
 

 

Abstract—This paper proposes an on-time estimation of 

induction machine parameters based on the extended Kalman-

filter. So far, the real time performance of Extended Kalman-

filter algorithms has not been validated in the variation of motor 

parameters. Furthermore, the conventional parameter 

estimations in extended Kalman-filter has not been developed 

accurately based on the correct non-linear state space model. 

This paper proposes a new state space model of induction 

machine included motor parameters with less dependency to 

other model variables.  This leads to achieve more accurate 

estimation results even in situation where a sudden variation of 

motor parameters happens. This paper describes the proposed 

method analytically. Simulation results for an induction machine 

are presented and discussed.      

 
Index Terms— Extended Kalman filter, induction motors 

parameters, on-line estimation, induction motor derives 

I. INTRODUCTION 

It is essential to know the accurate value of rotor resistance 

(𝑟𝑟) and magnetizing inductance (𝐿𝑚) in induction motor (IM) 

drives performing based on the Field oriented control (FOC). 

Using this control method leads to improve the dynamic 

performance of IM with having the control on the flux in the 

air gap [1]. As it is obvious, the aim goal behind using FOC is 

aligning the d-axis of synchronous frame on the rotor flux 

vector. This purpose cannot be achieved without accurate slip 

calculation in indirect vector control method [2]. The accuracy 

of slip calculation depends on the actual magnetizing 

inductance and rotor resistance. These parameters can be 

estimated by applying the Kalman filter algorithm, which is 

considering the effect of the measured and process noises, for 

state estimation of AC motors.  

The deviation of motor parameters is the result of the 

changing the temperature inside the motor, variation of 

fundamental frequency and saturation of inductances [3, 4]. 

Adapting the motor parameters based on the machine data 

sheet [5], high-frequency signal injection and on-line or off-

line estimation or determination are the main approaches of 

parameters detection for electrical machines applications [3]. 

In online estimation methods, the parameters of the electrical 

machine are adapting when the drive is operating.   

In [6, 7], the  𝑟𝑟  or the rotor time constant (𝜏𝑟) are estimated 

by applying the extended Kalman filter (EKF) method. It 

considers these parameters as the additional states in the state 

space model of IM. As the variation of magnetizing 

inductance is not considered in these estimation methods, so 

the 𝑟𝑟  estimation effected by inaccurate inductance considered 

in EKF. In [5], the off-line estimation of 𝐿𝑚 is added to 

algorithm which already estimates 𝑟𝑟. The on-line estimation 

method needs to use the microcontroller with high memory 

capacity. This is required as the reason of heavy computation 

of Kalman filter in discrete form [8]. In [9], the constraint for 

estimated parameters are considered in implementing of EKF. 

In this method, the quadratic programming technique adjusts 

the EKF loops as the considered constraints are not be 

satisfied. However, the performance of proposed method has 

not been validated as the parameters of machine vary. In [10], 

the unscented Kalman filter (UKF) is utilized to estimate the 

states and parameter of IM. In this estimation method, the 

derivation section for linearization of non-linearity of state 

space model in conventional EKF is not implemented. So, the 

continues nonlinear dynamic equation are used without 

discretization and linearization in Jacobian matrix. The single 

point linearization is achieved in conventional EKF based on 

Jacobian matrix however, the minimal selected samples of a 

non-linear system in propagating Guassian random variables 

(GRV) is provided by UKF. So, the mean estimate and 

covariance are defined more accurately in sigma sample points 

method (which analyses GR variables close to second order of 

Taylor series) in UKF comparison with EKF. As declare in 

[1], the computation time for EKF and UKF is very close and 

accuracy of estimated has not been improved considerably.  In 

[11], the Expectation Maximization algorithm is develop to 

improve the selection of initial values for covariance matrixes 

including of process and measurement matrix. This method 

adds more computation process to the EKF which already 

suffer from long computation process. In [7], the measurement 
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and process noise covariance matrixes has been calculated 

based on proposed filtering. In this estimation method, the 

average of three continues points of the captured stator voltage 

and current data is considered as the main signal. Then, the 

deviation of the data from main signal is noticed as noise. The 

low-pass filter is not the suitable choice for removing the 

noise from measured data including the white Gaussian noise. 

As it is obvious, this type of noise includes of all frequency 

and it is not only high frequency domain. The sample rate, 

resolution of the sensors and quantization error effect on the 

accuracy of parameter identification in off-line or on-line 

parameter determination or estimation method [12]. 

   The on-line estimation of 𝑟𝑟  and 𝐿𝑚 is presented in [13]. 

However, the defined variables (

𝐿𝑚
2

𝐿𝑟
𝑟𝑟

𝐿𝑟
,

1

(
𝐿𝑚

2

𝐿𝑟
)
) as the additional 

states in state space model are not defined correctly. Based on 

the defined variables in this paper, some parts of index in 

Jacobian matrix considered constant which is not the true 

scenario. This causes that the variation of estimated 

parameters effect on those variables which their value are 

considered constant. This leads to the updated Jacobian matrix 

in each interrupt service routine will not be correct. So, the 

state prediction and correction algorithm in EKF is not 

updating with the correct Jacobian matrix. Therefore, in this 

paper the constant variables such as 𝜎𝐿𝑠, (
−1+𝜎

𝜎𝐿𝑚
) and 

𝐿𝑚

𝜎𝐿𝑠𝐿𝑟
 are 

considered in Jacobian matrix. These variables are 

approximately constant as the 𝐿𝑚 and 𝑟𝑟  are varying. The 

simulation results have been captured to validate the 

performance of on-line estimation method.    

This paper organized as follow. Section II describes the 

analytical model of IM, KF and proposed EKF. Finally, 

section III and IV present the simulation results and work 

conclusion.  

 

II. MATHEMATICAL MODEL DEVELOPMENT  

 

A. Induction Machine Model 

   The state space model of induction machine in stationary 

frame can be derived as follow:  
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In (1), the d-q axis of stator currents, rotor flux and input 

voltages are described by 𝑖𝑑𝑞
𝑠 , 𝜆𝑑𝑞𝑟

𝑠   and 𝑉𝑑𝑞
𝑠 respectively. 

For practical case, the estimated stator current are considered 

as output signal (𝑦(𝑡)) which can be compared with measured 

stator signal (2). 
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   By considering the discrete sampling interval (𝑡𝑠), the linear 

discrete time varying of the machine model, described in (1), 

can be defined as follow: 
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   To make the model close to the practical nature, the 

disturbances needs to be model. So, the stochastic state space 

model which contained of the process noise (𝑤(𝑘)) and 

measurement noise (𝑣(𝑘)) can be defined as follow: 
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   𝑅, 𝑄 and 𝛿𝑘𝑗 are the constant scaler variance and Kronecker 

Delta respectively. To solve the stochastic state space model, 

the Gaussian distribution should be applied. This solution 

needs the calculation of the state error covariance matrix 

(𝑃(𝑘)) and the output error covariance matrix (𝑆(𝑘)).   

Calculation of these two matrix are the initial steps of solving 

the Gaussian distribution. The distribution mean vectors of 

state and output (�̂� , �̂�) are two answers of the Gaussian 

distribution solution. The distribution of �̂� 𝑎𝑛𝑑  �̂� are based on 

the probability of the below distribution at defined discrete 

sequence 𝑘:  
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B. Kalman-Filter  

 

   The distribution mean vector of state and output (�̂� , �̂�) are 

the estimated variables in Kalman-filter. The state prediction 

of Kalman-filter algorithm can be defined as follow: 
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and the state correction equations are: 
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   It should be noticed that �̂�(𝑘/𝑘) and �̂�(𝑘 + 1/𝑘) are the 

estimation of the state in discrete sequence of 𝑘 which is based 

on data available up to and including 𝑘 and 𝑘 + 1 sequence 

respectively. The Kalman gain is defined by 𝐾(𝑘 + 1).  

 

C. Extended Kalman-filter 

The parameters of induction machine can be considered as 

augmented state in state vector to be estimated by extended 

Kalman-filter (EKF). In proposed EKF, the rotor resistance 

and magnetizing inductance are considered as the new states 

which behave such as a time-varying parameters. It should be 

noticed that the variation of the parameters is much slower 

than the stator and rotor flux states in induction machine. By 

considering the parameters as new states, the state space 

model becomes none-linear as result of states multiplication. 

To solve the none-linear state estimation problem, the 

Extended Kalman-filter as the nonlinear state estimator is 

used. In this algorithm, the time varying parameters, which 

considered as additional state, is defined as follow: 

(14)   ( 1) ( ) ( )                k k n k   

  

In (14), the unknown random disturbance is introduced by 

𝑛(𝑘). Then, the extended state space model can be derived as 

follow: 
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 and by considering the new state vector as:  
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the augmented state model is presented such as: 
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   The output vector, which is not depend on 𝜃(𝑘) can be 

explained as follow: 
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It should be noticed that the mean value of the random 

vector (white Gaussian noise) are assumed to be zero. This 

assumption is based on intending of implementing the KF 

algorithm. The covariance of measurement noise and proses 

noise in EKF is given as follow: 
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   The covariance of natural state uncertainty and covariance of 

parameters disturbance vector are symbolled by 𝑄𝑤𝑤 and 𝑄𝑛𝑛. 

As the result of no correlation between the natural and 

parameters states, 𝑄𝑛𝑤 = 𝑄𝑤𝑛 = 0, the initial state error of the 

covariance matrix can be defined as follow: 
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To describe the quality of prior information of the natural and 

parameter states, 𝑃𝑤𝑤  and 𝑃𝑛𝑛needs to be correctly defined. 

 

D. State predication and state correction in EKF  

To solve the EKF estimating the parameters of IM, the state 

prediction and state correction equations need to be 

implemented.  The sate estimator equation in state estimation 

of EKF can be defined as follow: 
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In above equation, the 
1

𝐿𝑚
  and 

𝐿𝑚
2

𝐿𝑟
𝑟𝑟  are considered as fifth 

and sixth states for state space model of Induction machine. 

The state error covariance vector in state prediction and state 

prediction equations can be defined based on the partial 

derivation or Jacobian matrix which is: 
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Based on the Table. 1, the initial state values for 
1

𝐿𝑚
  and 

𝐿𝑚
2

𝐿𝑟
𝑟𝑟  

are 3.6914 and 0.6473. The measurement and process noise 

covariance are also defined in Appendix.  

 

 

 

 

 



 

 

As the [
𝑉𝑑𝑠

𝑠

𝑉𝑑𝑠
𝑠 ] is the voltage input matrix of the Extended 

Kalman filter, this can be provided by using the input voltage 

of the SVM. However, as the input of SVM are normalized, 

these d-q stator voltage in stationary frame need to multiplied 

in 
2𝑉𝑑𝑐

 

3
.   

 

III. MATLAB SIMULATION RESULTS 

 

In first step, the EKF is implemented in Matlab simulation 

in the switching frequency of 20KHz. The reference d-q axis 

currents (in synchronous frame) are considered as 2.3A and 

3.98A respectively. The estimation is validated as the 

induction machine is rotating with the mechanical speed of 

100 rad/sec. The estimated and measured d-q axis of stator 

flux in stationary frame are demonstrated in Fig.1.  As shown 

in Fig.1, the estimated d-q axis currents are exactly 

compliance with the measured values. The estimated d-q axis 

of rotor flux are also compared with the actual rotor flux 

which used in making the model of machine (Fig.1 (c, d)).   

The value of 𝐿𝑚 and 𝑟𝑟  are based on estimated fifth and sixth 

(
1

𝐿𝑚
 and 

𝐿𝑚
2

𝐿𝑟
𝑟𝑟) states in EKF.   

   

As shown in Fig.1 (e), the estimated magnetizing 

inductance is  
1

4.257
= 0.235 H. The actual magnetizing 

inductance is 0.2709. This shows that the error of estimation is 

lower than 12%. The estimated rotor resistance can be 

calculated from estimated state 
𝐿𝑚

2

𝐿𝑟
𝑟𝑟  which has the value of 

0.565. So by considering constant leakage rotor inductance 

(𝐿𝑙𝑟 = 0.0133 𝐻)  and estimated 𝐿𝑚, the value of the 

estimated rotor resistance is 2.1880Ω.  As the simulation is 

running, the value of the 𝐿𝑚in machine modelled changed to 

the half and the process of the EKF is analyzed as shown in 

Fig.2 . As the reference current signal are not changed to the 

new value, so the estimated stator currents sensor do not have  
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Fig. 1.  Estimated states in stationary frame for applied 𝑖𝑑𝑠
𝑒∗ = 2.3𝐴 , 𝑖𝑞𝑠

𝑒∗ =

3.98 𝐴. (a) q-axis stator current (b) d-axis stator current (c) d-axis rotor 

flux (d) q-axis rotor flux (e) estimated parameters (
1

𝐿𝑚
 and 

𝐿𝑚
2

𝐿𝑟
𝑟𝑟). 
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any variation in magnitude. As expected from rotor flux 

equations, the estimated rotor flux drops to half as the 

magnetizing inductances changed to half. As the value of the 

magnetizing current is suddenly changed to the half (which is 

not the case in practical as it changes gradually), the estimated 

values varied not accurately for few second and then converge 

to expected levels. 

 

As shown in Fig. 2(f), the estimated magnetizing inductance 

is  
1

8.25
= 0.1220 H. This estimated value is very close to half 

of the inductance (0.2709*.5=0.1350 H).  

 

To demonstrate the observability of the defined non-liner 

Jacobian matrix in (25), the conversion of the state error 

covariance matrix (P) need to be proved. As shown in Fig.3, 

the conversion of each index of matrix demonstrated. 

 

 
 

 

 
 

 
 

 
 

 
 

 

 

 

As shown in Fig.3, the indexes of first forth row of the P 

matrix oscillate around the zero. P1(1) and P2(2) are the only 

two index which have the constant level in these matrix rows. 

These indexes are related to estimated d-q axis stator currents 

which are the two measurable states in extended Kalman filter. 

(d) 

(a) 

(e) 

Fig. 2.  Estimated states as magnetizing inductance changed to half  (a) q-

axis stator current (b) d-axis stator current (c) d-axis rotor flux (d) q-axis 

rotor flux (e) estimated parameters (
1

𝐿𝑚
 and 

𝐿𝑚
2

𝐿𝑟
𝑟𝑟). 

(b) 

(c) 

(d) 

(e) 

(f) 

Fig. 3. State error covariance matrix (P). (a) First row (b) Second row (c) 

Third row (d) Fourth row (e) Fifth row (f) Sixth row  



 

In two last row of P matrix, P5(5) and P6(6) change their 

value to double and half respectively. This is because of fifth 

and six state of the z matrix need to be changed to correctly 

estimate the parameters estimation. The convergence of the 

index of P matrix is essential for accurate estimation 

algorithms. If the P matrix diverge, it leads to the estimated 

states go to infinity and wrong value. To analyze the 

performance of the gain matrix (K), the first, second and third 

pairs of matrix row are demonstrated in Fig.4.  

 
 

 
 

   
 

 
 

 
 

 

 

By considering the some approximation, K3(1)-K3(2) and 

K4(2)-K4(1) are the negetive of each other. As can be realized 

from above figure, the K5(2) and K6(1) are equal and K5(1) 

should be negative to produce K6(2). So, the Kalmna gain 

matrix can be provided by: 

𝐾(𝑘) =

[
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                                                           (24) 

 

IV. CONCLUSION 

 

In this pepper, the extended Kalman-filter based on the novel 

non-linear states space model of induction machine, included 

essential motor parameters, is implemented in Matlab 

Simulation. The performance of the algorithm is completely 

analyzed with considering the behavior of indexes in state 

error covariance matrix and Kalman gain matrix. The transient 

and steady state dynamic behavior of estimated states are also 

discussed and presented in case of motor parameter variation. 

Furthermore, the mathematical analyzation and simulation 

results are presented.    

 

V. Appendix: 

           
The specification of 4 Poles Induction machine is as follow: 

 
Table I. Specification of Induction machine (1.1 kW)  

 
 

𝑟𝑠 
 

𝑟𝑟 
 

𝑉𝐷𝐶 
 

Current 

          (peak) 
 

2.291 Ω 
 

2.5067 Ω 
 

350 V 
 

4.6 A 
 

𝐿𝑠 

 

𝐿𝑚 

 

𝐿𝑟 

 

Base Speed  

 

0.2842 H 
 

0.2709 H 
 

0.2842 H 
 

1500 rpm 

  
The measurement and process noise covariance matrix are 

defined as: 

(b) 

(c) 

(d) 

(e) 

Fig. 4. Gain matrix ((K)) indexes. (a) First and second row (b) Third and 

fourth row (c) Third and fourth row (d) Fifth row (e) Sixth row 

(a) 
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