related to MG control using MAS and MPC methods. 

The essential objective of a systematic literature review is to identify, assess, and in-
terpret specific subjects in a certain field of study [43,44]. The available databases have 

been browsed and an architecture has proposed for selecting the potential literature to be 
analyzed in detail. Moreover, the methodology of [45], known as backward and forward 

search, is used in some cases; to further identify suitable publications. Firstly, the language 
of all manuscripts is checked (English and non-English). The next level of removal is con-
tinued by screening the title of the research works. The third level is filtering the title and 

abstract of the papers. The fourth is to filter the remaining papers based on the full text. 
The final step is to categorize the total available papers as demonstrated in Figure 4. Total 
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of 176 and 290 articles published in the last decade in the Scopus database related to MAS 
and MPC-based methods for MGs filtered respectively through the process shown in Fig-
ure 4. 

 

Figure 4. Categorizing the systematic literature review. 

The keywords search and screening performed as below: 

1. MAS-based methods: “smart energy system”, “microgrid”, “energy management”, 
“multi-agent systems”. 

a. A total of 176 papers were found and 3 of them were omitted due to non-English 
language. 

b. Around 35 papers removed as they are significantly non-relevant subject areas, 
and the remaining papers were screened based on title, abstracts, quality of pa-
per, and relevancy to the MAS control and optimization methods. (~75 papers, 

shown in Figure 5). 

 

Figure 5. Papers identified in IEEE and Scopus database. 

The selected articles sorted to examine separately the MAS control methods in terms 
of stages, type of control (decentralized/distributed), the methodology employed, and 

complexity as specified below. 

• Papers on “hierarchical or bilevel control and optimization” are considered. 
• Papers on “decentralized/distributed control and optimization” are screened. The 

MAS methods that employ different optimization algorithms such as AI-based 
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methods, conventional methods such as ADMM, consensus, primal-dual, diffusion, 
and metaheuristic-based methods also considered. 

2. MPC-based methods: “Model predictive control”, “microgrid”, and “optimization”. 

Then, similar criteria were considered to find and systematically sort articles of MPC-
based methods. 

a. English as the main language for the research article, 24 papers were excluded. (266 
papers) 

b. Papers that are significantly non-relevant subject area, Scopus bronze and green cat-
egory papers with no licenses, and through the title screening were excluded. (106 

papers) 

c. Forty papers were removed because of irrelevant information in the abstract. 

Around 66 articles were found by the criteria discussed above. These articles were 
further identified based on the MPC methods in terms of complexity, uncertainty, and 

forecasting system behavior. 

• Papers on the “complexity” on microgrid systems [46–50]; 
• Papers on the “uncertainty” in microgrid systems[51–62]; 

• Papers on “forecasting” on microgrid systems [44,60,63–76]. 

Figure 6 shows 51 journal and 15 conference papers and their share of those journals 

and conference papers published on MPC-based control approaches for MG-EMS also 
shown. Finally, among the searched articles, the selected articles for this review analyzed 

and figured out how the energy trilemma perspective considered in the MGs-EMS objec-
tives, control and optimization methods as mentioned in Section 1. 

 

Figure 6. Journal and conference papers on MPC published on various platforms. 

3. Control Architectures for Energy Management Systems in Microgrid 

An efficient EMS of MG depends on the control architecture and optimization algo-
rithms that are equipped to manage their assets. Centralized, decentralized, distributed, 

and hierarchical control schemes are widely known as MG control architectures. Decen-
tralized and distributed architectures have several advantages over centralized control 
methods such as improved flexibility, reliability, robustness, and the ability to avoid 

whole-system failure [77]. The evolution of the MG control and research questions ad-
dressed using decentralized, distributed, hierarchical control architectures summarized 

in [78–81]. The selection of the control architecture depends on the type of MG, mode of 
operation, and user or operator requirements. A survey of cooperative control frame-
works with centralized, decentralized, distributed, and hierarchical architectures, and 

their operations for DC MGs presented in [82–84]. For DC MGs, hierarchical methods with 
AI, MAS, and metaheuristics algorithms are preferred over other control schemes [85]. In 
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[86], a review and comparison of distributed control methods for AC MGs and the impact 
of communication failure on them were discussed. An analysis of centralized and decen-
tralized MG control from the reliability perspective is provided in [87]. A distributed hi-

erarchical control method is developed in a coordinated manner for economic dispatch 
and frequency regulation in the islanded mode for AC MGs [88]. To restore frequency and 
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tectures and control using hierarchical methods. Due to the time scale differences, achiev-
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ciency and offers flexibility. Usually, local voltage control is at the primary level, fre-

quency regulation and voltage restoration are at the secondary level, and finally, energy 
management is dealt in the tertiary level in the hierarchical control architecture as shown 

in Figure 7. Moreover, a droop-free hierarchical control strategy is proposed for inverter-
based AC MGs [94]. Similar to hierarchical control, bi-level optimization and distributed 
cooperative control models for distribution networks with multiple MGs are given in [17]. 

This control can provide a plug-and-play capability and less communication pressure, it 
is shown in Figure 7. 

 

Figure 7. Different levels of control in hierarchical architecture. 

The flexible, affordable, secure operation of MG is achieved by efficient EMS with the 
above-discussed control architectures. The methods such as MAS and MPC equipped 
with different optimization algorithms resulted in optimal operation of MGs-EMS. In the 

following sections, we discuss MAS and MPC-based methods for MGs-EMS from the per-
spective of each element of the energy trilemma. 

3.1. MAS-Based Control and Optimization Methods 

Distributed coordinated control with minimal data exchange and computational bur-
den achieved for the EMS of MGs and their components with individual objectives by 
intelligent and interactive MAS architecture. Autonomous agent-based methods that in-

herently solve global objectives are gaining interest in developing distributed architec-
tures, where the control effort is distributed across all the components in the MGs [77]. 

The review of such distributed control methods with MAS is presented in [78]. MAS-based 
distributed control for energy management in MGs and MG communities is reviewed in 
[23]. Multi-agent approaches using swarm-based and game theoretic methods for multi-

generation MGs are presented in [79,80]. Distributed multi-agent platform is popular for 
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efficiently managing the secondary control level in hierarchical architecture for synchro-
nization and communication among the power converters in autonomous MGs. The 
MAS-based distributed consensus control methods for balancing MGs generation and de-

mand have the advantages of low computational power requirements and minimal infor-
mation exchange among the agents [27]. In the bilevel distributed control, the upper-level 

layer used the MAS approach for consensus and fair utilization of MGs [22]. A 2-layer 
coordinated control approach with MAS for MGs where the switching control of DC de-
vices and loads are handled as discrete events using Petri nets is given in [81]. MAS ap-

proaches are developed for energy management in MGs with RES [82], ESS [83], houses 
and buildings [84], and different type of load patterns [85]. These methods addressed and 

involved in solving several objectives such as optimal cost of operation/generation, mini-
mizing emission costs and line losses [86], the autonomy of supply-demand balancing, 
ED, scheduling, user expectations (in terms of heating or cooling), peak consumption, 

cost-benefit ratios, etc. MAS methods for EMS in decentralized structure addressed de-
mand management (DM) [85], ED, and UC problems for both islanded and grid-con-

nected AC MGs [6,86]. The agent-based decentralized control methods with Stackelberg 
game theory algorithms identified as efficient EM solutions for MGs and MG communi-
ties that address the problem of DERs integration [87]. ED and optimal operation of RE 

integration of EMS using RNN-based EMS with MA-based weather forecasting technique 
presented in [88]. An agent-based decentralized model with robust programming based 

optimization for MG-EMS implemented in [89]. 
Various software used in implementing multi-agent approaches for solving the ob-

jectives mentioned above were MATLAB + JADE, RSCAD with ACL communication, 

HTTP, TCP/IP communication protocol, and fuzzy logic [90]. These methods use individ-
ual system components as agents, which can have their objective functions, able to com-

municate and act independently. As MG systems involve several components with differ-
ent natures, bi-level or three-level hierarchical control structure is very common in recent 
studies. The summary of objectives and the multi-agent-based control approach for MGs-

EMS is provided in Table 3. 
The control architectures that used MAS with several optimization algorithms in 

solving the objectives mentioned above have numerous advantages in MGs-EMS. Ana-
lyzing them with the help of trilemma elements such as flexibility, affordability, and se-
curity and considering the MAS characteristics will provide a different perspective that 

can help in selecting the suitable method of control for MGs that achieve desired opera-
tion. 

(i) Flexibility in EMS of MGs through MAS: In MAS methods, the MG components are 
considered as individual or autonomous agents with objective functions to achieve 
with minimal information exchange with the neighboring agents through communi-
cation. The autonomous nature of MAS helps in adding more RES and ESS. It leads 

to the effective utilization of flexible, locally generated energy, and reduces grid im-
ports and emissions. The autonomous and scalable nature of the MAS framework 

enhances the plug-and-play capability of MG-EMS. When the MGs are operated in 
power deficit mode, the flexible operation of EMS through MAS is achieved by send-
ing control signals to the agents that can participate in optimal DSM and DR or load 

shedding. Similarly, in the power surplus mode, the energy availability is communi-
cated and stored for future use to reduce peak loads in the system. As the utility grid 

considered as an agent, it is ready to supply whenever MG-EMS suffers from energy 
deficiency. This greatly enhances the system’s flexibility in handling sudden failures 
of MG component and satisfies the local load demand. The autonomous, scalable, 

sociable, and reactive abilities are the MAS characteristics that offer flexibility in the 
EMS of MGs. 

(ii) Affordability in EMS of MGs through MAS: The economic operation of MG is the pri-
mary goal of EMS. The consideration of local as well as global constraints in the MAS 
methods provides efficient EM in the MGs by solving the EDP problem. Active and 
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reactive characteristics of MAS control provide continuous monitoring of MG sys-
tems and effectively utilize the available energy. This enhances the utilization of lo-
cally produced energy and avoids additional power trading from the grid. This re-

duces the cost of operation and increases affordability to the different types of con-
sumers. The MAS control methods are popular in providing decentralized and/or 

distributed control architecture. Thus, these are computationally less expensive than 
centralized control methods. The active and reactive features of MAS enhance the 
affordability of the MGs. In distributed approaches, the minimum operating cost and 

optimal power output of all the DERs achieved with cooperative/consensus methods. 
In AC-MGs, consensus can be obtained through incremental cost consensus (ICC) or 

gradient-based distributed methods [77]. Similarly in DC-MGs and hybrid MGs, ICC 
approaches can be extended [91]. These are easily possible with MAS approaches as 
different techniques can achieve consensus between agents. 

(iii) Security in EMS of MGs through MAS: Security of supply is most important for any 
energy system, especially for MGs operating in the islanded mode. The loads should 

be supplied by the efficiently scheduled available energy resources of MGs-EMS with 
the amount of energy requested. To satisfy the operational constraints of MG and its 
components, MAS methods with intelligent and interactive communication capabil-

ities between the agents are most suitable. For example, the MAS development using 
JADE provides the communication capability through the ACL (agent communica-

tion language) following the FIPA (Foundation for Intelligent Physical Agents) pro-
tocols. The possibility of single-point failure of the MG-EMS can be avoided by the 
decentralized/distributed architecture of MAS through communication. Moreover, 

most sensitive loads can be given preference at the same time while maintaining the 
supply-demand balance, frequency, and voltage regulation in hierarchical control 

that uses the MAS approach to enhance the MG-EMS security. Secure communica-
tion and avoiding communication delays are the challenging aspects of MAS meth-
ods. The uncertainty and intermittent nature of the RES, security, and health aspects 

of batteries/ESS are considered during the control method modeling for MG-EMS. In 
the case of local agent failure, the isolation of faulty component of MG is possible, 

which improves stability and provide secure operation of MG and its components. 

Table 3 presents the works that used MAS approaches in different types of control 
architectures for MG-EMS. It also shows the objectives identified along with the addressed 
energy trilemma element. As it is clear from the table, the affordability aspect of energy 

trilemma is by default included in the EMS studies of any MG as the cost-optimal opera-
tion always desired. Later, the effective utilization of available energy resources, storage 

elements, DG, DSM, and DR are given importance. This enhances the system’s flexibility. 
Finally, due to the modern MG challenges such as complex dynamic behaviors of MG 
components, uncertain environment, multi-mode operation of MGs, supply-demand bal-

ance, and system security become more important. The security aspect of energy trilemma 
has gained attention in the recent MGs-EMS studies with the increase in the number of 

individual components and developments of communication infrastructure among them. 
These individual agents in the MGs have dependent and independent operating nature 
to supply/receive reliable, secure energy, and increased concern over secure communica-

tion. The objective functions and their problem formulations include linear, non-linear, 
mixed integer and other difficult characteristics which require multi-stage control and ef-

ficient optimization algorithms (for detailed mathematical formulations, kindly refer to 
the respective original publications). The inference made from Table 3 is that the imple-
mentation of MAS, AI-based, hybrid (two or more) control approaches for MGs-EMS is 

gaining popularity over the other methods. Distributed and hierarchical control architec-
tures with these methodologies are essential to address the energy trilemma (flexibility, 

affordability, security) issues in modern MGs. Based on the analysis performed, the con-
stituents of MAS for achieving energy trilemma aspects in MGs-EMS are presented in 
Figure 8, i.e., MAS characteristics and abilities that help in developing various control 
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Table 3. MAS control methods for EMS in MGs and perspective of energy trilemma. 

Objective Type of MG Methods Key Finding(s) 
Energy Tri-

lemma Element 
Reference 

Minimize energy 

bills  
DC MG 

Distributed con-

trol with MAS 

MAS control implementation in 

DC MG for load shedding 
Affordability 

Rwegasira et 

al., 2019 [36] 

Minimize operating 

costs 

Minimize interrup-

tion cost, maximize 

reliability 

MGs 
MAS 

(distributed) 

Different control and protection 

challenges addressed by MAS, 

their advantages, and various op-

timization methods used for EM 

at the MG level discussed 

Affordability, 

flexibility 

Azeroual et 

al., 2020 [35] 

Optimal size and 

cost optimization  
DC MG 

AI-based meth-

ods including 

MAS for EMS 

EMS in MG with residential ap-

plications using different control 

architectures discussed 

Affordability 
Ali et al., 2021 

[92]  

EM in MGs consid-

ering factors fatigue 

life (FL) and Energy 

Not Supply (ENS). 

Multi MGs 
Distributed con-

trol with MAS 

Tertiary control that addresses 

EMS in MMGs with novel con-

sideration of FL factor and ENS 

Flexibility, secu-

rity 

Rashidi et al., 

2021 [93] 

Peak load reduction, 

minimize cost and 

maximize benefits 

MG MAS with JADE 

EM in MGs through load pat-

terns and energy availability 

from DERs, storage, and DR  

Affordability, 

flexibility 

Nunna and 

Doolla, 2013 

[85] 
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Supply-demand bal-

ancing and Load 

shedding 

Islanded MG 

 

Distributed con-

trol with MAS 

MAS control implementation in 

DC MG for load shedding 

Security, flexibil-

ity 

Xu et al., 2013 

[94] 

EDP is to Minimize 

cost, there by opti-

mal operation and 

power allocation 

MG 

MAS based hier-

archical control 

with distributed 

Diffusion strat-

egy as optimiza-

tion method 

Proposed methods have faster 

convergence, higher stability, 

also handle change in communi-

cation topology and realize plug-

and-play of DERs ensuring opti-

mal utilization of resources 

Affordability, 

flexibility 

He et al., 2019 

[95] 

Maximize RE utili-

zation and minimiz-

ing cost by reducing 

power import  

Grid con-

nected MG 

With RE, bat-

tery, and EV 

RNN for optimi-

zation consider-

ing MAS archi-

tecture for MG 

The proposed approach deter-

mines the optimal power values 

for a time horizon of one week, 

for wind, solar, and battery sys-

tems and the utility grid. 

Flexibility, af-

fordability 

Urias et al., 

2014 [88] 

Maximize individ-

ual and cumulative 

benefits, and utiliza-

tion of resources, 

frequency and volt-

age regulation 

Islanded MG 

MA-based Hier-

archical hybrid 

control 

The upper-level agents provide 

the EMS to lower-level DERs 

agents for implementing the 

power assignment. 

Intelligent reconfiguration strate-

gies of operational mode are es-

tablished using information fu-

sion and Petri nets 

Flexibility, af-

fordability, Secu-

rity 

Dou and Liu, 

2013 [86] 

EM of MMGs con-

sidering optimal op-

eration, markets, 

and communication 

Multi MGs 

(MMGs) 

MAS-based hier-

archical, distrib-

uted method and 

others—a review 

Uncertainty modeling of EM in 

MMGs is addressed 

Flexibility, af-

fordability, secu-

rity 

Ma et al., 

2022 [96] 

EM considering 

RES, DGs, ESS 
Campus MGs 

MAS and Heu-

ristics 

EMS of MGs considering several 

objective functions and solutions 

tools are discussed in detail 

Flexibility, af-

fordability, secu-

rity 

Muqeet et al., 

2022 [97] 

Cost optimization 

Maximization of 

benefits, secure 

communication 

MG clusters 

EMS with MAS-

based hierar-

chical control us-

ing heuristics 

and machine 

learning based 

models 

Provided control strategies with 

single and multi-objective opti-

mization methods for EMS. 

Cloud computing and ML-based 

control architectures for EM and 

their simulation platforms 

Flexibility, af-

fordability, secu-

rity 

Salehi et al., 

2022 [98]  

Rosero et al., 

2021 [99] 

3.2. MPC-based Control and Optimization Methods 

MPC-based methods are commonly used to solve mixed integer nonlinear objectives 
such as the UC problem of EMS in MGs. Addressing the characteristics such as variability, 

MG components uncertainty, and the use of forecasting information are included in the 
MPC-based control methods. MPC rolling or receding horizon optimization approach is 

also capable of providing efficient MGs-EMS that can provide over a considered time hori-
zon either in day-ahead or real-time scheduling. 

MPC-inspired EMS used a neuro-fuzzy algorithm that accounts for RES intermittent 

nature in grid-connected MG with loads and PV presented in [100]. To address the uncer-
tainty issues with RES and loads, stochastic-based EM of MG that has several control ob-

jectives is resolved using MPC rolling horizon approach. To minimize the operating costs 
of MGs under uncertainty in wind speed, scenario-based stochastic programming with a 
rolling horizon approach is presented in [101]. The rolling horizon or MPC approaches 

are reactive-based methodologies that can modify or update the data obtained by 
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deterministic approaches. In [102], a scenario-based MPC proposed to minimize operating 
costs and overall emissions. A chance constraint MPC for a grid-connected MG consisting 
of a gas turbine, battery, and PVs is presented in [103]. In this, optimal scheduling consid-

ering uncertainty in the lower level, and economic operation over a long-time horizon in 
the higher level achieved simultaneously. In [104], MPC-based optimal control for renew-

able energy MGs with hybrid ESS such as hydrogen ESS, batteries, and capacitors pro-
vided to achieve economical and flexible operation. To address power quality, and unbal-
anced power-sharing issues, a hierarchical MPC-based method used for islanded AC MG 

[105]. In addition, MPC methods applied for EMS that consider battery aging were also 
developed [106,107]. Several MPC-based building-to-building EMs are also proposed for 

residential MGs with grid connection [108,109] and islanded operation of MGs [110–112]. 
In the well-known 3-layer control, the objectives of the secondary control layer such 

as voltage, frequency regulation, and power allocation are achieved using MPC-based 

mechanisms with rolling or receding optimization. Moreover, communication cost reduc-
tion obtained using self-triggering based on the predictive feature of MPC [113]. MPC is 

used in the optimization framework of MG to optimize the power flows and reduce the 
peak load ensuring the quality of service to EVs in a vehicle-to-building environment 
[114]. Centralized EM for a building integrated MG (BIM) using MPC with finite horizon 

planning optimization was developed in [115]. This algorithm optimizes the BIM opera-
tion that satisfies the indoor temperature along with BIM components and power ex-

change with the grid. In [116], a dual decomposition-based distributed MPC for EM in 
MGs networks for feasible power exchange without raising privacy concerns is presented. 
Similarly, a hierarchical (upper and lower layer) distributed MPC that provides high reli-

ability, efficiency, and flexibility in its control for standalone MGs with wind, solar, and 
battery power systems is presented in [117]. A chance-constrained MPC for intercon-

nected MGs accounting uncertainty to provide EM strategies presented in [118]. MGs 
forming also helps with service restoration. This further improves the resiliency of the 
distribution system [119]. MAS employed with MPC also developed to control and opti-

mize MGs for energy allocation [120]. MPC with robust optimization for islanded MGs 
with intraday EM proposed in [121]. MPC and their advancements that are used to 

achieve objectives such as maximizing energy efficiency, managing import (export) power 
from (to) the grid, and economic optimization show an increasing trend in the MG-EMS 
application that involves distributed RES and ESS [40]. 

The control architectures that solve the aforementioned objectives by combining 
MPC with various optimization methods have several benefits in MGs-EMS. A different 

perspective that can help in understanding the MPC approach by analyzing its features 
with the help of energy trilemma elements is given below. 

(i) Flexibility in EMS of MGs through MPC: The realization of centralized, decentralized, 
and hierarchical control architectures for EM in MG are made possible through the 

MPC and their variants. MPC can effectively achieve the control and optimization 
objectives of EMS through the features such as a rolling or receding horizon ap-

proach, accounting uncertainty, forecasting information, and reactive (feedback) 
mechanism. The flexibility of EM in MGs that employed MPC-based control methods 
is achieved by providing the forecasting information related to the RES generations 

and load demand. Real-time or day-ahead scheduling is possible through the rolling 
horizon approach and enabling the DSM and DR techniques in control architecture 

reduces peak loads. The plug-and-play capability provided to the extent would not 
increase the computational complexity. This plug-and-play of ESS and other loads 
improves EMS reliability and flexibility. The flexible operation of MG can be carried 

out with the help of control feedback from the available generation and load demand 
in the islanded or grid-connected mode of operation. Delays in the energy demands 

of MG components are allowed within the predictive time window. This further 
helps in tackling flexible demand profiles in the MG-EMS. 
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(ii) Affordability in EMS of MGs through MPC: The problems with the nature of mixed 
integer linear and nonlinear characteristics considering several operating constraints 
are solved effectively using MPC-based methods. The UC, EDP, and optimal opera-

tion of MG-EMS also have a similar nature and were addressed widely using MPC 
methods. The integration of different optimization techniques such as robust, rolling, 

and stochastic optimization helped in achieving affordable and optimal EM within 
the MGS that employed MPC-based control approaches. The self-triggering feature 
of MPC will reduce the communication infrastructure requirement that further helps 

in developing an affordable control system for MG-EMS. The energy imports and 
exports from the grid are continuously monitored at the control unit. This helps in 

achieving the affordable and economical operation of grid-connected MG. 
(iii) Security in EMS of MGs through MPC: The ability to handle any disturbances and un-

certainties is the most beneficial aspect of MPC control approaches for MG-EMS. The 

uncertainty issue of MG-EMS to enhance security is well addressed using the MPC-
based methods with robust optimization. MPC control approaches are reactive in na-

ture and can integrate new updated or forecasted information into the EMS. This 
improves system security by satisfying the system and component-level constraints. 
MPC with a rolling horizon approach reduces forecast error for real-time online op-

eration and provides stable operation of MG. By doing so, MPC can predict the future 
behavior of the system that has constraints. The decentralized/distributed architec-

ture of MPC used to control the power flows of the complicated hybrid power sys-
tem. MPC has a fast transient response since the main role of MPC is to integrate new 
updated data and forecast information. Additionally, giving precedence to the most 

sensitive loads simultaneously with preserving supply-demand equilibrium, fre-
quency regulation, and voltage regulation in hierarchical control that employed the 

MPC approach improves the security of the MG-EMS. When modeling the control 
method for MG-EMS, the security and health aspects of batteries and ESS, as well as 

the uncertainty and intermittent nature of RES, are considered. 

MPC uses many optimization techniques including rolling (receding) optimization, finite 

horizon optimization, convex programming, MILP optimization, and multivariable optimiza-
tion as shown in Table 4. The constituents of MPC-based control approaches for achieving the 

energy trilemma in MG-EMS summarized in Table 4 are illustrated in Figure 9. 

Table 4. MPC control approach with objectives and their relation to energy trilemma. 

Objective Feature 
Type of 

MG 
Methods Key Finding 

Energy Tri-

lemma Ele-

ment 

Reference 

Economical oper-

ation 

Uncertainty 

of RES 
MMGs 

Distributed Robust 

MPC (DRMPC) 

With Column and con-

straint algorithm 

(C&CG) 

EMS modeled as 

DRMPC technique 

has ability to balance 

the robustness and 

economy of MG oper-

ation 
Affordability, 

security 

Zhao et al., 

2022 [51] 

Stability 
Data cen-

ter MG 

Stochastic MPC 

(SMPC) with Rolling 

optimization 

Able to handle nega-

tive influence of un-

certain factor in 

achieving economic 

operation 

Zhu et al., 

2022 [122] 

Minimize opera-

tional cost 

Uncertainty 

in AC/DC 

loads 

DC-MG 
Deep-Q network-based 

Reinforced learning 

Comparison with Sto-

chastic MPC (reduced 

41.9% operating cost) 

Affordability 
Thanh et al., 

2022 [123] 
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Reduce PV cur-

tailment, and un-

met load 

Reliability, 

forecasting 

uncertainties 

Standalone 

MG 
GA 

Reduction in capital 

cost and help in 

downsizing the sys-

tem 

Affordability, 

flexibility, se-

curity 

2021 [96] 

Frequency regu-

lation 

Uncertainty 

in MG 
MG 

Adaptive Intelligent 

MPC (AIMPC)  

Frequency deviations 

in a MG lower degra-

dation tendency and 

lesser cost of an EV 

battery 

Security, af-

fordability 

Khokhar and 

Parmar, 2022 

[124] 

Recovery of volt-

age/frequency, 

complexity re-

duction 

Complexity of 

MG control 
MG 

MPC with rolling hori-

zon approach 

 Reduce communica-

tion cost 

Security, af-

fordability 

Dong et al., 

2022 [113] 

Complexity re-

duction in MG 

control 

Uncertainty 

of battery us-

age 

Building 

MGs 

Hierarchical MPC 

(MILP formulation) 

Reduces annual costs 

for residential and 

non-residential build-

ing MGs 

Affordability 2020 [125] 

Optimal opera-

tion considering 

uncertainty 

Uncertainty 

of RES 
MG Robust MPC 

Reduce operating 

cost, reduce peaks, 

and uniform grid con-

sumption 

Affordability, 

security 

Marín et al., 

2019 [126] 

Increase in RE 

self-consumption 

within MG 

Forecasting of 

load demand 
MGs 

MPC (Convex problem 

formulation) 

EMS achieves reduc-

tion in cost by 30% 
Affordability 

Elkazaz et al., 

2020 [127] 

Scheduling 

Multi-time 

scale, fore-

casting of RE 

uncertainties, 

load demand 

Buildings 
Receding horizon rule-

based MILP, MPC 

Optimal charge and 

discharging, reduced 

annual storage capac-

ity loss of EV batteries 

by 23% 

Flexibility 2022 [128] 

Minimize un-

served load and 

thermal discom-

fort 

Uncertainty 

of the outdoor 

air tempera-

ture and solar 

irradiance 

forecasts 

Buildings 
MPC (MILP formula-

tion) 

Discussed impact of 

power flexibility in 

buildings 

Flexibility 
Wang et al., 

2020 [129] 

Reduce peak 

load and opti-

mize power ex-

change 

Uncertainties 

of power gen-

eration, oper-

ational flexi-

bilities of EVs 

Corporate 

building 

MGs 

MPC with Constrained 

Optimization 

Peak loads are re-

duced for building 

MGs 

Flexibility, af-

fordability 

Ouammi, 

2021 [130] 

Decrease conges-

tion and peak 

loads 

Forecast RE 

generation 

and load 

MG 

Agent based, MPC, and 

Multi-objective optimi-

zation 

Decentralized ap-

proach reduces the 

risk of system failure 

Security, flexi-

bility 

Fontenot and 

Dong, 2019 

[44] 

 Manage the 

data transmis-

sion in MG 

Uncer-

tainty/Fore-

cast of the 

weather 

MG PSO, GA, MPC 

Reduce  

at least 40% predic-

tion error 

Security 
Yuan et al., 

2019 [131] 

Minimize the sto-

chastic forecast 

errors  

Forecasting of 

the weather 
MG 

Hybrid MPC 

And Mixed-Integer 

Nonlinear program-

ming (MINLP) 

 MG cope up with 

large disturbances  
Security 

Liu et al., 

2019 [76]  
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of RES genera-

tion, ESS 

Minimize rate of 

degradation bat-

teries 

Uncertainty 

of the battery 
DC MG 

MPC with multi-objec-

tive optimization 

Reduce the reserve 

capacity of the grid 

Affordability, 

security 

Nair and 

Costa-Cas-

telló, 2019 

[132]  

Minimize the 

prediction error 

Forecasting of 

power de-

mand 

MG 

Mixed Integer Pro-

gramming (MIP) and 

MPC 

Decrease in total cost 

by 22.69% 
Affordability 

Zhang et al., 

2018 [67]  

Stabilize of the 

grid import/ex-

port 

Complexity of 

MG control 
MG 

MPC with Receding 

Horizon Optimization 

Improve the power 

quality of PV power 

plants 

Security 
Lei et al., 2017 

[133]  

 

Figure 9. Constituents of MPC for achieving energy trilemma aspects in MGs-EMS. 

In summary, the MAS and MPC frameworks are well used in control methods for 
MGs due to their structural features and control operations. The two mentioned control 

approaches have the majority share among the recent application to EMS. As discussed in 
the papers mentioned in Tables 1, 3 and 4, the MAS framework is known for its ad-
vantages such as decentralized/distributed architecture, communication capability 

among the system components, and characteristics such as autonomous, social, active, 



Energies 2023, 16, x FOR PEER REVIEW 20 of 33 
 

 

proactive, and scalability. This results in developing several research works that use MAS 
as the main control engine in all the levels of control in MGs (such as primary, secondary, 
and tertiary control in MGs). At the same time, conventional control techniques such as 

MPC and their advancements are widely popular methods for EMS in MGs. MPC pos-
sesses a variety of beneficial traits [134,135]. It is possible to incorporate physical con-

straints directly and intuitively, and have an excellent dynamic, reliable control system. 
Direct control signals produced results in simplicity. Complex optimization problems are 
made easier to solve by integrating a variety of techniques into the MPC control approach. 

In addition, researchers working on MPC advancements in MGs must consider different 
factors such as RES intermittency, load-sharing accuracy, circulating currents, grid stabil-

ity, etc. Finally, for the EMS in MGs with the requirements of distributive control archi-
tectures, consensus, and effective management among the MG components, plug-and-
play and scalability in adding RES, ESS, etc., and services such as DSM and DR, MAS-

based intelligent interactive approaches are beneficial over MPC and other methods. 
However, due to the adaptability, capacity to apply in any field, predictive and feedback 

nature, accounting uncertainty, and intuitive characteristics, MPC-based methods are ad-
vantageous in hierarchical control architectures of MGs-EMS with RES, ESS, and dynamic 
loads. Additionally, to overcome the pitfalls of each other, the ensemble of MAS and MPC-

based methods can be a possibility to use at different levels of control in MGs. 

3.3. Optimization Algorithms in the MGs-EMS: 

The use of the control and optimization method is based on the type of MG structure, 

individual entity objective functions, and their formulations. The classification of optimi-
zation techniques used in EMS includes AI-based, conventional mathematical, metaheu-
ristic, and others. Fuzzy logic, game theory, multi-agent, neural network, and reinforce-

ment learning methods come under the category of AI-based methods. Dynamic pro-
gramming, robust programming, stochastic programming, bilevel programming, mixed 

integer programming, MPC-based methods are conventional approaches. Swarm intelli-
gence, evolutionary, and heuristic approaches are of metaheuristic type. Hybrid methods 
and groups of two or more of the above-described types are categorized as other methods 

for achieving the optimization objectives of MG-EMS. In [6], the authors presented a com-
prehensive review of optimization techniques for addressing several control objectives in 

the EMS of MGs. Four major types of techniques and their subclassifications are presented 
in detail. Moreover, an interesting qualitative analysis was performed among methods 
that solve the UC, ED, forecast, and demand side management (DSM) objectives. It con-

cluded that mixed integer programming, MAS approaches, and metaheuristics such as 
PSO are mostly used methods to address MGs-EMS. MAS-based methods are best for the 

MG to provide solutions for UC, and DSM with high efficiency, reliability, and adaptabil-
ity, whereas metaheuristics such as PSO are simple and reliable, better for forecasting and 
ED. The ensemble of these methods collectively achieves the best results for solving EMS 

problems of MGs. Therefore, the idea of using hybrid approaches that include futuristic 
EMS requirements in a collaborative MG community with accurate forecasting, and 

scheduling to improve economic and computational benefits paramount in the literature. 
In MAS, the optimization techniques are employed as distributed control strategies 

in the MGs-EMS because of the distributed nature of the agents as demonstrated in [78]. 

A critical overview of the distributed control systems utilizing MAS provided in [136]. 
The work in [86] presented a MAS-based hierarchical control for an autonomous MG in-

tending to maintain a fixed voltage while maximizing economic and environmental ben-
efits. To lower system peaks and integrate demand response with distributed storage, [85] 
suggested an energy management model employing a MAS-based system constructed in 

Java agent development framework (JADE). In [94], the supply-demand imbalance due to 
the high availability of RE is addressed by using a MAS with the distributed sub-gradient 

algorithm for EMS. Multi-agent-based MG supervisory controllers and their use were ex-
amined by [137]. A three-layer MAS-based controller for economic dispatch presented in 
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[138] consists of producer, consumer, and observer agents. A MAS for DSM and schedule 
coordination is presented in [139]. 

In [17], an EMS problem divided into a UC and an optimal power flow problem. The 

mixed-integer non-linear problem was solved using an MPC-based approach. The sug-
gested model’s performance assessed using the CIGRE medium-voltage benchmark. A 

model developed for efficient battery scheduling based on a receding control horizon is 
presented in [140]. The application of MPC control to solve the DSM in MG is demon-
strated by [141]. Centralized and decentralized control architectures with MPC methods 

for EMS formulated as MINLP in grid-connected MGs proposed to solve objectives that 
include forecasting, DSM, and UC [6]. Among the conventional approaches, MPC and 

their variants always make their place in competition with modern AI-based techniques 
as it effectively solves UC-like problems of EMS with an MINLP nature. 

Heuristics and evolutionary algorithms are popular in solving single and multi-ob-

jective optimization problems. In MGs-EMS, PSO and its variants are widely used. For 
optimal economic dispatch, GA are widely used evolutionary-based algorithm for EMS 

in MG [142]. ESS-introduced uncertainty is widely addressed by PSO-based optimization 
methods for EMS in MG [143]. In order to reduce operating costs and carbon emissions, a 
multi-objective intelligent EM control of a MG system developed in [144]. 

Game theory (GT) is a mathematical theory developed to investigate the rational de-
cision-making of a decision-maker to resolve conflicts and the cooperativeness of a system 

to attain a common, well-defined goal. For a decentralized DSM of grid-connected home 
MG with EV, ESS, and RES, depending on the load demand forecasts, EMS engages in a 
mixed-strategy non-cooperative game until it reaches a Nash equilibrium, changing the 

anticipated consumption pattern to reduce the overall cost of electricity [145]. The deploy-
ment of agent-based and GT-based EM solutions for community MG has been found as 

the most effective approach to address the concerns of increased DERs integration into 
MGs. The decentralized nature of the MG EMS system benefits from the characteristics of 
the GT-based algorithms. 

With an adaptive nature to the environment and incorporating user input into the 
control logic, RL-based methods have been widely used in decision-making. In [146], a 

thorough analysis of modeling approaches and algorithms for demand response using RL 
is presented. RL can coordinate with multi-agent systems that perform demand response 
based on generated penalties and rewards. For the rescheduling of a completely auto-

mated EMS, [147] used Q-learning. An effective scheduling and control technique using 
RL for heating, ventilation, and air conditioning (HVAC) systems implemented in [148]. 

The results demonstrated that the RL-based controller could cut energy consumption by 
22% while maintaining interior thermal comfort compared to a hand-crafted baseline con-
troller. NN, FL, and other AI techniques are also generally used in MG-EMS. The NN-

based forecasting technique is typically employed to estimate the production of stochastic 
renewable energy sources. Forecasting and demand response models are also necessary 

for NN-based energy management algorithms. Additionally, NNs employed in EMS 
schemes that concentrate on ED and optimal operation of the integration of renewable 
energy [88]. An RNN-based energy management system and a multi-agent-based weather 

forecasting technique is presented in [88]. The coordination of various ESSs in a microgrid 
while taking into account an interconnected topology has also been optimized using the 

RL algorithm [149]. 
Finally, the other conventional solvers that solve mixed integer linear/nonlinear EM 

problems were also given in [6]. Minimizing the total operational cost as a convex optimi-

zation problem both for offline and online EMS is solved using dynamic programming 
[150]. MIP is widely used for solving EMS problems due to its simplicity and low compu-

tational cost. MILP is also used to manage generation and demand alongside load forecast 
in a rolling horizon approach [151]. The objectives in MIP are optimal scheduling, sizing, 
and balancing of the generation and demand of RES, ESS in MG-EMS. A stochastic MILP 

model for optimal EM and sizing of RE and battery presented in [152]. 
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Energy trilemma aspect in optimization methods: As discussed earlier in Sections 3.1 and 
3.2, MAS and MPC methods have the edge over other methods to implement control and 
optimization architectures for MGs-EMS. The AI-based methods for EMS provide flexi-

bility in solving plug-and-play capabilities of MGs-EMS. The algorithms that are used for 
EMS should be scalable for solving increase in dimensionality or non-linearity in the ob-

jective formulations. AI techniques such as RL and machine learning methods, metaheu-
ristics that can handle such complex objective functions are gaining importance in the re-
cent studies due to higher amount of data availability and handle the dynamic nature of 

the system. The computational complexity should be reduced with the help of efficient 
solvers and different simulation platforms. In addition to solving the optimization prob-

lems associated with EMS, the proper communication between different entities of EMS 
of MG is important. Such communication is useful for developing distributed architec-
tures with minimal privacy concerns and improving security aspect of EMS. 

In summary, review papers published in recent years discussed different control ar-
chitectures with various optimization algorithms developed, and tools used for MGs-EMS 

along with key recommendations are given in Table 5 below. 

Table 5. Summary of control and optimization methods used for different MG and their EMS. 

Reference 
System of 

Study 

Research Question 

Addressed 

Discussed Control & Optimization 

Methods/Models/Software 
Key Recommendations 

Ma et al., 

2022 [96] 
MMG 

Uncertainty modeling 

for EM in MMGs 

Centralized, distributed, hierarchical 

control with: SO, RO; GT, MA, AI 

Future challenges regarding 

MMGs planning, operation 

and control, integrated system 

EMS, increased communica-

tion, IT, and market transac-

tions 

Kamal and 

Chowdhury, 

2022 [37] 

Networked 

MG 

Objectives from volt-

age and frequency con-

trol to economic OPF 

Centralized, decentralized, distrib-

uted control using MPC based ap-

proaches 

Predictive control with ad-

vanced mathematical model-

ling required to improve pre-

cise predictive model and sta-

bility 

Lei et al., 

2022 [153] 

Standalone—

Aircraft 

power sys-

tem (APS) 

Trends in optimization 

and EM methods for 

APS—Multi objective 

approach 

MPC, AI-based methods for EMS 

Along with EMS considering 

thermal Management System, 

prognostics, and health man-

agement on aircraft power 

system 

Nafkha-

Tayari et al., 

2022 [154] 

Virtual 

Power Plant 

(VPP) 

Review of control and 

optimization methods, 

and markets 

Centralized, distributed hierarchical 

control: SO, RO, IA, SO + IA, heuris-

tic, Fuzzy, modified crow search 

(MCS), ANN, GA, Swarm-based, 

GT, Multi-objective optimization, 

auction based, MA 

To develop a MAS for ad-

vanced distributed EM of a 

commercial VPP 

Alonso-Trav-

esset et al., 

2022 [155] 

MG 

Optimization of DG 

under uncertainty: 

problem formulations, 

objective functions, op-

timization algorithms  

LP/MILP/MINLP, heuristics, 

SP (2-stage, Multi-stage), RP, chance 

constraints, RH, MPC, GT; 

Future models with additional 

features such as grid test bed, 

battery aging, DR, uncer-

tainty, decentralization will 

bring more real-life settings 

Muqeet et al., 

2022 [97] 

Campus 

MGs 

EM methods of cam-

pus MGs with Distrib-

uted generation from 

PV, wind, FC, diesel 

IA (heuristics), MAS 

Including of scheduling stud-

ies of DGs in MG optimiza-

tion. Need for advanced ap-

proaches such as blockchain, 
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generator, and ESS: ob-

jective functions, solu-

tion tools 

AI, and methods in EM of 

MGs  

Salehi et al., 

2022 [98] 

MG/Commu-

nity MGs 

Control strategies and 

single, multi-objective 

optimization methods 

in EM of MGs consid-

ering practical con-

straints 

Master-slave, Peer-to-Peer control 

strategy: GT, Dynamic MPC, MAS 

Optimization: Probabilistic, and De-

terministic, evolutionary, co-evolu-

tionary approaches  

Using of Deep Reinforcement 

Learning algorithms to im-

prove optimization and reduc-

ing computational burden 

Rosero et al., 

2021 [99] 
MG clusters 

Cloud computing, ML 

based control architec-

tures for real time EM 

in MGs clusters and 

their simulation plat-

forms 

Hierarchical control, Real time and 

with cloud, ML-based models 

(Gaussian Process), and MAS 

Real time EM for intercon-

nected MGs using cloud and 

ML-based architectures 

Al-Saadi et 

al., 2021 [34] 
MG with ESS 

Review of various con-

trol methods (MA, RL 

based) to manage Dis-

tributed ESS: control 

complications and so-

lutions 

Centralized, decentralized, distrib-

uted control: RL-based and MA ap-

proaches 

Importance to digitalization 

and AI-based methods in con-

trol 

Rashidi et al., 

2021 [93] 
Multi MGs 

Tertiary control review 

for EM in MGs with 

factors like Fatigue 

Life (FL) and energy 

not service: control 

methods and formula-

tions review 

Distributed control with MAS 

Software: MATLAB and Dig Silent 

Consideration of more realis-

tic model with reliability and 

social welfare and more MG 

connecting points 

Topa Gavi-

lema et al., 

2021 [156] 

MGs 

EM of MGs with dif-

ferent configurations 

and their solutions: 

classification on the 

optimization methods 

used 

Metaheuristics, LP/NLP, DP, Sto-

chastic and robust programming, 

MPC, MAS, AI-based methods 

Need of efficient methods for 

handling complexity arises 

from the interaction of MGs 

and the optimization of their 

objectives: distributed control 

techniques 

Ouramdane 

et al., 2021 

[15] 

MGs with 

Vehicle-to-

Grid 

Overview of MG tech-

nological advance-

ments, EMS with 

DERs, ESS, and mainly 

EV integration 

Centralized, decentralized control 

methods: Metaheuristics, LP/NLP, 

DP, Fuzzy, Neural network, and 

MAS optimization methods 

Need address challenges re-

lated to Power to Gas, scalable 

communication, cyber secu-

rity, and the use of ML-based 

(AI) methods 

Ali et al., 

2021 [92] 
DC MG  

Review of DC MG ar-

chitectures, control 

strategies and EMS for 

residential applications 

in terms of size and 

cost optimization  

Centralized, decentralized, distrib-

uted, hierarchical control methods: 

Classical (LP/MILP/SO/RO/MPC 

and AI methods 

(Fuzzy/NN/EA/MAS) for EMS opti-

mization 

Hybrid methods for EMS as 

growth in AI and considera-

tion of Health management 

strategies for components 

such as ESS, PVs, converters.  

Azeem et al., 

2021 [157] 
Hybrid MG 

Review of integration 

challenges, optimiza-

tion, and control strat-

egies in terms of effi-

ciency, design flexibil-

ity, security, reliability, 

Droop control/impedance con-

trol/MPC/virtual inertia control; 

Optimization techniques regarding 

Power Flow, uncertainty, and design 

and topology (Heuristic, fuzzy, 

Possible future developments 

regarding the hybrid MGs 

with DC generation, nonlinear 

loads, Plug in hybrid EVs 
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and cost effectiveness 

parameters 

mathematical, swarm-based ap-

proaches, etc.) 

Hu et al., 

2021 [40] 
MG 

Review of MPC based 

converter and grid 

level control strategies 

in Hierarchical meth-

ods for MG-EMS 

Converter level and grid level MPC; 

MPC in 3 level control architectures 

of MGs 

MPC advancements in future 

MGs 

Hu et al., 

2021 [158] 

Residential 

MGs 

Demand side flexibil-

ity study: co-ordina-

tion and negotiation 

methods classification 

and techniques 

Centralized, decentralized, distrib-

uted (hierarchical and non-hierar-

chical) control architectures:  

Optimization: (LP/MILP/MINLP), 

(GA, PSO, SA, greedy algorithm), 

GT, MAS 

Critical discussion about co-

ordination and negotiation ar-

chitectures and techniques 

(MAS, GT) and their address-

ing their challenges in future 

MGs with multiple play-

ers/agents 

Anderson 

and Surya-

narayanan, 

2019 [159] 

Islanded 

MGs 

Review of planning, optimization, EM methods along with their objectives, constraints, 

and control variables in islanded MGs 

Yamashita et 

al., 2020 [160] 

Building 

MGs 

Hierarchical control 

layers in EM of Build-

ing MGs 

Deterministic, stochastic and robust, 

Metaheuristics, AI, MPC methods 

Insights regarding building 

prosumers in Building MGs 

Espín-Sar-

zosa et al., 

2020 [161] 

MGs 

EM in MGs using cen-

tralized control archi-

tectures: main research 

trends  

Focus on centralized control meth-

ods 

Optimization: Mathematical Pro-

gramming (MP), computational in-

telligence (CI) or AI, Hybrid meth-

ods (MP and CI) 

Clustering approach in cen-

tralized EMS developments 

Fontenot and 

Dong, 2019 

[44] 

Building 

MGs 

Review of modeling 

challenges and meth-

ods to solve using 

physics based, data 

driven models as well 

as control methods  

Rule, optimal control 

(LP/NLP/MI(N)LP, DP, SP), MAS, 

MPC-based methods 

Incorporation of advanced oc-

cupancy models, agent-based 

modeling, Building-2-Grid in-

tegration  

García Vera 

et al., 2019 

[90] 

MGs with 

RES 

EM of MGs with RES -

optimization tools and 

simulation tools re-

view 

LP/NLP/MI(N)LP/DP/Stochastic and 

Robust programming, metaheuris-

tics, swarm-

based/MAS/MPC/AI/fuzzy-based 

methods 

Directions on Predictive mod-

eling with ESS 

Khan et al., 

2016 [162] 
MGs 

Review on existing op-

timization methods for 

EM in MGs 

Type of optimization in EMS: 

LP/NLP/SP/DP; 

Heuristics, MAS/MPC/AI; 

Different platforms/tools for EM: 

AnyLogic, CPLEX, Dig SILENT 

Power Factory, GAMS, 

MATLAB/Simulink, MATPOWER, 

PSCAD/EMTDC, SIMPLORER, 

SCENRED and VER 

Cost effective EMS for Smart 

Microgrid 

Network (SMN) 

Table Legend: (C = Centralized, D = Decentralized, Di = Distributed, Hy = Hybrid, H = Hierarchical) 
(SO = Stochastic Optimization; RO = Robust Optimization, IA = Intelligent Algorithms (AI-based), 
heuristics, GA = Genetic Algorithm, Game Theory = GT, MA = Multi-Agent, AI = Artificial Intelli-
gence, LP/MILP/MINLP = Linear Programming/Mixed Integer LP/Mixed Integer Non-LP, SP = 
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Stochastic Programming, RP = Robust Programming, DP = Dynamic Programming ANN = Artificial 
Neural Network, ML = Machine Learning), RH = Rolling/Receding Horizon, DG = Distributed Gen-
eration, EM(S) = Energy Management (Systems). 

4. Future Research Directions and Discussion 

The review presented in this paper aims to check how the energy trilemma is consid-
ered in the MPC and MAS-based EM methods of MGs. Usually, affordability, flexibility, 
and security are considered in different ways. The review reveals that the EM problem or 

the control and optimization problem was a mono-objective where a single objective func-
tion related to the operational costs of the microgrid widely addressed. In this case, one 

of three terms of the energy trilemma was considered, and the other two terms were in-
cluded implicitly in the problem constraints or were supposed to be provided through the 
microgrids architecture and constituents. For example, including the energy storage or 

the demand-side response programs can provide flexibility to the network. Moreover, 
having different types of generators will prioritize the security of the supply. This security 

of supply can be affected by a failure of the communication system. Hence, some research 
papers considered these aspects by developing a centralized energy management system. 
When more than one element of the energy trilemma is included in energy management, 

the control/optimization problem becomes multi-objective. The objective function was 
formulated to reduce the operational costs (affordability aspects), increase the security of 

supply by imposing penalties in case of unmet demand (security aspects), and increase 
flexibility by incentivizing the utilization of locally generated and/or traded energy. The 
environmental dimension was considered by incentivizing the use of local renewable en-

ergy. The current review reveals that the following aspects related to EMS of microgrids 
require to be considered further by the research community: 

Stability of microgrid: Issues related to the stability of MG affect the security of supply. 
Over or under frequency and voltage are considered currently through the balance of ac-

tive and reactive power flows in a three-phase balanced microgrid. However, the imbal-
ance in loads and impact of non-linear loads on the microgrid stability have been ignored 
in the literature. Hence, there is a need for an EMS that considers the imbalance in load 

and the impact of non-linear loads, and to maintain the MG stability. 
Resilience of EMS against cyber-attacks: Cyber threats affect the security of the supply 

of MG. The focus of the current research was to reduce communication delays in distrib-
uted and decentralized architectures. However, it is essential to develop a resilient EMS 
that can deal with cyber-attacks in a way the energy supply will not be affected. 

Scalability of EMS of a microgrid: EVs significantly affect the flexibility and considered 
widely in the MG-EMS studies. EVs are static energy storage systems with constraints 

related to their availability; for example, EVs will not be available for specific periods. 
Currently, the EMS of MGs charge the EV batteries during excess generation and dis-
charge them to cover the load during generation shortage. However, it is essential to de-

velop an MG-EMS that can consider the dynamic behavior of the EVs in the microgrid; 
the capacity and the stored energy are variable, and related to the drivers’ preferences/be-

haviors and many other parameters. The change in the number and size of EVs available 
at a specific time period arises scalability issues for the EMS. Considering hybrid ESS 
[163], battery health degradation, state-of-the-charge of batteries are also should be ac-

counted in EMS for MGs with storage systems. These directly affect the operational costs, 
which in turn impact MG-EMS affordability and security. 

EMS algorithm advancements: Many methods developed based on the system of sys-
tems (SoS) approaches for MGs and smart grids [164–169]. These methods are easy to im-
plement and have supervisory control nature. However, these fail to provide optimal 

EMS. MAS and MPC-based methods are effective and optimal but dependent on MG com-
plexity, architectures, or model. Therefore, combining SoS and optimal-based methods 

provide efficient and optimal solutions needed for MG-EMS. In addition, there is a need 
for AI advancement in MGs control and optimization approaches that enable EM in 
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futuristic energy systems are required. In the MAS control framework, the agents may 
have objectives of conflicting nature and require efficient optimization algorithms. In solv-
ing such complex problems with conflicting objectives, the multi-objective evolutionary 

algorithms (MOEAs) are well known. However, the applications of the MOEAs are little-
known in MGs-EMS studies. MOEAs in the control methods for MGs-EMS can be a po-

tential application and result in a set of Pareto optimal EM solutions. 

5. Conclusions 

This review presented the energy trilemma perspective for MG-EMS by categorizing 
the objectives, control and optimization methods in terms of flexibility, affordability, and 

security. The focus is given to the MAS and MPC-based approaches with different control 
architectures for energy management in MGs. The objectives that affect each element of 
the energy trilemma are presented in detail. The literature was scanned for MAS and 

MPC-based control methods from the energy trilemma perspective, and several infer-
ences made from the existing research. The detailed analysis of MAS and MPC ap-

proaches, optimization methods, and their constituents to achieve the energy trilemma 
presented in this review can provide a fresh perspective for MGs-EMS. The MAS and 
MPC methods are used in all types of control architectures. However, MAS control com-

plexities rise due to interactions and market transactions [170] in interconnected MGs. In-
corporating AI-based machine learning and reinforcement learning algorithms in the 

MAS-based methods has drawn attention recently to developing realistic EMS for MGs 
with ICT technologies. Though the MPC approaches are used widely in developing EMS 

due to their fast dynamic response and reactive features in handling uncertainties, they 
require high computational power. Adaptive predictive control with AI and hybrid con-
trol techniques and practical SoS methods such as logical evolution operator-based tech-

niques (epsilon operator) are employed in MPC to decrease the computational complex-
ity. Finally, future recommendations and analysis related to stability, scalability, and re-

siliency of MGs-EMS that affect flexibility, affordability, and security in addition to EMS 
algorithm improvements are presented to benefit the MG research community. 
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Abbreviations 

ABs Active Buildings 

AC Alternating Current 

AI Artificial Intelligence 

DA Day-Ahead 

DC Direct Current 

DERs Distributed Energy Resources 

DG Distributed Generation 

DOPF Dynamic OPF 

DP Dynamic Programming 

DR Demand Response 

DRL Deep Reinforcement Learning 

DSM Demand Side Management 
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EDP Economic Dispatch Problem 

EM(S) Energy Management (strategies/systems) 

ESS Energy Storage Systems 

EVs Electric Vehicles 

FC Fuel Cell 

GA Genetic Algorithm 

ICT Information and Communication Technology 

JADE Java Agent Development Framework 

LV MG low voltage MG 

MAS Multi-Agent Systems 

MDP Markov Decision Process 

MG Micro Grid 

MG-EMS Microgrid Energy Management Systems 

MMC Micro Grid Clusters 

MMGs Multiple MGs 

MPC Model Predictive Control 

NN Neural Network 

OPF Optimal Power Flow 

P2P Peer-to-Peer 

PSO Particle Swarm Optimization 

PV Photo Voltaic 

RE(S) Renewable Energy (Sources) 

RL Reinforcement Learning 

RNN Recurrent NN 

RP Robust Programming 

SES Smart Energy System 

SG Smart Grid 

SP Stochastic Programming 

UC Unit Commitment 
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