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bstract

One common problem in drives applications is the presence of noise that corrupts the useful information in measurements such as of current, due
o sensor imperfections. Digital low pass filters are a solution to the problem but they cannot cope when the useful information has time varying
igh frequency characteristics. In this paper, wavelet analysis, seldom used as yet in electric drives, is analysed and compared to classical methods.

he key points of wavelet analysis are presented in a way that is appropriate for drives. Application of this new method to a typical practical current
ignal demonstrates the advantages and limitations of these methods over more conventional techniques. The true power of the wavelet transform
s revealed when it is applied to a speed estimation problem where the rotor speed of a permanent magnet machine is modulated and coupled with
igh frequency components.

2007 Elsevier B.V. All rights reserved.
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. Introduction

The wavelet transform (WT) has been extensively used in
he digital image and signal processing areas in applications
here the classical Fourier transform (FT) cannot cope. In refs.

1,2], two well known authors describe the WT from a digi-
al image/signal processing point of view. A renowned paper
n wavelets, by Daubechies [3], analyses frames and orthogo-
al wavelets in great depth. Mallat [4] sets the foundations for
he fast WT (FWT), making the WT more attractive for on-
ine applications. For electric drives its application appears to
ave been relatively limited, for example, to off-line studies
f the system’s parameters [5,6]. In ref. [5], the modelling of
he motor and especially the field distribution in the air gap is
ccomplished with the use of the simple Haar (or Daubechies
—DB1) wavelet. On-line applications have been quite limited,
ut include fault diagnosis, neural network training and position

ignal de-noising [6–8].

The goal of this paper is hence to introduce the on-line appli-
ation of the WT in the area of drives and to demonstrate its
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tility. A review of the theoretical aspects of the WT is first
resented in a way suitable for drives applications, building on
eneral reference material [9–12]. Test results from a wavelet
enoising scheme are shown, from a real application using cur-
ents signals taken from an inverter fed induction machine (IM)
rive. It is shown that when the useful information is closely
efined in frequency, and well separated from the noise fre-
uency components, then the WT and a more conventional
igital filter gave similar results. The complexity of the WT
an cause problems when used in real time applications, and in
uch a case would offer no advantage.

The WT can offer significant advantage in other cases. This
s illustrated in the last part of this paper which studies the use of
avelets in a speed estimation scheme involving high frequency

njection. Conventional methods have difficulty distinguishing
etween noise and the modulated rotor speed, while wavelets
re successful in reducing the mean squared error.

. Wavelets transform theory

.1. Introduction
Action to reduce the noise on a signal is a common require-
ent in an electric drive scheme. A usual choice is a low pass
lter, often a finite impulse response (FIR) filter, with its design
ased on the well-known concept of the FT. The kernel of this

mailto:j.w.finch@ncl.ac.uk
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Fig. 1. Logarithmic coverage of the frequency spectrum under the WT.

ransform is the exponential term e−jω (or ejω or e−j2πf). This
ernel extends from minus infinity to plus infinity in frequency
nd hence any non-stationary noisy signals cannot be isolated
nd removed. Therefore, any denoising method based on the FT
ill have the handicap of the priori assumption that the noisy

ignal is stationary. Finally, although of lesser significance, a
mall error in the time domain can cause a large distortion of
he frequency spectrum even if only off-line study is required.
ne of the characteristics/properties of the WT is its ability to

dentify discontinuities. This has started to be used in the drives
rea since faults (in bearings, phase coils, etc.) can cause abrupt
hanges in the stator/rotor currents which wavelets can detect
13,14].

A first solution to these problems was the use of the short
ime FT (STFT), first proposed by Gabor almost 60 years ago.
he signal is separated into several segments and then the FT

s applied in every segment separately. Hence, the segment in
hich a high frequency component exists can at least be iden-

ified [15]. Unfortunately, the smaller the time window (for
etter time resolution) the worst the frequency resolution [1,2]
Heisenberg uncertainty theory). Hence, a trade off must be
ade between good time and frequency resolution.

.2. Continuous and discrete time wavelet analysis

Fortunately the signals often found in practice have large
uration low frequency, and small duration high frequency,
omponents. Hence, it would be desirable to have small time
indows for the high frequency parts and long windows for low

requencies. This can be achieved by imposing a restriction on

he frequency window:

�f

f
= constant. (1)

w
t
T
v

Fig. 3. Multiresolution wavele
Fig. 2. Time frequency plane for the WT.

his results in a logarithmic coverage of the frequency spectrum
Fig. 1).

Again the uncertainty principle is satisfied but now the time
esolution becomes arbitrarily good (small �t) for high fre-
uencies and vice versa, i.e. the frequency resolution becomes
rbitrarily good (small �f) for low frequencies (Fig. 2). This is
he concept of multiresolution (Fig. 3).

The kernel is required not to be a sine or cosine wave but one
ignal well concentrated in time and in frequency—an asym-
etric irregular waveform, i.e. a wavelet, such as that shown in
ig. 4, whose frequency spectrum is that of a band pass filter as
roved later.

This wavelet can be scaled (contracted or dilated) and shifted.
he transformation is accomplished in a similar way to the STFT,
portion of the signal is compared with the wavelet and their

orrelation is the coefficient for this scale and shift. Then the
avelet is shifted and compared with another segment of the sig-
al. When all segments are compared the wavelet is compressed
or stretched) and the same comparison takes place. There-
ore, the outcome coefficients are a function of the scale and
hift:

(a, b) =
∫
x(t)ψ(at + b) dt = |a|−1/2

∫
x(t)ψ

(
t − b

a

)
dt

(2)

here “a” and “b” are the scaling and the shifting factors, respec-

ively. The term |a|−1/2 is only needed for energy normalisation.
he function “ψ” is called the mother wavelet and a very large
alue of the scale means a global view of the signal. The inverse

t analysis and synthesis.
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were used. Since a more effective comparison can be made if a
version of the ideal were available, the practical signal of Fig. 5
was filtered by an ideal analogue low pass sixth-order Butter-
worth filter with a cut off frequency of 60 Hz. Such a low cut-off
Fig. 4. DB10 wavelet.

T (IWT) is given by the “resolution of identity”:

(t) = C−1
Ψ

∫ ∞

−∞

∫ ∞

−∞
1

a2 〈x,ψ(a, b, t)〉ψ(a, b, t) da db (3)

here

Ψ = 2π
∫ ∞

−∞
(|Ψ (ω)|2|ω|−1) dω. (4)

rom Eqs. (3) and (4), it can be seen that C−1
Ψ > 0 or CΨ < ∞.

ence, by using Eq. (4) it can be seen that the wavelet vanishes
t zero frequency, i.e. |Ψ (0)|2 = 0. This means that the wavelet is
ike a band pass filter and its average value, in the time domain,
s zero:

∫
ψ(t) dt = 0. This is the admissibility condition.

Eq. (2) implies there is an infinite number of scales and shifts
hat must be used for the WT, this can cause unnecessary redun-
ancy in the transformation. The discrete time WT (DTWT)
an be used to avoid this implication. The basic property of the
TWT is that every scale is represented by a dyadic filter and

he wavelet coefficients for each shift are the output of two filters
one low pass and the other high pass). Hence, by using high and
ow pass (usually FIR) filters it is possible to implement online
he DTWT.

.3. Wavelet denoising

The high and the low frequency coefficients are termed details
nd approximations, respectively. Donoho [16] first proposed a
ethod to denoise a signal by using the DTWT and a threshold.
here are two main variations of this method: soft thresholding
nd hard thresholding [17,18]. These methods imply that by
sing an appropriate operator on the coefficients of the WT the
ignal can be denoised.

A measurement consists of the useful signal and the noise:

(t) = x(t) +N(t) (5)

y using Eq. (2) the wavelet coefficients can be found, C.
The denoising process is:

Z = D(C, q) (6)

here q is a parameter that will be used later to denoise the

ignal.

The IWT of the denoised signal will give the estimated original

signal x̃. (7) F
ystems Research 78 (2008) 559–565 561

hen the method of soft thresholding is used the operator D is:

(C, q) = sgn(C) × max(0, |C| − q) (8)

t the hard threshold the operator D is only nullifying the values
f the wavelet coefficient that are less than the value of q:

(C, q) =
{
C, if |C| > q

0, otherwise
(9)

similar method will be applied in this paper. As shown later
he maximum level that the analysis will reach is 5. Furthermore
n a typical drives application in the constant torque region the
seful information is often at low frequency, perhaps between 0
nd 50 or 60 Hz. Also the noise components will usually have
uch higher frequency. Hence, all the details coefficients will

epresent noise. So zeros can replace these coefficients and hence
he reconstruction process will involve only approximations.

. Wavelet filtering

.1. Experiment arrangement

The practical signal used to test the filtering can be seen in
ig. 5. This was measured on a modern 4-pole 400 V, delta con-
ected 7.5 kW induction motor based electrical drive coupled to
dc load machine, being driven by a commercial inverter. The
articular waveform results from the drive undergoing a simple
oltage proportional to frequency acceleration from 0 to 10 Hz
n 0.2 s with no load. The current waveform from phase A of the

otor drive is shown.
Initially the best level of decomposition and wavelet was

ound and then this was compared with the performance of a
ormal FIR filter. Five different levels of analysis were tested
nd the wavelets that were used are from the Daubechies family,
B2–DB43 (DB1 is the Haar wavelet and should not be used

or multiresolution). The sampling frequency was chosen to be
0 kHz.

Since the test signal used is a practical signal already con-
aminated by noise, the ideal or noise-less signal is not available
irectly, as it would be if a simulation signal and noise sources
ig. 5. Current isA that was used to check the wavelet denoising schemes.
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Fig. 6. ITSE for different wavelets and level of decomposition.
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Fig. 8. Denoised stator signals, phase A, using an “ideal” and a wavelet filtering
process.
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Fig. 7. Delay imposed by different wavelets and level of decomposition.

requency would be impractical in an actual drive expected to
un over a range of frequency.

This “ideal” de-noised signal was then compared with the
esponse of the multiresolution and the Integral of Square Error
ITSE) was calculated (Fig. 6). Since simple FIR filters are used
or the signal denoising in the WT scheme and since different
ampling rates are used (due to the decimation) a certain delay
s imposed which is equal to (2number of filters − 1) (also called
he data alignment, which is very important for real time appli-
ations). This delay is the explanation for the peculiar form of
ig. 6. Normally it would be expected that the higher the decom-
osition number the better the denoising, but then the imposed
elay will have a bigger effect. Fig. 7 shows the relation between

he level of the decomposition, the wavelet and the delay. If the
ecomposition employs many levels then a significant delay will
e imposed on the signal and, in an extreme case, this may even
ause instability. Fig. 6 shows that level 4 gave considerably bet-

s
c
F
t

able 1
IR filter used for comparison with wavelet denoising schemes

ilter Passband frequency Passband ripple Stopband freque

IR 100 Hz 0.624 dB 500 Hz
ig. 9. Denoised stator signals, phase A, using an “ideal” and a FIR filter.

er results than level 2. Hence, a level 4 wavelet DB2 was chosen
or comparison with a normal FIR filter. A low pass FIR filter
as tested for this comparison. The specification of this filter is

hown in Table 1.

.2. Tests results

.2.1. Simple denoising
The ideal reference signal produced by the Butterworth filter

nd the version from the wavelet denoising scheme described
bove are shown in Fig. 8. The denoising of the FWT is
lmost identical to that of the analogue filter. The only signif-
cant difference is a small delay that is imposed on the FWT
rom the successive asymmetric FIR filters, clearly the ana-
ogue filter being of relatively high order does also introduce

significant delay, this causes the two signals to be closely
imilar.

The FIR scheme response is shown in Fig. 9, again with
he “ideal” signal for comparison. The results of Figs. 8 and 9

how the wavelet denoising scheme gave similar results to the
arefully chosen normal FIR filter on a fixed spectrum signal.
ig. 12 shows that the FIR scheme produced an output faster

han the analogue filter. This is expected since the delay of that

ncy Stopband ripple Sampling frequency Filter order

33.3 dB 10 kHz 40
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Risk method is used then the threshold is ±4.0332. Other, less
conservative, techniques, such as Heuristic Stein’s Unbiased
Risk, produced similar thresholds. This gives a signal whose
MSE with the original is 0.0277, i.e. five times better than the
D. Giaouris, J.W. Finch / Electric Po

igital filter is very small, i.e. is smaller than that of the analogue
lter.

The last figures show that the two schemes have similar
enoising behaviour, but the wavelet scheme imposes a delay
which will increase if more levels of decomposition are added
o achieve better denoising). Also it is more complicated. The
IR scheme uses a simple symmetrical FIR filter which can be

mplemented either with simple and cheap hardware or with
ome addition to the overall drives software. The FWT scheme
eeds more complicated and asymmetric FIR filters, with a com-
lexity increase of at least 10 times. Hence, the FIR scheme
ppears superior in such a case, and therefore for many simple
enoising processes in electric drives it is better to use classical
ltering methods since a FWT scheme does not offer advantage.
his is because the expected frequency components of the cur-

ent (at 10 Hz here) are known in advance. Hence, a filter can be
pecifically designed for that case.

.2.2. Using wavelets to extract uncertain frequency
omponents

The FWT scheme did not offer advantage in the simple filter-
ng for denoising application described in the previous section.
owever, if the frequency information of the signal is time
arying and its frequency is unknown the situation is different.
imple FIR filters cannot readily be used when there is useful

nformation in the current signal in different and unknown areas
f the frequency spectrum. Hence, the FWT comes into its own
n such applications where the bandwidths are uncertain, or if
seful components exist at widely spread frequencies. Applica-
ions in electrical drives which fit this profile include where
ignal injection schemes are used for sensor-less control for
peed identification. This is an active research area [19–21]. In
uch a scheme a typical frequency spectrum may be as depicted
n Fig. 10.

If the high frequency component is time varying but is remote
n frequency from the useful low frequency components then low
ass FIR filters are feasible. If the location of both coefficients
as known then a filter bank with two FIR filters could be used,
ne low pass and one band pass. But this is not applicable here so
his is a suitable application for wavelets. Unlike the application
iven in the previous section a fair comparison with a fixed FIR

lter is difficult. Such a comparison could be made relatively
avourable or unfavourable depending on the use of knowledge
f the frequencies from a particular example, but this is not
vailable online.

Fig. 10. Illustrative frequency spectrum with signal injection. F
ystems Research 78 (2008) 559–565 563

As an example of wavelet use in such a case, assume one com-
onent at 50 Hz resulting from the machine speed and another
omponent ranging over [1.5 kHz, 2.5 kHz] (a test signal at 2 kHz
s used), sampling frequency 100 kHz (this is required since the
seful signal now is 200 times higher in frequency than before).
o mimic a typical case a white noise signal is added giving
SNR of 10. This produced a random signal, with Gaussian

istribution, zero mean value and a variance of 0.1.
The two useful frequency components come from two sine

aves of amplitude 10. To evaluate the denoising process the
ean squared error (MSE) of the original noise free and the two

enoised signals is used:

SE = 1

N

N∑
n=1

(x(n) − x̃(n))2 (10)

here x(n) is the noised free signal and x̃(n) is the signal under
onsideration.

The duration of the simulation was chosen to be 0.5 s giving
0,000 samples. The MSE of the noised and the noised free
ignal is ∼0.1.

Also for the FWT the principle of “superposition” holds,
.e. the values of CD1, CD2 and CA2 from the decomposi-
ion of two signals are the values given if the two signals are
ecomposed separately and then added together. Hence, the two
ine waves (the useful signals) and the noise signals can be
tudied separately. The decomposition of the two sine waves
ave three new signals whose histograms are shown in Fig. 11.
ig. 12 shows the histograms of the noise signal with the same
cales.

Hence, if all the values of CD1, CD2 and CA2 that are
etween [−1, 1] are removed (hard thresholding) it can be
ssumed that all the noise components will be removed as well.
hese values of ±1 are empirically found, if Stein’s Unbiased
ig. 11. Histograms of the approximations and details of the two sine waves.
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Fig. 12. Histograms of the approximations and details of the noise signal.
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Fig. 13. Frequency spectrum of the original and denoised signals.
oisy signal. A comparison of the frequency spectra of the orig-
nal and denoised signals is shown in Fig. 13, with an extended
requency range in Fig. 14 showing the improvement at the
igher frequencies. The wavelet used was DB5.

ig. 14. Extended frequency spectrum of the original and denoised signals.
ystems Research 78 (2008) 559–565

More levels or more advanced wavelet techniques (wavelet
ackets) can achieve better results. The important point is that
his denoising did not require knowledge of its frequency compo-
ents. It is simply assumed that the useful information has large
oefficients and this illustrates the power of denoising based on
he WT. Where the frequency components of the useful signals
re unknown use of wavelets offers significant advantage since
onventional method (such as fixed FIR filters) cannot easily
sed.

. Conclusions

The WT was described, focusing on use for electric drives,
nd a denoising scheme based on it was proposed. The results
ere experimentally verified and it was found that the denois-

ng scheme based on the WT did not distort the signal and
he noise component after the process was small. However, the
ew scheme imposes a certain delay on the signal and is rela-
ively complicated. The experimental results showed no obvious
uperiority for the new filtering scheme against more classical
ethods, in a relatively fixed frequency situation.
This indicates clearly that WT are best deployed in a more

hallenging situation, where useful components exist at widely
pread and varying frequencies and the bandwidths are uncer-
ain. Precisely this situation exists in electrical drive speed
ensor-less control using signal injection. Results of a study have
een presented, and confirm this view.

cknowledgement

The authors wish to acknowledge the support of Control
echniques for this and related work.

eferences

[1] O. Rioul, M. Vetterli, Wavelets and signal processing, IEEE Sig. Proc. Mag.
8 (October (4)) (1991) 14–38.

[2] M. Vetterli, C. Herley, Wavelets and filter banks: theory and design, IEEE
Trans. Sig. Proc. 40 (September (9)) (1992) 2207–2232.

[3] I. Daubenchies, The wavelet transform, time–frequency localisation and
signal analysis, IEEE Trans. Inf. Th. 36 (September (5)) (1990) 961–1005.

[4] S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet
representation, IEEE Trans. Pat. Anal. Mach. Intel. 11 (July (7)) (1989)
674–693.

[5] S. Fedrigo, A. Gandelli, A. Monti, F. Ponci, A unified wavelet-based
approach to electrical machine modelling, in: IEMDC, 2001, IEEE Inter-
national, 2001, pp. 765–769.

[6] C.M. Arturi, P. Fedrigo, A. Gandelli, S. Leva, A.P. Morando, Dynamic anal-
ysis of electromechanical converters by means of the wavelet transform, in:
Proceedings of the IEEE 1999 International Conference on Power, Elec-
tricity & Drive Systems, 1999, PEDS’99, vol. 1, July 27–29, 1999, pp.
462–466.

[7] C.L. Lin, N.C. Shieh, P.C. Tung, Robust wavelet neuro control for lin-
ear brushless motors, IEEE Trans. Aero Electr. Syst. 38 (July (3)) (2002)
918–932.

[8] S. Khorbotly, A. Khalil, J. Carletta, I. Husain, A wavelet based de-noising

approach for real-time signal processing in switched reluctance motor
drives, in: IECON 2005, November 6–10, 2005, pp. 1437–1442.

[9] B. Hubbard, in: A.K. Peters (Ed.), The World According to Wavelets,
the Story of a Mathematical Technique in the Making, Wellesley, Mas-
sachusetts, 1995, ASIN: 1568810474.



wer S

[

[

[

[

[

[

[

[

[

[

[

D. Giaouris, J.W. Finch / Electric Po

10] I. Daubenchies, Ten Lectures on Wavelets, Capital City Press, Montpelier,
Vermont, 1992.

11] Y. Meyer, Wavelets, Algorithms & Applications (translated and revised by
R.D. Ryan), SIAM, Philadelphia, 1993.

12] G. Strang, T. Nguyen, Wavelets and Filter Banks, Wellesley, Cambridge,
1996.

13] H. Douglas, P. Pillay, A.K. Ziarani, A new algorithm for transient motor
current signature analysis using wavelets, IEEE Trans. Ind. Apps. 40
(September/October (5)) (2004) 1361–1368.

14] L. Eren, M.J. Devaney, Bearing damage detection via wavelet packet
decomposition of the stator current, IEEE Trans. Instrum. Meas. 53 (April

(2)) (2004) 431–436.

15] B.A. Jont, R.R. Lawrence, A unified approach to short time Fourier analysis
and synthesis, IEEE Proc. 65 (November (11)) (1977) 1558–1564.

16] L.D. Donoho, De-noising by soft-thresholding, IEEE Trans. Inf. Th. 41
(May (3)) (1995) 613–627.

[

ystems Research 78 (2008) 559–565 565

17] S. Grace Chang, Y. Bin, M. Vetterli, Adaptive wavelet thresholding for
image denoising and compression, IEEE Trans. Image Proc. 9 (September
(9)) (2000) 1532–1546.

18] D. Gnanadurai, V. Sadasivam, An efficient adaptive thresholding technique
for wavelet based image denoising, Int. J. Sig. Proc. 2 (2) (2005) 114–
119.

19] F. Briz, M.W. Degner, A. Diez, R.D. Lorenz, Static and dynamic behavior
of saturation-induced saliencies and their effect on carrier-signal-based
sensorless AC drives, IEEE Trans. Ind. Apps. 38 (May/June (3)) (2002)
670–678.

20] M. Linke, R. Kennel, J. Holtz, Sensorless position control of permanent

magnet synchronous machines without limitation at zero speed, in: IECON
2002, vol. 1, November 5–6, 2002, pp. 674–679.

21] J. Holtz, Sensorless control of induction machines—with or without signal
injection? Overview paper, IEEE Trans. Ind. Elect. 53 (January (1)) (2006)
7–30.


	Denoising using wavelets on electric drive applications
	Introduction
	Wavelets transform theory
	Introduction
	Continuous and discrete time wavelet analysis
	Wavelet denoising

	Wavelet filtering
	Experiment arrangement
	Tests results
	Simple denoising
	Using wavelets to extract uncertain frequency components


	Conclusions
	Acknowledgement
	References


