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Abstract: The mechanical drivetrain dynamics of electric vehicles can have a detrimental effect on the performance of the vehicle
speed controller. It is common for the speed measurement from the motor encoder to be used for the vehicle speed feedback, after
taking into account the gear ratio, but it is not valid to assume that motor and vehicle speeds are equal during transient conditions.
In this study it is shown how the vehicle driveability can be greatly improved if estimates of vehicle speed and mass are obtained.
Estimates of vehicle speed and mass have been realised using a Kalman filter (KF) and a recursive least-squares estimator, and
validated with experimental results. The study also shows the importance of finding the most optimal process noise matrix Q for
the KF, this has been carried out using a genetic algorithm, with the estimation accuracy then compared with varying vehicle
mass.
1 Introduction

Industrial and leisure electric vehicles (EV) ranging from
lower cost golf buggies and utility vehicles to higher end
airport tow tractors and fork lift trucks all require smooth
progressive acceleration, no oscillations in the drivetrain
and precise speed control for slow-speed manoeuvres. This
response is expected, regardless of load changes and poor
mechanical drivetrain components such as gear backlash.
These vehicles typically have either a single traction motor
driving both wheels on one axle through a fixed ratio
differential, or twin traction motors driving left and right
wheels, each through their own fixed ratio gearbox.
During steady state, constant torque and load conditions,

the motor and vehicle speeds are equal, after taking into
account the gear ratio and tyre radius. Whenever the motor
torque changes, the drivetrain mechanical dynamics allow
the motor speed to initially change much more rapidly than
the vehicle speed, which then develops into a damped
oscillation of motor speed if the torque change is
significant. This affects both the speed feedback and the
smoothness of the vehicle’s response. Speed feedback is
often only available from the motor encoder as most
industrial vehicles do not have wheel speed sensors to give
vehicle speed. The model of the drivetrain can be compared
with that often found in some industrial systems such as
rolling mills; where there is a low inertia motor, gearbox
with backlash, flexible shaft and a large inertia load.
The objective is to obtain smooth control with parameter

independence, which is accomplished by controlling the
vehicle speed rather than the motor speed. As vehicle speed
is not measured, the use of a Kalman filter (KF) is
introduced to estimate the actual vehicle speed, taking into
account that vehicle parameters such as mass and tyre
stiction can change. The effect of parameter variation on the
estimator accuracy is shown and a solution to overcome this
using recursive least-squares (RLS) estimation is presented.
The use of RLS has previously been shown to be successful
for estimating the mass of heavy duty diesel trucks [1]. A
simple damping algorithm is also used that aims to reduce
the difference in motor and vehicle speed. These concepts
have been implemented on a test vehicle, with a marked
improvement in vehicle driveability. This paper builds on
previous work in [2], adding results detailing the effect of
estimator setup on its mass robustness. The proposed
estimation algorithm has been shown to have the
advantages of being robust to significant mass changes and
working over a large speed range. This has allowed the
control scheme to improve both the responsiveness and
smoothness of the vehicle’s response.
The drivetrain oscillations can be limited by simply

limiting the rate of change of torque, but this gives a
sluggish driving response [3] and will limit the dynamic
performance of the speed loop, therefore active damping
methods are required. A common solution to damping
oscillations is to estimate the gear torque and use this to
compensate the torque demand, but some schemes require
the wheel speed to be measured [4]. It is possible to use an
estimator instead of sensors and it has been shown that
improved speed control can be obtained by estimating the
speed of the load and the shaft (or gear) torque [5–7], but
the effects of the load inertia changing significantly have
not been considered, which is common for industrial EVs
such as tow tractors that run light or have heavy loads.
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Fig. 1 Two inertia vehicle drivetrain model
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Other solutions for improving speed control for a dual inertia
model system include model predictive control, which has
been compared with standard proportional integral (PI)
speed control and PI control using addition estimated
feedbacks [6]. The predictive scheme shows dynamic
improvement over the standard PI control, and a lower
drive shaft stress compared with the PI with multiple
feedbacks (PI-based state-space control), but with a much
higher calculation time.
Changes in the vehicle mass can significantly change the

dynamics of the vehicle and therefore the operation of the
estimator and controller. In [8] the effects of load inertia are
considered when tuning gains for proportional integral
derivative (PID) and linear quadratic controllers, but in this
case there is encoder feedback from the load side of the
system, rather than estimating all the load side states.
Including the load inertia as a state and using the extended
Kalman filter (EKF), with only motor side feedback, has
been shown to successfully estimate the required states [9].
However, the EKF has to recalculate its matrices at every
step, including the Kalman gain matrix, adding a large
amount of processing overhead. In this paper, a fixed
Kalman gain estimator (often referred to as a steady state
KF) has been shown to be capable of estimating the
unmeasured load states, even when the load inertia (vehicle
mass) is changing, greatly reducing the computational
requirement compared with previous work. In the case of
significant mass changes or if the KF is not tuned properly,
a separate RLS mass estimator has been shown to
accurately estimate the mass and when it is found, can
update the KF with the correct mass. This recalculation of
the KF is only carried out once after the vehicle has started
moving, as this is much faster than continuously updating at
every time step. RLS has been shown suitable for correcting
a KF for low-inertia or low-resolution encoder [10, 11]
applications. Although only a single inertia model load is
used, with no gearbox and shaft dynamics, this paper
applies this theory to a dual inertia model.
The estimation accuracy of the KF requires the correct

process noise matrix Q and measurement noise matrix R.
Two common ways of tuning Q are: innovation-based
adaptive estimation, where the innovation sequence is
assumed to be white noise if correct Q and R matrices are
used; and multiple model adaptive estimation, where
multiple models are used on-line and evaluated to find the
most accurate solution. Both of these methods, however,
have the disadvantage the exact system dynamics are
required and they do not always guarantee finding the best Q
matrix [12]. It has been decided to use genetic algorithms
(GA) for tuning Q, as this has been shown to be successful
in a similar application [9]. GA also has the advantage that it
works well with non-linear stochastic systems, it can avoid
local minima and there is no derivative required in the cost
function, unlike other optimisation techniques [13]. GA can
have the disadvantage that the optimisation process can be
very time consuming and take many hours to find the
solution, but it is used off-line in this case so this is not an issue.
With regards to the tuning of the Q matrix, previous work

only considers the integrated error of the estimated states as
being the only performance indicator to optimise. This
paper also includes the noise reduction effect of the selected
matrix Q, as the KF is a balance between reducing noise
and being robust to parameter changes or modelling errors.
The measurement noise matrix R is calculated directly from
the measured signals, motor position and speed, using a
similar method to when analysing the KF performance for
68
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tuning Q. Analysis has been done to compare the
estimation performance with: trial and error tuned Q, GA
tuned Q and also Q tuned from other optimisation
techniques, all with and without RLS mass compensation.
This paper is divided into the following sections: Section 2

describes how the model of the vehicle is derived and the
approximations that are used to create the two inertia
model; Section 3 uses simulations to show how the vehicle
driveability can be improved using vehicle speed feedback;
Section 4 describes how vehicle speed can be estimated
using KF and gives its experimental results; the effect of
mass changes on the estimator is considered in Section 5
and the estimation of vehicle mass using RLS is tested; and
finally in the last Section 6 a method for tuning the KF
noise matrix using GA is shown, and the estimator
robustness to mass changes is compared with the trial and
error method used in Sections 4 and 5.

2 Vehicle model

A common drivetrain arrangement for EVs consists of a
single AC traction motor, connected directly to a fixed ratio
differential, driving either the front or rear wheels. This
along with the rest of the vehicle dynamics can be
simplified into a two mass rotating model, shown in Fig. 1.
The model aims to include all the key vehicle components
that have the greatest effect on the vehicle driveability, such
as the gear backlash and the drivetrain flexibility, while
making assumptions about others such as the tyre rotational
stiffness being comparatively high it can be ignored,
avoiding the requirement for a three inertia model. The left
and right dynamics are lumped together as only straight line
driving will be considered.
Drive shaft inertia (Js) is referenced to the vehicle side of

the tyre radius, giving an equivalent vehicle mass increase
for shaft inertia (maxle). The losses within the drivetrain are
modelled as two speed dependant friction terms, for both
the motor (bm) and vehicle side of the gearbox (bv).

2.1 Vehicle losses

The forces acting on the vehicle itself are rolling resistance of
the tyres (1), aerodynamic drag (2) and gradient force (3). The
sgn term in the equation is to ensure that the forces always
oppose the direction of travel. Gradients have been ignored
for this paper as additional sensors would be required in
order to include its effect

Froll = − C0 + C1vv + C2v
2
v

( )
mvg sgn vv

( )
(1)

Fdrag = CdAvrv
2
v sgn vv

( )
(2)
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Table 1 Vehicle parameters

Symbol
name

Value Units

Jm motor inertia 0.003 kg m2

bm motor friction 9 × 10−4 Nm/rad
n gear ratio 12.28
αbl backlash size (after ratio) 0.0398 rads
kg axle/gear stiffness 9000 Nm/rad
cg axle/gear damping 25 Nm/rad s−1

r tyre radius 0.215
bv vehicle friction 18.825 Nm/s
C0.g stiction coefficient 0.288 N/kg
Jaxle axle inertia 0.02 kg m2

maxleinertia axle inertia equivalent mass 71 kg
mv unloaded mass (including

driver)
483 kg

mload load mass added 200 kg
Tpk peak motor torque 50 Nm

www.ietdl.org

Fgrad = mvg sin uroad

( )
(3)

The forces dependant on the square of vehicle speed, mainly
aerodynamic drag, have to be linearised to be included within
the linear vehicle model: they are then represented within the
term bv. This is a valid approximation because of the fact that
the vehicles mainly operate at lower speeds, before the
speed-squared term dominates the losses. At the operating
point chosen of 1500 rpm (2.75 m s−1), the speed square
losses only make up 4% of the total mechanical losses.
Rolling resistance includes a non-speed dependant term C0,

often referred to as tyre stiction. This is a significant force
acting on the vehicle at slow speeds and cannot be ignored
or easily linearised: it makes up the majority of the losses
acting upon the vehicle, 56% of losses at 1500 rpm. This is
represented as a system input to the vehicle side of the
model. The stiction is 40% higher when the vehicle is
stationary than when it is moving, because of the extra
force required to start the vehicle moving.

2.2 Gear backlash

It is common for gearboxes to have a few degrees of play
between the gears, leading to a brief disconnect between its
input and output mainly during torque reversals. For the
vehicle tested, there was around 30° on the motor side, as it
is increased in size by the gear ratio. Gear backlash can be
linearised by allowing the vehicle model to operate in two
linear modes: contact (co) and backlash (bl). When in
contact mode the backlash can effectively be ignored apart
from a small fixed angle offset, θbl, in the differential
equation, which is equal to half of the backlash size. When
in backlash mode there is no connection between the two
rotating masses of the model, motor and vehicle. It is
determined to be in this mode when the angle offset
between motor and vehicle is less than half the total
backlash angle or because of the axle damping, a large
speed difference can also trigger this mode before the axle
twist has fully unwound; see (4) [14, 15]

in backlash = IF
vm

n
− vv

r
− vbl

( ) cg
kg

( )
+ um

n
− dv

r

( )∣∣∣∣∣
∣∣∣∣∣

,
abl

2

( )
(4)

2.3 Test vehicle parameters

Table 1 contains the parameters of the test vehicle used for the
simulation and experimental work.

2.4 Vehicle differential equations

The differentials (5)–(10) describe the vehicle model shown in
Fig. 1, which operates in two linear modes: contact and
backlash. The states are motor position (θm) and speed (ωm),
vehicle distance (dv) and speed (vv) and the position within
the backlash (θbl) and which is equal to (θg – θb); see Fig. 1.
Contact mode

d

dt
vm = dv

nr
− um

n2
+ ubl

n

( )
kg
Jm

( )
+ vv

nr
− vm

n2

( ) cg
Jm

( )

− vmbm
Jm

( )
+ Tm

Jm

( )
(5)
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d

dt
vv =

um
nr

− dv
r2

− ubl
r

( )
kg
mv

( )
+ vm

nr
− vv

r2

( ) cg
mv

( )

− vvbv
mv

( )
− Fstiction

mv

( )
(6)

d

dt
ubl = 0 (7)

Backlash mode

d

dt
vm = − vmbm

Jm

( )
+ Tm

Jm

( )
(8)

d

dt
vv = − vvbv

mv

( )
− Fstiction

mv

( )
(9)

d

dt
ubl =

um
n

− dv
r
− ubl

( )
kg
cg

( )
+ vm

n

( )
− vv

r

( )
(10)
3 Driveability improvement using vehicle
speed feedback

The speed control for an industrial EV generally uses speed
feedback from the motor encoder, as the sensor is already
present for AC motor flux vector control. PI control is used
as it can easily be manually tuned to provide satisfactory
performance, Fig. 2. Issues arise from the fact that the gains
have to be detuned to maintain stability, because of the
transient error when using the motor speed feedback to
measure vehicle speed and the fact this signal is prone to
oscillation. The oscillation in motor speed directly affects
the smoothness of the vehicle acceleration. The simulation
results in Figs. 2–5 show the vehicle response when
applying a speed demand with a fixed acceleration rate of
1000 rpm/s up to a speed of 1500 rpm, and then
decelerating at the same rate after 2 s at a fixed speed
(1500 rpm). The acceleration rate is ramped down when
approaching the target speed to help prevent overshoot. The
demands have been plotted in Fig. 2 only.
In Fig. 2, although the response is smooth, the acceleration

never reaches the desired rate of 1000 rpm/s for a constant
time; the acceleration should be steady between 0 and 1.5 s.
This would give the vehicle a sluggish response that will
deteriorate when the vehicle is loaded.
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Fig. 3 Simulation of speed response with vehicle speed feedback

Fig. 2 Simulation of speed response with motor speed feedback Fig. 5 Simulation of speed response after implementing all the
proposed changes
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It has been proposed that improved performance can be
obtained through using the actual measured vehicle speed
as speed feedback, Fig. 3. Much higher speed gains can be
used as the feedback is no longer affected by the motor and
drivetrain dynamics. This gives much tighter control of the
vehicle speed, and therefore acceleration. It also allows for
the control to now include the differential term on speed
error (PID controller); previously not possible because of
noise on the speed feedback.
Fig. 4 Simulation of speed response with vehicle speed feedback
and compensator
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Some consideration now needs to be taken to the fact that
larger gains will lead to faster torque changes and therefore
more oscillation in the drivetrain, see Fig. 3. A simple
proportional compensator is introduced that reduces this
significantly. The compensator tries to control the motor
speed to be equal to the vehicle speed, Fig. 4. This also has
the advantage that during the backlash traversal, the torque
demand is limited as the motor speed differs greatly from
the vehicle speed, the compensator therefore acts to smooth
the transition when the gear cogs impact.
This gives a good speed response as it follows the desired

speed demand closely, but the acceleration now has an initial
disturbance (overshoot) before settling on the steady state
value. This will be felt by the driver as a jerk in the
vehicle’s response. It is caused by the actual vehicle speed
lagging behind the demand while going through the
backlash, as the motor output torque has no effect on the
vehicle during this time because of the disconnect. Then,
when in contact mode, the tightly controlled speed loop
closes the error quickly.
To improve the response further some modifications to the

speed control have been proposed. These are

† Initialising the integrator to be equal to the calculated
required torque from the demanded acceleration and vehicle
mass – removes the delay of waiting for the integrator to
wind up, giving instant acceleration
† Resetting the speed demand to the actual vehicle speed
when exiting the backlash mode – prevents the speed loop
from having a large error when the backlash closes

It is now possible to obtain a very accurately controlled
speed response, but with the acceleration remaining level,
Fig. 5. This will give the vehicle driveability a feel of being
very responsive and accurate, but smooth in its acceleration.

4 Vehicle speed estimator

The previous section showed the improvement in driveability
created if vehicle speed was available, but it is not desirable to
add any additional sensors. Kalman filtering is often used to
estimate unmeasured states where the feedback signal is
subject to noise. It uses a correction based on the measured
states, in this case motor position and motor speed, to
compensate for parameter uncertainty or model
approximation [16].
IET Electr. Syst. Transp., 2013, Vol. 3, Iss. 3, pp. 67–78
doi: 10.1049/iet-est.2012.0027



Fig. 6 Diagram showing how the noise is extracted from the signal
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The state space model of the vehicle is shown below [14],

these are all converted to their discrete equivalent for
calculation in real time with a sample time of 1 ms. This
sample rate is chosen as a compromise between the
processing requirement and to accurately estimate the fast
changing backlash dynamics. It can be clearly seen that
during the backlash mode that the motor and vehicle are
only affected by their own inputs and friction terms

Aco =

0 1 0 0 0

− kg
Jmn

2
−bm+ cg/n2

Jm

kg
Jmnr

cg
Jmnr

kg
Jmn

0 0 0 1 0
kg

mvnr

cg
mvnr

− kg
mvr

2
−bv+ cg/r2

mv
− kg
mvr

0 0 0 0 0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

Abl =

0 1 0 0 0

0 − bm
Jm

0 0 0

0 0 0 1 0

0 0 0 − bv
mv

0

kg
cgn

1

n
− kg
cgr

− 1

r
− kg
cg

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

Bco = Bbl =

0 0
1

Jm
0

0 0

0
1

mv

0 0

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(13)

where the states are θm, ωm, dv, vv and θbl, the inputs are Tm
and Fstiction and the measured states are θm and ωm.

4.1 Determining the noise matrices

The KF requires information on the process and measurement
noises of the system. The measurement noise covariance Rco

(14) can be measured from recorded data of the motor
encoder; by separating the noise from the signal and
measuring the noise variance. However, obtaining the
process noise Qco (15) is less well defined and cannot be
directly calculated or measured. A trial and error method
has been used to generate suitable values for Q initially.
Only diagonal entries are used as they have the most
significant effect on the operation of the filter

Rco = R1 0
0 R2

( )
(14)

Qco =

Q1 0 0 0 0
0 Q2 0 0 0
0 0 Q3 0 0
0 0 0 Q4 0
0 0 0 0 Q5

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠ (15)

To separate the noise from the time-varying signal a number
of steps are applied to the data, see Fig. 6. In this application
the signals are all quite slow moving vehicle speeds, which
IET Electr. Syst. Transp., 2013, Vol. 3, Iss. 3, pp. 67–78
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are quite low frequency, they are significantly different
from that of the noise making it easier to separate the two
signals. For the first stage the signal is passed through a
second-order low-pass filter with a cut-off of about 6.5 Hz,
this filtered signal is then subtracted from the shifted (by
approximately the same lag as that of the filter) unfiltered
signal. The second stage involves a scond-order high-pass
filter with a cut-off of 10 Hz, therefore leaving just the
noise signal. The variance of the noise signal can be
measured directly in MATLAB and used for determining
the R matrix.

4.2 Fixed gain estimator

The KF algorithm includes a large number of matrix
multiplications, which increases greatly with the number of
states estimated and also the number of measured states. It
is required to be implemented on a microcontroller (Texas
Instruments TMS320C2811), which also performs
numerous other tasks such as the motor control. In order to
reduce the computational requirement to a minimum, a
fixed Kalman gain is used. The gain can be calculated
offline through solving the Riccati equation [17], provided
the matrices Ad, Cd, Q and R remain constant and are known.
The model described in Section 2 suggests that gear

backlash can be modelled with two linear modes [14]:
switching between these modes online leads to a
non-smooth system. This would normally be an issue for
the KF and lead to instabilities, but as the Kalman gain is
fixed this is less of an issue. During backlash mode the
system is not observable or controllable; because of the
disconnect between the motor and vehicle, there is only
feedback and controllable inputs on the motor side. As this
only occurs for very short intervals the Kalman gain is set
to zero and the estimator operates on an open loop basis.
See (16), (17) for the KF equations used [16]

xk = I − Kd coCd

( )
Ad coxk−1 + Bduk−1

( )+ Kd coyk (16)

xk = Ad blxk−1 + Bduk−1 (17)

4.3 Estimator sample rate different from
feedback rate

The encoder is used to generate the speed feedback every 5
ms. The test vehicle is fitted with a hall sensor encoder
which has a state transition 6 times every electrical rotation
or 24 (as the motor has four-pole pairs) every mechanical
rotation. Therefore it is not possible to calculate a new
speed at a faster rate than 5 ms. The speed is then integrated
to give the estimator the position feedback, as absolute
position is not required.
The drivetrain system has fast changing backlash dynamics

that requires the estimator to run at least 1 ms to correctly
estimate the transition into and out of backlash mode. This
71
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means that the correction part of the estimator runs five times
slower (5 ms) than the state propagation part, see Fig. 9. The
Kalman gain is therefore calculated assuming a 5 ms version
of Ad and Bd, the correction part is divided by 5, so it can be
applied over the next five iterations of the estimator, every 1
ms. This also allows the PI speed controller to run at a faster
rate than the feedback, therefore increasing its bandwidth.

4.4 Experimental speed estimation results

The speed estimator has been implemented on the test vehicle
and the results of this are shown in Fig. 7. When all the
vehicle parameters are known it is possible to accurately
estimate the vehicle speed. This assumes that the vehicle
parameters are not time varying; whereas variables such as
tyre rolling resistance and the vehicle mass are likely to
change when the vehicle is used, with changing loads and
tyre temperature. The variable with the most significant
effect is vehicle mass and it is considered in the following
two Sections 5 and 6.

5 Mass changes

5.1 Effect of mass change on speed estimator
performance

It is common for industrial vehicles to carry or tow large
heavy loads: these can be greater than the unloaded mass of
the vehicle and therefore this change has a significant
impact on the vehicle’s response. As there is no feedback
from the vehicle side of the system, significant errors in
vehicle mass will cause the estimated vehicle speed to drift
away from the actual. Feedback is unable to correct this
during acceleration, see Fig. 8.

5.2 Mass estimator

The EKF is often used for estimation for time varying
non-linear systems, it does however require a large amount
of computational time. A simpler method has been
proposed using an RLS parameter estimator to track the
errors in mass caused by the vehicle being loaded. As mass
can only change when the vehicle is stationary, only a
single estimate of mass is required as soon as possible after
the vehicle has started to move.
Fig. 7 Experimental results of speed estimator

72
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A number of assumptions have been used for the mass
estimation, such as using motor speed feedback to give
vehicle acceleration. This is an issue because of the noise
content of the signal and the fact that motor speed is not
equal to vehicle speed during transients, especially the case
when the vehicle starts to move. This has been solved
through using a pre-filter on both the input signals (motor
torque and acceleration) to the RLS, a 10 Hz second-order
Butterworth low-pass filter which removes most of the
noise [18]. The delay of the pre-filter is tolerable as the
mass estimate is not used continually in real time to update
the KF. Only a single value of mass is selected and used
based on the following criteria: the rate of change of the
mass estimate is <10 kg for each iteration of the RLS for 20
consecutive samples. This selects the mass value when the
estimate has levelled off and reached the correct value.
The entire vehicle dynamics have now been simplified in

(18) Jtotal is the entire system inertia, including the vehicle
mass and drivetrain inertias, all referenced to the motor.
The inertia is then converted to equivalent vehicle mass
using (19). As stiction is dependent on the vehicle mass, on
every iteration of the RLS algorithm the stiction term is
updated, depending on the previous mass estimate (20).
This allows both stiction and mass changes to be found
while only having one parameter being estimated, meaning
all vectors and matrices in the algorithm are 1 × 1. It does
although rely on the stiction remaining proportional to mass
across the full vehicle operating load and speed range

Tm − Tstiction − vm.btotal =
1

Jtotal

( )
dvm

dt
(18)

mtotal = mv + mload = Jtotal − Jaxle
( ) n2

r2

( )
(19)

Tstiction = mv + mload

( )
gC0

r

n

( )
(20)

The RLS algorithm used is shown in (21)–(23) [16] it
operates at a sample rate of 5 ms. A fixed forgetting factor
R of 0.98 is used, Fk is the motor torque, Θk is 1/Jtotal and
Fig. 8 Experimental results of speed estimation with 200 kg mass
increase from 483 kg unloaded
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Fig. 9 Updated KF with mass input and in backlash switch

Fig. 10 Complete system

Fig. 11 Experimental results of speed estimator response with
200 kg load mass
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Yk is the measured motor acceleration

Kk = Pk−1F
T
k FkPk−1F

T
k + R

( )−1
(21)

Qk = Qk−1 + Kk Yk − FkQk−1

( )
(22)

Pk = Rk−1 I − KkFk

( )
Pk−1 (23)

As mass should not change when the vehicle is moving, a
single estimate of mass is required as soon as possible after
the vehicle has started to move. Fig. 11 shows that it takes
about 500 ms for the new vehicle mass to be determined,
the mass estimate is obtained at 1.2 seconds after the
vehicle starts to move around 0.7 seconds. In this case a
value of 709 kg is obtained: vehicle 483 kg, load 200 kg
and estimation error 26 kg, the axle and motor inertia
equivalent of 71 kg has already been removed from this
figure. After the vehicle has stopped and remained
stationary for a specified time (couple of seconds), the mass
estimate can be reset to the unloaded value, as it can no
longer be assumed that the vehicle is still loaded.

5.3 Corrected speed estimator

With the knowledge of the correct mass the speed estimator
now needs to be corrected, although up until the mass
estimate is found, the unloaded (incorrect) vehicle mass has
to be used. For this system, changes in mass leads to a
change in the discrete matrices (Ad_co, Ad_bl, Bd_co and
Kd_co). This change is inversely proportional to the change
in mass, allowing them to be quickly recalculated. The
Jacobian matrices determining the change with mass:
δAd_co/δ(1/mload), δAd_bl/δ(1/mload), δBd/δ(1/mload) and
δKd_co/δ(1/mload), are calculated offline so that just one
multiplication is needed for each entry in the matrices when
the new mass is obtained. Fig. 9 shows the KF and
highlights which matrices are corrected with mass, the
switches are to indicate the transition between contact and
backlash mode. The Bd_co matrix is not switched with
backlash, and the contact mode version is always used.
There will be a slight difference between its contact and
backlash version after it has been converted to its discrete
form, it is dependant on the Ad matrix. This was found to
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be insignificant and so has been ignored to reduce the
required storage in the micro controller. The entire speed
and mass estimation algorithm takes around 22 μs to
execute on average every 1 ms iteration.
The overall system shown in Fig. 10 includes all the

proposed solutions in the previous sections of this paper.
The RLS mass estimator (Section 5) gives an estimate of
mass that is used for correcting the KF and stiction
calculation, along with initialising the PID speed loop
integrator when there is an acceleration demand change
(Section 3). The KF (Section 4) estimates the vehicle speed
that is used by the speed controller and the damping
algorithm. The in backlash indication is also used to
improve the discontinuity in acceleration caused by
traversing the backlash (Section 3).
In Fig. 11 the vehicle speed estimation now tracks the

measured speed more accurately with a steady state error of
about 30 rpm (2%), this is after an extra load mass of 200
kg is added to the vehicle.

6 Tuning the process noise matrix

The process noise matrix Q has a strong influence on the
performance of the KF, as it describes the accuracy of the
model and so controls the balance between noise reduction
and estimation error.

6.1 Cost function

The performance of the estimator is ranked depending upon
the per unit (PU) error of the motor speed (24) and vehicle
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Fig. 12 Diagram showing how the potential Q values are
simultaneously evaluated on two sets of measured vehicle data
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speed (25) estimation, and also the noise reduction of the
simulated signals compared with the measured ones (26),
(27). It is quite common to only try to minimise the
Fig. 13 How the cost function improves with each iteration of the
GA

Fig. 14 Simulation results of speed estimation (with GA tuned Q) at 10

((i) 0, (ii) 100, (iii) 200, (iv) 500 kg)
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estimation error only [19, 20], but in this case the noise is
also considered. This has been carried out using the same
method as used for determining matrix R; by extracting the
noise from the signal (measured and estimated) using high
pass filtering and then measuring the variance of this noise
signal.
It is desirable to find values for Q that are robust to changes

in the vehicle’s mass; so that accurate vehicle speed can be
estimated without having to correct for mass changes using
RLS. As the Q optimisation is carried out off-line using
measured vehicle data, it is possible to run the estimator
under more than one condition simultaneously for each
potential value for Q, the cost function is averaged across
the different conditions to give Javg (29). Measured data is
recorded experimentally for motor torque, motor speed and
vehicle speed, for both unloaded and loaded conditions at
one speed level. This will double the computational
required to evaluate each chromosome but will produce the
optimal Q for both unloaded and loaded driving conditions,
see Fig. 12. This could also be expanded for different
driving speeds, torque levels and inclines, rather than just
the 1500 rpm speed used in these tests.
Integrated absolute error (IAE) for motor speed (24) and

vehicle speed (25) is calculated by working out the PU size
of the absolute error, the integrated error is divide by the
integrated measured speed, to give an IAE in the 0–1 range

IAEvm(PU) =
∑n

k=1 ||vm(k)| − |v̂m(k)||∑n
k=1 |vm(k)|

(24)
IAEvv(PU) =
∑n

k=1 ||vv(k)| − |v̂v(k)||∑n
k=1 |vv(k)|

(25)

Ideally the measurement noise variance (NV) would be
reduced by the KF (NR noise reduction) for motor speed
(26) and vehicle speed (27), the NV reduction (NVR) as a
00 rpm with increasing load mass
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Fig. 15 Simulation results of speed estimation (with GA tuned Q) at 2000 rpm with increasing load mass

((i) 0, (ii) 100, (iii) 200, (iv) 500 kg)

Fig. 16 Experimental results of speed estimation (with GA tuned
Q) with 200 kg load mass and no mass estimation or correction
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ratio (0 to 1) is calculated

NVRvm(PU) =
N̂Vvm

NVvm
(26)

NVRvv(PU) =
N̂Vvv
NVvv

(27)

Cost function J for both unloaded or loaded conditions (28)

Junload/load =
IAEvm + IAEvv + NVRvm + NVRvv

4
(28)

Overall cost function Javg is the average cost function for both
unloaded and loaded conditions (29)

Javg =
Junload + Jload

2
(29)

6.2 Tuning the process noise matrix with GA

GA is a search and optimisation algorithm that is used to find
the best solution to a problem where the performance can be
evaluated with a cost function. In this case finding the
optimum value for the process noise matrix Q to minimise
the integrated error of the estimated states and also reduce
the noise content of these signals. The technique mimics
natural evolution and is suitable for use on non-linear and
noisy systems, as it can avoid local minima and is
derivative free [13].
The basic operation of the algorithm follows these steps [13]:

† Initialise the population of 100 chromosomes with random
possible solutions for Q. These are initialised within a chosen
predetermined range. As Q has five diagonal values, each
chromosome contains five genes.
† Motor torque, motor speed and vehicle speed recorded
from vehicle experiments are used to run the estimator
off-line with each of the possible set of values for Q. The
Kalman gain K is calculated for the potential Q values, and
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then a fixed Kalman gain estimator is used. This then
generates a performance indication of the estimator using a
cost function – see Section 6.1.
† Selection is then carried out based upon the fitness result in
the step above. The highest scoring (lowest cost function
value) chromosomes are selected to for a pool of suitable
candidates suitable for creating the next generation.
† In order to create the next generation, crossover with a
probability ratio of 0.6, is performed on the pool of suitable
parents above.
† Non-linear systems can have local minima that are not the
most optimal solution. Mutation is therefore performed, with
a probability ratio of 0.35, to ensure that the optimisation
finds the overall most suitable values. It works by randomly
changing a bit in one of the new chromosomes to change
its value. Normally the mutation ratio would be quite low,
but in this case it is higher because of there being many
non-optimal minima.
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Fig. 17 Simulation results of speed estimation (with LS tuned Q) at 1000 rpm with increasing load mass

((i) 0, (ii) 100, (iii) 200, (iv) 500 kg)
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† The process is then repeated with the new set of possible Q
values until either the maximum number of iterations is
reached (100 iterations), or the desired performance is attained.

The GA algorithm in seen to mostly improve the average
cost function performance at each generation step, see
Fig. 13. In some cases, mutation leads to an increase in the
average cost function, for example at 15 generations.
However, ultimately this leads to the minimum cost
function decreasing at around 30 generations. As otherwise
the algorithm would converge and not reach the optimal point.

6.3 GA tuned estimator results

Now that the optimal value of Q has been found, the effect of
mass changes on the estimator accuracy is tested. This is
Fig. 18 Simulation results of speed estimation (with LS tuned Q) at 20

((i) 0, (ii) 100, (iii) 200, (iv) 500 kg)
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initially tested in simulation, then repeated with
experimental data. With a speed demand of 1000 rpm, the
speed estimation error is quite low, although increases with
increasing load mass, see Fig. 14. When the speed is
increased to 2000 rpm, the estimation error increases,
although is still < 60 rpm with 500 kg load added; see
Fig. 15. Measured vehicle speed is in solid green, estimated
vehicle speed is dashed blue and the dotted red trace is the
estimation error. Note the scaling of the speed error axis
changes between figures.
Experimentally, the response has been tested without RLS

mass estimation and compensation, but with a 200 kg load
added; see Fig. 16.
The mass robustness of the estimator is greatly improved

compared with the trial and error tuned Q without RLS
mass compensation, Fig. 8. There is a small error during
00 rpm with increasing load mass
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Fig. 19 Simulation results of speed estimation (with MIN tuned Q) at 1000 rpm with increasing load mass

((i) 0, (ii) 100, (iii) 200, (iv) 500 kg)
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the acceleration but the performance is comparable with the
trial and error tuned Q without a load mass change, Fig. 7,
or better than with a load mass change and using the RLS
compensator, Fig. 11.

6.4 Tuning the process noise matrix with other
optimisation techniques

It is important to compare the performance of the GA method
to other optimisation techniques. The same method as for the
GA was used for analysing the estimator error; see Section
6.1. The issue with this is that there is no direct way of
Fig. 20 Simulation results of speed estimation (with MIN tuned Q) at 2

((i) 0, (ii) 100, (iii) 200, (iv) 500 kg)
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obtaining the differential of the cost function, an advantage
of GA is that this is not required, but it is possible to
approximate the differential of the cost function at each
iteration to overcome this. Two alternative methods were
compared: a non-linear least squares (LS)-based scheme
(see Figs. 17 and 18), and a non-linear minimisation search
(MIN) algorithm based on the Nelder–Mead method see
Figs. 19 and 20.
At no load and with small mass changes the estimation is

fairly accurate, but any large load added to the vehicle
causes a large speed estimation error. The response in (17)–
(20) was still better than the trial and error tuned Q 8.
000 rpm with increasing load mass
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Fig. 21 Graph showing how the IAEvv(PU) varies with mass
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6.5 Large mass changes – estimator robustness

It is possible for industrial EV applications to have more
significant mass changes than the 200 kg experimentally
tested, which is only equivalent to around 45% of the
vehicles unloaded mass. The robustness of the estimator
across larger mass changes has been tested in simulation as
it is not possible to increase the load mass to much higher
levels experimentally, Fig. 21. This is to see the limits of
the estimation with both the trial and error Q and the GA
tuned Q, and also with and without the RLS mass estimator
feedback for both cases.
The best performance over the large mass range was

achieved using the GA tuned Q, with and without the RLS
mass compensation. The performance without mass
estimation (for GA tuned Q) was almost as good as for the
other Q values with mass estimation. The trial and error
tuned Q gave the worst response, for both with and without
RLS mass compensation. The LS and the MIN algorithms
gave acceptable response with the mass compensation, but
poor without.

7 Conclusions

A solution has been proposed for improving the speed control
of an EV by using a KF. It is computationally efficient as the
Kalman gain is fixed and calculated off-line. Even in the case
where the RLS mass estimate is used to correct the matrices
within the KF, this only has to be done once after each time
the vehicle moves away from stationary. This avoids having
to use the EKF with all its extra on-line processing
requirement.
It has been shown that it is possible to estimate the vehicle

speed correctly when there is a significant change in the
vehicle mass. Using a separate RLS mass estimator has
been tested and also tuning the Q matrix to remove the
requirement of using the RLS estimator. The importance of
accurately tuning the process noise matrix Q has been
shown and has successfully been carried out using a GA,
which also takes into account the noise reduction of the KF.
The effect of gradients has not been considered and further

work needs to be carried out to include the estimation of road
incline. There is also the assumption that rolling resistance is
proportional to mass changes, but for example, changes in
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tyre temperature can also change the rolling resistance
coefficient C0. The GA tuned estimator has been shown to
be fairly robust to significant mass changes (2000 kg),
>400% of the unloaded mass, so the effects of these
assumptions should be quite small in comparison.
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