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Abstract In this paper, an intelligent forecasting model, a

recurrent neural network (RNN) with nonlinear autore-

gressive architecture, for daily and hourly solar radiation

and wind speed prediction is proposed for the enhancement

of the power management strategies (PMSs) of hybrid

renewable energy systems (HYRES). The presented model

(RNN) is applicable to an autonomous HYRES, where its

estimations can be used by a central control unit in order to

create in real time the proper PMSs for the efficient sub-

systems’ utilization and overall process optimization. For

this purpose, a flexible network-based design of the

HYRES is used and, moreover, applied to a specific system

located on Olvio, near Xanthi, Greece, as part of Systems

Sunlight S.A. facilities. The simulation results indicated

that RNN is capable of assimilating the given information

and delivering some satisfactory future estimation achiev-

ing regression coefficient from 0.93 up to 0.99 that can be

used to safely calculate the available green energy. More-

over, it has some sufficient for the specific problem com-

putational power, as it can deliver the final results in just a

few seconds. As a result, the RNN framework, trained with

local meteorological data, successfully manages to enhance

and optimize the PMS based on the provided solar radia-

tion and wind speed prediction and make the specific

HYRES suitable for use as a stand-alone remote energy

plant.

Keywords Recurrent neural network � Solar radiation �
Power management strategy � Hybrid renewable energy

system

1 Introduction

The continuous growth of the human population in com-

bination with the decrease in the available fossil fuel sup-

plies has led the researchers to the design and development

of generating systems that utilize the renewable energy

sources. Nowadays, the worldwide role of renewable

energy systems (RES) is very important and multidimen-

sional. The possibilities of renewable energy are endless.

The utilization of the various green energy types such as

solar, wind, hydroelectric, geothermal, and biomass can

lead to sustainable energy solutions. The advantages of a

100 % renewable future energy scenario are numerous.

Among them, one of the most important is the environ-

mental pollution abatement, due to the fact that RES pro-

duce little or no waste products such as carbon dioxide or

other chemical pollutants, thus having minimal impact on

the environment. In addition, renewable energy is highly

sustainable as it derives from sources that are inex-

haustible. Moreover, it can also provide economic benefits

to regional areas and remote communities, as most projects

are located away from large urban centers and suburbs of

the capital cities.

& G. Ch. Sirakoulis

gsirak@ee.duth.gr

1 Department of Electrical and Computer Engineering,

Democritus University of Thrace, Xanthi, Greece

2 Department of Environmental Engineering, Democritus

University of Thrace, Xanthi, Greece

3 Systems Sunlight S.A., Xanthi, Greece

4 Chemical Process and Energy Resources Institute, Centre for

Research and Technology – Hellas,

57001 Thermi, Thessaloniki, Greece

5 Department of Mechanical Engineering, Aristotle University

of Thessaloniki, 54124 Thessaloniki, Greece

123

Neural Comput & Applic

DOI 10.1007/s00521-015-2175-6

http://orcid.org/0000-0001-8240-484X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-2175-6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-2175-6&amp;domain=pdf


Despite the numerous advantages of RES, they also

present some disadvantages. The main disadvantage relates

with the amount of energy produced by RES. In particular,

it is quite difficult to generate quantities of electricity that

are as large as those produced by traditional fossil fuel

generators. This may mean that a reduction in the energy

consumption is necessitated or simply more energy facili-

ties should be built. It also indicates that the best solution to

the energy problem may the adoption of different green

power sources. Another disadvantage of RES is the relia-

bility of supply. Renewable energy often relies on the

weather conditions. Hydro-generators need rain to fill dams

to supply flowing water, wind turbines need wind to turn

the blades, and solar collectors need sunshine to collect

heat and make electricity. When these resources are

unavailable, it is impossible to make energy out of them.

This phenomenon may cause some unpredictable and

inconsistent energy production. Finally, the current cost of

renewable energy technology is also far in excess of tra-

ditional fossil fuel generation [1–3]. To minimize the

aforementioned cost and the claimed disadvantages of the

RES, better adaptive control and optimization techniques

mainly based on efficient intelligent models would be of

utter importance for enhancing RES performance.

In recent years, as a response to the continuously

growing need for green energy, a new type of renewable

energy systems (RES) is becoming all the more popular

[1], that is, the hybrid renewable energy systems (HYRES).

These systems often combine a variety of different

renewable technologies with some energy storing units in a

single generating plant facility. This combination offers the

advantage of exploiting different types of green energy

without completely depending on the availability of a

single one. Therefore, hybrid systems present a better

balance in energy production than the conventional sys-

tems, which make use of a single technology and tend to be

more inconsistent. The utilization of multiple green energy

sources provides to these systems increased efficiency, as

well as balance in energy supply due to the fact that each

energy source acts as supplement to the others. This is the

reason why HYRES are considered as a reliable solution

for remote area power generation applications.

However, despite the advantages that the adoption of

HYRES may have, there are still some weak spots. Despite

the fact that these systems rely on multiple renewable

sources, they are still dependent on conventional fuels as

long as the green energy is not always available. More

specifically, an endless and adequate supply of renewable

energy cannot be always guaranteed due to the noncon-

tinuous nature of the green energy, so alternative conven-

tional energy sources are needed to ensure the sufficient

and continuous functionality of the understudy system. In

addition, another characteristic that needs further

improvement is their efficiency. Although they present a

much higher efficiency than the single-technology RES,

there is still space for further improvement and optimiza-

tion [1]. The cooperation between the different discrete

systems does not often occur in the most efficient way. For

example, storage of the excess energy supply does not

always occur in the most effective way, and thus, the

system usually depends on conventional fuels. Moreover,

without the capability of monitoring and dynamically

processing the current local meteorological data, the sys-

tem tends to present some rather static behavior limiting its

efficiency according to supplier’s needs.

The great dependency that HYRES efficiency has on

both the availability and the values of the critical meteo-

rological variables necessitates their a priori knowledge.

Meteorological variables such as solar radiation, air tem-

perature, wind speed, and humidity can affect at a maxi-

mum degree the functionality and the efficiency of the

corresponding RES. Having this kind of information

someone can provide some satisfactory estimation of the

total amount of the future renewable energy production for

the next hours or, in some cases, even days. In this way, a

better management of the HYRES subsystems can be

achieved, as well as a much more optimized energy storage

and utilization, thus diminishing the need for conventional

generators. The optimized management of the various

subsystems is the key point toward achieving the best

possible green energy utilization and system efficiency.

The goal of the specific study was the design of an

intelligent forecasting model based on neural networks

(NNs) that will enable the future value estimation for the

critical meteorological parameters such as solar radiation

and wind speed that greatly affect the efficiency and the

overall functionality of the corresponding HYRES. During

the previous years, NNs have been proposed as a powerful

approach to estimate and predict the solar radiation as well

as wind speed in different areas all over the world [2–9].

Taking into account that the solar radiation and wind speed

time series as a dynamical system present nonlinear char-

acteristics due to its dependency on meteorological

parameters, such as temperature, water vapor, cloud, and

water air condition [10], we propose a recurrent neural

network (RNN) with nonlinear autoregressive architecture

(NAR) as an enhanced forecasting model for solar radia-

tion and wind speed time series. The recurrent network due

to its characteristics (internal connections, feedback) and

nature (internal memory) inherences more computational

power and is better applicable to scenarios where the

processing of some arbitrary dynamic input is required.

The proposed model will have the ability of assimilating

the past meteorological datasets and thus learning the local
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behavior of the target parameters. For this reason, it will

incorporate the feature of receiving the current meteoro-

logical data from locally installed sensing devices. Next, it

will provide the corresponding future estimations through

the combination of the past knowledge and current feed-

back. In such a sense, the usage of future meteorological

values in combination with provided sensors data of the

understudy system will boost its performance in terms of

energy storage and availability.

Additionally, the presented model will also be applica-

ble to an autonomous HYRES, where its estimations can be

used by a central control unit in order to create in real time

the proper power management strategies (PMSs) for the

efficient subsystem utilization that can lead to the overall

optimization. To do so, a generic network model is also

described for the representation of the hybrid power gen-

eration systems in this work. Subsequently, the RNN when

combined with the presented network model of HYRES

serves as a novel framework for a generic approach aiming

to facilitate the derivation of various PMSs in a simple and

flexible way. As a result, the proposed framework will

make the specific HYRES suitable for use as a stand-alone

remote energy plant. As a proof of concept, the results of

the proposed NN model for solar radiation and wind speed

forecasting when applied to an available HYRES system

are also presented. It is clear that the proposed RNN after

training with meteorological data of the understudy area in

our case Olvio of Xanthi in Greece and applied to the

proposed HYRES of Systems Sunlight S.A. finally man-

ages to enhance and optimize its PMS based on the pro-

vided solar radiation and wind speed prediction. The

proposed HYRES system with the applied RNN with

nonlinear autoregressive architecture for solar radiation

and wind speed forecasting constitutes a fine example of

engineering application of theoretical computer science

toward the enhancement and optimization of its PMS.

Despite the fact that NNs have been already introduced for

the prediction of solar radiation and wind speed worldwide

[2–9] and several different HYRES have been developed

with various characteristics and prominent features as such

a complete approach, the introduced system does not meet

any other in the relevant literature to the best of our

knowledge. In particular, there is no published work con-

cerning the enhancement of energy management in stand-

alone hybrid renewable energy systems (HYRES) that

comprise photovoltaics, wind generators, electrochemical

energy storage systems, and diesel generators, with weather

forecasting. Furthermore, with almost no exception, the

HYRES presented in the published literature employ very

few (usually up to three) pre-specified PMS which hinder

the efficient exploitation of renewable energy and storage

systems to address the weather variability. The modeling

approach proposed for the particular HYRES investigated

here allows the identification and easy implementation of a

wide range of operating options in the form of many dif-

ferent PMS, prior to selecting the most appropriate alter-

native. The combined utilization of the predictive

capabilities of the NN model proposed in this work toge-

ther with the selection of the appropriate PMS provides

important operating advantages compared to systems

lacking such capabilities. It should be noticed that the

existence of a diesel generator, which is utterly necessary

for backup reasons, creates environmental problems and

operational maintenance costs as well. More specifically,

the operation of the diesel generator covers both load

requirements and battery charging. In general, battery

charging comprises a constant current (CC)–constant

voltage (CV) profile. During CV operation, diesel operates

in inefficient way due to the fact that its current must be

continuously reduced to keep the voltage constant. More-

over, during the CV stage and due to the fact that the

battery, wind generator, and photovoltaics are connected in

a common DC bus, any available renewable energy must

be rejected in order to keep the battery’s voltage constant.

This stage (CV charging by diesel generator) could totally

be avoided if any available renewable energy produced in

the near future can be predicted and the corresponding

PMS applied.

The rest of the paper is organized as follows. In Sect. 2,

the proposed RNN model is described in detail, and several

simulation results are presented and compared with real

data proving the efficiency of the model for forecasting

solar radiation and wind speed. In Sect. 3, the mathemat-

ical framework for the generic representation of PMMS for

a HYRES is given, while in Sect. 4, the aforementioned

flexible PMS representation combined with the model’s

weather forecasting prediction successfully makes the

specific HYRES suitable for use as a stand-alone remote

energy plant. Finally, the conclusions are drawn in Sect. 5.

2 The proposed recurrent neural network

Having in mind that the estimation of the future weather

conditions constitutes a particularly complex problem due to

the nonlinear dynamics of the weather behavior, the com-

putational paradigm of neural networks (NNs) was adopted

for the design of the forecasting model. In specific, due to

the nature of the problem that involves the estimation of the

future values of certain meteorological variables, the adop-

ted type was the recurrent neural network (RNN) [11–20].

They constitute some NN type where the unit connections

form some directed cycle. This inherent characteristic cre-

ates some internal network state that greatly favors the

exhibition of some dynamic temporal behavior. Unlike

conventional feed-forward neural networks (FF-NN), RNNs
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can use their internal memory to process arbitrary sequences

of inputs. In general, RNNs are mostly preferred when

applied to nonlinear problems offering high precision, due to

their associative memory, resilient to noise, and input

imperfections, as well as temporal dimension. Moreover,

RNNs have been highly recommended when time-based

problems are considered, where the usage of other nonre-

current types of NNs is contraindicated [17].

As already mentioned, the RNN architecture differs

from the FF-NN one to the point that except for the net-

work inputs, it also takes into consideration its internal

state. This internal state can be considered as a trace of the

previously presented network inputs that have already been

processed. This feature provides to RNNs the ability of

learning the temporal sequential dependencies that may

occur among the data of a time series. However, it is quite

easy to understand the functionality of RNNs through a

direct comparison with a simple FF-NN.

It is quite convenient to consider a simple layered

architecture that consists of one input, one hidden, and one

output layer. Following, Eq. (1) describes the mathematic

relations that occur between the data of subsequent levels.

yjðtÞ ¼ f netjðtÞ
� �

; netjðtÞ ¼
Xn

i

xiðtÞvji þ hj ð1Þ

where y is the layer output, j is the layer number, t is the time,

netj describes the layer state, and f is a differentiable output

function. The variable n describes the total number of the

network inputs xi, whereas vij represents the connection

weights and hj is a bias value. In case of a FF-NN, the input

array x is propagated through the weights V that characterize

the connection between the input and the hidden layers. Sim-

ilarly, the propagation of the input array in a simple RNN is

equally affected by the weights of the established connections

between the nodes of the two neighboring layers. However,

another factor that affects the propagation is an additional

recurrent level that sends the previous network state through its

own activation function and the corresponding connection

weights U as presented by Fig. 1 and described by:

yjðtÞ ¼ f netjðtÞ
� �

; netjðtÞ ¼
Xn

i

xiðtÞvji þ
Xm

h

yhðt � 1Þujh þ hj

ð2Þ

where m expresses the total aggregate of the state nodes.

The network output is defined in both cases by its own state

and the weights W as follows:

ykðtÞ ¼ f netkðtÞð Þ; netkðtÞ ¼
Xm

j

xjðtÞvkj þ hj ð3Þ

where g is the activation function of the output layer.

The architecture of NN can vary in many ways, such as

layers’ type, layers’ number, number of neurons per layer,

neuron activation functions, layer interconnectivity, and

number of inputs/outputs. Each combination will provide a

network that behaves differently. For this reason, the

selection of these parameters must be done very carefully

according to the current application requirements. Two

examples of different RNN network architecture are

demonstrated in Fig. 2. The network of Fig. 2a is a fully

interconnected RNN without any discrete input and output

layers. Each neuron receives an input from the rest of the

network units, as well as from itself through some feedback

loop. The specific example refers to the Elman NN type

which is widely known and used in the literature [19]. On

the contrary, the second network in Fig. 2b constitutes a

partially interconnected RNN that has some discrete input

and output layers. Although there is no neuron self-feed-

back feature, there is a feedback loop connecting the hid-

den layer to the input one. This example is known as

Jordan ANN.

The selected architecture of RNN for the current study

was the nonlinear autoregressive neural network (NAR).

This NN has been extensively used for statistical fore-

casting modeling of time series [21–24]. The specific

model constitutes dynamic RNN that includes feedback

connections between layers. NAR is based on the linear

autoregressive model (AR), which is known for its effec-

tiveness in modeling time series [24]. The equation that

defines NAR functionality is:

Weights U

Output Layer

Input Layer

WeightsW

Weights V

Hidden Layer

( ) ( )( )k ky t g net t=

( ) ( )
m

k j kj k
j

net t y t w θ= +∑

( ) ( )( )j jy t f net t=

( ) ( ) ( )
n m

j i ji h jh j
i h

1net t x t v y t u θ= + − +∑ ∑

Fig. 1 Simplified recurrent neural network (RNN) structure diagram
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yðtÞ ¼ f ðyðt � 1Þ; yðt � 2Þ; yðt � 3Þ; . . .; yðt � kÞÞ ð4Þ

where y(t) is the model output that depends on the k tem-

porally previous values of the output signal. This is also

represented in Fig. 3, which shows the block diagram of a

two-layer AR model with feed-forward architecture. The

purpose of the specific model was the estimation of func-

tion f. The input of the model can be a multidimensional

array, while each layer has an additional bias input b1 and

b2 for quicker convergence of the NN. Furthermore, the

connection between two layers is characterized by the

corresponding layer weight LWi,j, where i refers to current

layer and j refers to previous layer. Finally, the time-de-

layed line (TDL) expresses the time delay that is inflicted

upon the output feedback data that are sent back to the

input through the feedback loop. This feature enables the

estimation of the temporal dependencies that may occur

between the input and the output. This property is of great

significance when trying to model systems that are

described by time series.

In general, there are two different architecture options

for NAR. Both these architectures include a time delay line

that was described above. However, the first one includes a

feedback loop that sends the data from the output directly

back to the input and is presented by Fig. 4a. Due to this

output–input feedback connection, the specific architecture

is regarded as parallel. The second option excludes this

parallelism property and makes use of a more straightfor-

ward logic, as it is completely serial. As presented in

Fig. 4b, the serial NAR architecture lacks any feedback

property. The main difference between these two options

relates to the training procedure. The accuracy of the

training is higher in the second case, because through the

serial feed-forward architecture, the network is fed only

with real data. On the contrary, the parallel NAR combines

both feedback and real data. This often has a negative

effect at the network training accuracy as long as the output

data are already processed. Another advantage of the serial

model over the parallel one refers to its simplicity. The

serial architecture produces more responsive models that

are easier to implement and train faster. This is considered

as a very significant feature when the NAR model is meant

to be used in real-time applications.

(a) (b)

Fig. 2 Examples of different recurrent neural network (RNN) architectures: a fully interconnected network, b partially interconnected network

of feed-forward architecture

f2

LW2,1

LW1,3

f1

θ2 b2

T
D
L

net2(t)net1(t)
LW1,1

b1θ1

( )ŷ t

( )y t

Fig. 3 Autoregressive model (AR) architecture
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For the needs of the current study, the proposed NAR

model was initially trained through the adoption of the

serial architecture. The basic structure of the model has

three distinct layers: the input, the hidden layer, and the

output. The utilization of a single hidden layer was decided

upon the fact that in the literature, there are a lot of NN

examples where such architecture provides enough com-

putational power for confronting problems of similar

complexity [2–8]. Moreover, in order to decide which NAR

architecture and network size is the most suitable, a series

of different tests were realized that confirm the suitability

of the aforementioned structure and resulted to network

efficiency. Making use of a small but representative data-

set, a variety of networks was tested including NARs with

multiple hidden layers and variable neurons numbers per

layer.

2.1 Nonlinear autoregressive artificial neural

networks

The proposed NAR model was designed and simulated

through the use of the Neural Time Series Tool that con-

stitutes part of the Neural Network Toolbox library of

MATLAB software. The design of the NAR model has been

done in accordance with the network architecture of Fig. 3.

The main structure of the model is similar to the one of a

multilayer FF-ANN. In specific, it consists of three discrete

layers: the input, the hidden layer, and the output. As

mentioned before, a single hidden layer was used, as it is

considered to deliver some adequate computational power

and network efficiency in combination with some good

performance [5, 7]. The NAR model as designed with

Neural Time Series Tool is presented in Fig. 5. The

specific architecture does not include any output feedback

property so as to deliver the best possible training results.

This open-loop network was used for training purposes, as

long as its output is not sent back to the input. In this way,

every presented training pattern belongs to the training

dataset and the NAR model assimilates only the real

training data.

As presented in Fig. 5, each block has a specific number

on its bottom side. This value represents the total number

of neurons per layer. Both input and output have one

neuron, whereas the hidden layer consists of 10 artificial

neurons that are fully interconnected. However, due to the

abstractive nature of the diagram, the connections between

the neurons are not visible. The network input and output

are described by the same variable y(t). This happens

because the designed NAR model outputs the same phys-

ical quantity that it receives on its input. The goal of the

network training is to assimilate any existing temporal

relations that may occur between the subsequent data

points of the training time series. For this reason, no

exogenous variable is involved into the training procedure.

However, a time delay element is added to the hidden layer

in order to create the necessary temporal difference

between the input and the output data. The exact magnitude

of this applied delayed is depicted in Fig. 5 and is equal to

72 samples. In this way, a time window is created pointing

out the specified number of previous inputs that will be

used by the network to estimate the next value of the given

time series. The size of the applied delay and thus the time

window can be altered according to the requirements of the

current application and the time resolution of the target

time series. Additionally, the activation function used for

the hidden layer is the hyperbolic tangent, whereas a

simple linear function was adopted for the output layer.

Moreover, the synaptic weights and the bias values are

represented by W and b blocks in respect. All the above

settings were the results of a series of ‘‘trial and error’’

regarding the NAR training. These settings were found to

be the optimal combination that provided the best results

without requiring an excessive amount of system resources.

Following the network design, the available real mete-

orological data were used for its training. In accordance

with the experimental setup that will be introduced in

Sect. 3, the training time series were collected from the

location of Olvio with coordinates 41.0249 M and 24.7885

E near the city of Xanthi in Greece. These datasets include

solar radiation and wind speed measurements for the time

period of the last 2 years, having a time resolution of

Feed-Forward
Artificial Neural

Network

T
D
L

Feed-Forward
Artificial Neural

Network

T
D
L

( )ŷ t( )y t ( )ŷ t( )y t

(a) (b)

Fig. 4 Basic nonlinear

autoregressive network (NAR)

architectures: a parallel with

output feedback, b serial

without feedback
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5 min. From these datasets can be easily noticed that every

month has its own characteristics, present some nonlinear

behavior, and can potentially present great differences from

1 day to the other. Especially in case of solar radiation, the

differences between months are considered normal due to

the different season conditions. Furthermore, some intense

fluctuations that take place during the same month often are

caused by the occurrence of some extreme weather phe-

nomena. The time resolution of the measurements is equal

to 1 sample per 5 min. This means that 288 samples are

available per day. However, for the needs of the specific

study, three additional datasets with lower resolution were

created and tested, with 96, 24, and 4 samples/day. The

generic form of the tested data vectors for the corre-

sponding samples is given by the formula: x = [x1, x2, x3,

…, xn] where index n takes values [4, 24, 96, 288],

respectively, and the data sample xi 2 0; 1300½ � W/m2 in

case of solar radiation or xi 2 0; 13½ � m/s in case of wind

speed, respectively. Through the realization of different

training scenarios for the four datasets, it was proved that

24 samples/day provided the best results in terms of

accuracy and computational speed, without lacking any

significant information comparing to the initial dataset. A

possible explanation in regard to this fact is the fluctuation

of the data is not so abrupt while their correlation was high

especially in case of solar radiation where the resulting

matching between the actual data and the predicted was

even better. On the other hand, the possibility of overfitting

and thus the NN to memorize the training examples

resulting to false generalization on new examples was

proven small, after testing many various initial conditions

with different datasets that resulted in most cases in suffi-

cient and robust NN performance. All these are discussed

in more detail across the section. By adopting the 24

samples/day dataset with an input delay line of 72 samples,

the proposed NAR model receives the measurements of the

three last days as an input to estimate the future value. It

should be noticed that the proposed ANN uses the last 72

samples (1 sample = 1 h) to estimate the next sample as

output. Moreover, during every iteration, the synaptic

weights of ANN are being dynamically updated in order to

optimize its output and produce the next sample. For the

production of full 24-h estimation, 24 iterations are needed,

and in correspondence, the synaptic weights of the ANN

are being updated 24 times. Please notice that for these new

ANNs, the architecture and the resulting complexity of the

network are not meant to alter during every iteration.

The data were imported to MATLAB and formatted as a

‘‘struct’’ variable. The specific data structure is a quite

common and efficient way of manipulating time series in

Neural Network Toolbox. In order to make the data suit-

able for insertion into the NAR model, the command

‘‘preparets’’ was firstly used. This function simplifies the

normally complex and error-prone task of reformatting

input and target time series. It automatically shifts input

and target time series as many steps as are needed to fill the

initial input and layer delay states. In case that the network

has open-loop feedback, then it copies feedback targets into

T
D
L

W1,1

b1,1

T
D
L

W1,2

b1,2

T
D
L

f1
W1,3

b1,3

T
D
L

W1,10

b1,10

f2
W2,1

b2,1

( )ŷ t( )y t

T
D
L

W3,1

Hidden tuptuOreyaL LayerInput Output

Fig. 5 Schematics of the proposed nonlinear autoregressive network

(NAR). Each block has a specific number on its bottom side. This

value represents the increased number of neurons per layer. Both

input and output have one neuron, whereas the hidden layer consists

of 10 artificial neurons that are fully interconnected. The network

input and output are described by the same variable y(t). Moreover,

the synaptic weights and the bias values are represented by W and

b blocks in respect
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the inputs as needed to define the open-loop inputs. Each

time a new network is designed, with different numbers of

delays or feedback settings, it can be called to reformat

input and target data accordingly.

Additionally, before feeding the designed model with

the training dataset, two optimization techniques were used

in order to improve the learning efficiency. The first one

processes the values of the given dataset and then removes

the any rows with constant values. This means that any

measurement values that remain unchanged for some time

period will be discarded from the final training set. For

example, solar radiation during night time always equals to

zero, thus disrupting the consistency of the training pat-

terns. In practice, this can deteriorate the training accuracy

because it imports zero values. After the adoption of this

technique, the final training dataset contains only the nec-

essary measurements that describe the variation in solar

radiation during the sunlight hours. The above procedure

was implemented by using the ‘‘removeconstantrows’’

function of the Neural Network Toolbox. While the first

technique was mostly applied to solar radiation measure-

ment, the second technique is used to process the training

data by mapping row minimum and maximum values to [0,

1]. This helps in simplifying the synaptic 73–96 updating

process as long as the target value variation is significantly

limited maintaining at the same time all the necessary

information. This normalization also prevents uncommonly

high training values from affecting the overall NAR

training accuracy. It was realized through the ‘‘mapmin-

max’’ command.

Following the learning dataset was divided into the

necessary subsets: training, validation, and testing. Usually,

this separation procedure is done in a random way. How-

ever, this would ruin the essence of the time series itself.

For this reason, the training dataset was divided using the

‘‘divideblock’’ function. This function targets into three sets

using blocks of indices without ruining the sequence

properly. In this way, the designed NAR can assimilate the

temporal dependencies that characterize the given meteo-

rological measurements. Another significant factor that

may affect the overall training efficiency is the definition of

the subsets ratios. The adopted ratios were equal to 75, 15,

and 10 % for the training, validation, and testing subsets in

respect. It is very important that training subset includes

the largest portion of the available dataset in order to

achieve the best possible training results and network

learning.

Next, the Levenberg–Marquardt back-propagation

algorithm was adopted for the training of the proposed

NAR model. The specific technique is widely used for the

NN training as it is considered as one of the most efficient

solutions. During the learning procedure, it implements the

error back-propagation method, whereas it updates the

synaptic weights and bias values according to Levenberg–

Marquardt optimization [25]. It can be used to train any

network as long as its weight, net input, and transfer

functions have derivative functions. There is a great variety

of different approaches, such as Bayesian Regulation Back-

propagation, Gradient Descent Back-propagation, and

BFGS Quasi-Newton Back-propagation [26]. Bearing that

in mind, all the above learning algorithms were tested in

training the proposed model. However, deliver the best

training results in combination with the quickest conver-

gence were achieved through Levenberg–Marquardt

algorithm.

The success of the network training does not depend on

the available dataset and the learning algorithm [27].

Defining the basic training parameters and the ending

conditions of the learning procedure is also a significant

task. The values of these parameters, as well as the validity

of the ending conditions, are checked during every training

epoch, and in case that some of them is satisfied, the net-

work training comes to a complete halt. For this reason, the

definition of these parameters and conditions is very

important for the achievement of the desired training

results. In specific, these parameters include the training

performance function, the maximum number of training

epochs, maximum allowed training time, the desirable

training performance, the minimum training performance

gradient, and the maximum numbers of validation fails.

Each of them plays a different role in defining the progress

of the network training procedure.

At first, the performance function is one of the most

significant training parameters. It defines the way that the

training performance is calculated during every epoch.

For the needs of this study, the ‘‘mean squared normal-

ized error’’ (MSE) performance function was adopted

[18]. It measures the network performance according to

the mean of squared errors. In other words, it calculates

the produced error that is the distance between the NAR

actual outputs and the desired target values. Next, the

maximum duration of the NAR training was specified in

terms of epochs and time. The maximum number of

epochs was equal to 103, as specified by default in

MATLAB, whereas the maximum time period was

defined to be 60 min. The long duration of the training

procedure is often a sign that either the designed network

cannot fully assimilate the given information, or the rest

of the training parameters were not selected very care-

fully. Thus, these conditions are meant to stop the training

in case that it requires a lot of epochs/time. The selection

of the specific values depends both on the target system

and the designed network complexity. In any case, they

both should be set quite high in order to avoid prema-

turely stopping the network training that may result in

some unsatisfactory results.
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Following, one of the most significant constraints is

the desired training goal in terms of training perfor-

mance. Once this goal has been reached, the network

training comes to a halt. For the needs of the current

model, a training goal of 10-3 was defined. Additionally,

another significant parameter is the gradient of the per-

formance function output. Its magnitude indicates how

much is the training performance altered from one epoch

to another. It is always a good idea to define a minimum

value for this gradient, because after reaching a certain

training performance value usually a great amount of

time is required to further improve. Most of the times,

this improvement does not compensate for the extra

training time and system sources. To avoid such phe-

nomena, the minimum gradient limit was defined as

equal to 10-5. Finally, the maximum number of vali-

dation fails was equal to 6. The occurrence of successive

validation fails often means that the designed model has

reached the maximum possible assimilation level for the

given training dataset and network architecture. This

constraint constitutes the most usual stopping condition

of the network training.

To sum up, choosing the right settings for the above

training parameters is considered as a significant step

toward the achievement of the successful network training.

Due to the fact that they can affect at a great degree the

outcome of the training procedure, they should be chosen

wisely. Unfortunately, similarly to the problem of network

design, here also there is some lack of methodologies that

could provide some necessary guidance. Every problem

has its own requirements, and it is quite difficult to find

always the right setting combinations for these parameters.

For example, defining some strict conditions for the

training interruption could cause some premature training

stopping that might result into some insufficiently trained

network. On the contrary, adjusting these settings to be

quite loose can result to the ‘‘overfitting’’ problem, where

the network learning is trapped into local minima exclud-

ing some part of the available information. Both these

scenarios end to some poorly trained networks with low

efficiency.

Finally, the training results were quite satisfactory

bearing in mind the complexity of the target system. In

specific, the final MSE was equal to 70 W/m2 that is

considered quite decent regarding the actual solar radiation

datasets values that may vary up to 1300 W/m2. In Fig. 6a,

the error autocorrelation diagram is depicted. It can be

remarked that there is no significant correlation between

subsequent errors, whereas there is no value exceeding the

confidence limit. Moreover, the linear regression diagram

between the NAR estimation and the target values is pre-

sented in Fig. 6b, and the achieved regression coefficient

was equal to R = 0.98193.

After the end of the NAR training procedure, during

which the serial network architecture was adopted, there

was a slight change in its structure. In specific, a feedback

connection was created between the NAR output and its

input. This conversion was previously explained in Fig. 4a,

b. The serial model is always used for the network training

instead of the parallel, due to the fact that it presents better

learning results. On the other hand, the already trained

parallel architecture can provide some multistep future

estimation. At first, the network is supplied with the 72

samples that fill the time-delayed line. After the NAR

model produces its first output, this value is redirected

through the feedback connection back to the input in order

to supplement the corresponding dataset. The oldest sample

is discarded, and the time delay window slides one value

further toward the future, thus including the first estima-

tion. During every step, the time delay window is popu-

lated with the last 72 samples. Through this iterative

procedure, a multistep estimation can be realized. The

exact iteration number defines the magnitude of prediction

horizon. In practice, the future prediction horizon was

defined to be equal to 24 samples. In other words, the

proposed NAR model receives the measurement samples of

the last 3 days in order to deliver the estimation for the

corresponding values of the next day.

Following, the trained NAR model was initially tested

on real solar radiation data from the location Olvio

(41.0249M, 24.7885 E), Xanthi, Greece, for the creation of
next-day estimations. The input datasets are real random

data that were acquired from the same location as the

training set, but were completely excluded from the net-

work training procedure. The corresponding testing results

can be found in Fig. 7c, d. The actual solar radiation values

are represented by the blue line, whereas the predicted

values by the red line. Samples 1–72 constitute the model

input, and samples 73–96 are the produced future estima-

tions. For this reason, the most significant part of the dia-

gram is the comparison between the two representations

regarding the actual and the predicted values during these

last 24 samples. However, for demonstrative reasons, the

rest of the samples were included.

In the view of the foregoing in Fig. 8a–c, some more

detailed forecasting results considered longer time esti-

mations based on the proposed NAR model output for the

location Olvio (41.0249M, 24.7885 E), Xanthi, Greece, are
shown. Once again, data are referred to the solar radiation,

while the number of samples is now 648 for Fig. 8a, b and

672 for Fig. 8c. Nevertheless, the corresponding time for

each one of them is 60 min, and the time resolution is 27

dates for Fig. 8a, b and 29 for Fig. 8c. It is reasonable for

someone to assume that the resolution and the estimation is

much more difficult compared to the previous cases, but

once again the results show the quantitative and qualitative
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agreement of the simulation results when compared to the

real data.

Finally in Figs. 9, 10, 11, and 12, we present detailed

results during testing of ANN for different months one per

season, for readability reasons, of year 2010. For example, in

Fig. 9a, there is the solar radiation estimation as output of the

NAR model when compared with the real solar data mea-

surements for January. In correspondence, the resulting

power of understudy HYRES is shown in Fig. 9b. In Fig. 9c,

d there are similar diagrams now referring to daily predic-

tion, while for readability reasons the input data are not

presented. It should be clarified that the specified day is one

selected randomly as a proof of concept from the January

data. Finally, in Fig. 9e, f, the NAR model results for wind

speed and the resulting power of the understudy HYRES are

presented. Once again, in the last two Fig. 9g, h, the pro-

duced results of the NAR model and comparison with real

data for one randomly selected January day are shown. The

rest of Figs. 10, 11, and 12 represent the exact same results

for one month selected randomly of each season of 2010. As

a result, the presented Figs. 9, 10, 11, and 12 correspond to

four different seasons of one full-year data exploiting the

efficacy and the robustness of the under test RNN to predict

the solar radiation and provide monthly and daily estima-

tions of the solar radiation and wind speed, respectively, and

the corresponding PV and wind turbine outputs. Moreover,

the presented results refer to randomly selected days and

months of the aforementioned seasons, thus indicating the

Fig. 6 a Error autocorrelation

diagram. b Diagram of linear

regression between NAR output

and target values
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adaptability of the proposed RNN under quite different case

studies in terms of solar radiation and wind speed.

The above simulation results can help us reach some con-

clusions about the effectiveness of the proposed NAR and the

accuracy of its produced future estimations. In specific, from

the results of Fig. 11a–c, it can be seen that the samples that

constitute the network input present some unexpected fluc-

tuations that may be connected to extreme meteorological

conditions. Moreover, it should be further noticed that

although time series of solar radiation andwind speed, as well

as the corresponding climate phenomena, is different, we are

targeting in producing a robust NAR model which could be

possibly applied to predict both, although this is by default a

hard to go for weather forecasting application. However, the

actual NAR model estimation does not seem to differ much

from the real solar radiation data, and in almost all the cases,

the same applies for the wind speed. This happens due to the

fact that the network input includes the data from the past

3 days. So, in case that something unusual happens, this

dataset still contain some information depicting the general

meteorological conditions of the current time period. In

addition, it can be easily observed from the whole set of the

simulation results that the proposed NAR model succeeds in

delivering the periodicity of the target phenomenon. The

accuracy of the estimations also appears to be quite satisfac-

tory in most cases. However, in the previous figure, there are

some spots where the estimation does not seem to be quite

accurate. Bearing in mind both the complexity and the

dynamic character of the target system, it can be quite easily

realized that these error can be considered as normal. More-

over, the wind speed tends to present some extremely non-

linear behavior in comparison with other meteorological

measures. For this reason, as alreadymentioned, some level of

inaccuracy should be expected at some extent. Nevertheless,

one of the primary goals of the specific case study as shown in

Sect. 4 is to enable a cost-effective estimation solution cou-

pled with efficient energy management strategy for the

forthcoming energy supply of the presented hybrid system.

Taking that into consideration, the generated estimation is

based on training on historicized local data, enabling the

prediction of the future energy supply based on local condi-

tions. Still in cases that the providedwind estimation seems to

be less accurate than usual, the system is not greatly affected

due to the fact that it strongly relies to more than one energy

sources. Furthermore, it should be noted that due to the

reduction in the training dataset and the proper sizing of the
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Fig. 7 Real solar radiation measurement samples for: a October and b June, and c, d comparison between the produced forecasting results (red

line) and corresponding real solar radiation measurements on the horizontal level (blue line) for two different time periods (color figure online)
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network, the proposed NAR has an especially fluid and swift

functionality. It only requires some seconds to produce the

corresponding future estimations. This feature is considered

as very important in real-time applications, such as the on-the-

fly HYRES optimization.

3 Efficient representation of energy management
strategies

In order to effectively utilize the available renewable

energy, a well-described PMS is necessary that will

take into consideration the possible interconnection and

energy distribution possibilities. The appropriate power

distribution that changes dynamically due to the

influence of the weather conditions is an important

aspect for the effective operation of a HYRES system.

In Fig. 13, a conceptual representation of the proposed

scheme is provided that shows how the RNN and the

PMS are connected. In particular, as shown in Fig. 14,

Fig. 8 Real solar radiation measurements on the horizontal level (blue line) compared with produced forecasting results (red line) for three

randomly selected different months (color figure online)

cFig. 9 Data and modeling results for February: a monthly estimation

(1 h/sample) of the active and predicted solar radiation (W/m2),

b monthly (1 h/sample) power estimation (W) of the PV output

provided the mean power estimation, c daily estimation for 24 h of

the solar radiation (W/m2), d daily for 24 h of power estimation

(W) of the PV output provided the mean power estimation, e monthly

estimation (12 samples/h) of wind speed (m/s), f monthly (12

samples/h) power estimation (W) of the wind turbine provided the

mean power estimation, g daily estimation (12 samples/h) of wind

speed (m/s), h daily (12 samples/h) power estimation (W) of the wind

turbine provided the mean power estimation
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the RNN may provide a vector of weather forecasts

(e.g., solar irradiation or wind speed data points) used

for the resulting vector of PV and WG power fore-

casts. The data obtained are used by the PMS to affect

the parameters that determine the appropriate instant for

activation/deactivation of different subsystems. This is

implemented through binary parameters and logical

propositions used within the PMS to regulate the con-

nection between the nodes of the graph emulating the

interactions among different HYRES subsystems. For

example, in the case of weather data, if the output of the

RNN forecasts very limited or no solar irradiation, the

logical rules comprising the PMS are first checked to

investigate the operating status of the subsystems (e.g.,

availability of energy in battery or hydrogen in tanks and

activation of fuel cell in the previous instant). Once the

decision is taken regarding the activation of the appro-

priate subsystem (e.g., diesel generator or fuel cell), a

binary parameter is used to request its connection with

the battery in order to ensure that the requested load

demand is satisfied. In the case of using the forecast of

RNN to decide about power availability, this is also

directly funneled to the PMS and associated with the

appropriate binary parameter. For example, the option of

directly using the corresponding power forecasts may be

considered for the case of the diesel generator which is

very important for the operation of the system. Figure 12

shows how the forecasted (expected) power availability

or deficit from the PV and WG is directly associated with

the binary variable and therefore the PMS regulating the

activation of the diesel generator (i.e., connection with

the battery). Therefore, in this section, we will review the

representation of PMSs as described in [28] where the

microgrid was seen as a graph, and the flow of power and

hydrogen within was described through flow sheets. More

specifically, each device in the microgrid is seen as a

node of a graph and its connection as an edge in Fig. 14

(it should be noticed that the full names of the abbrevi-

ated corresponding parameters and subsystems as found

in Fig. 14 are provided in full detail in Table 2 for

readability reasons). Table 1 presents the specifics of the

selected systems that resembles the actual configuration

of the HYRES located at Olvio, Xanthi.

In our system, the flows between the nodes can be in

various states like electrical energy (POW) or hydrogen in

high pressure (H2P), and hence, the input to each node for

each state j is given by:

FIn;j
n ðtÞ ¼ SF j

nðtÞ þ
XN

l¼1

el!nðtÞFOut;j
l!n ðtÞ ð5Þ

where FIn;j
n ðtÞ is the input to node n at the instant t, SF j

nðtÞ
are external inputs, F

Out;j
l!n are the outputs of the other nodes,

el!nðtÞ are binary variables that determine the connection

of a specific edge, and N is the number of nodes in the

Fig. 9 continued

cFig. 10 Data and modeling results for April: a monthly estimation

(1 h/sample) of the active and predicted solar radiation (W/m2),

b monthly (1 h/sample) power estimation (W) of the PV output

provided the mean power estimation, c daily estimation for 24 h of

the solar radiation (W/m2), d daily for 24 h of power estimation

(W) of the PV output provided the mean power estimation, e monthly

estimation (12 samples/h) of wind speed (m/s), f monthly (12

samples/h) power estimation (W) of the wind turbine provided the

mean power estimation, g daily estimation (12 samples/h) of wind

speed (m/s), h daily (12 samples/h) power estimation (W) of the wind

turbine provided the mean power estimation
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graph. For example, in the case of the battery, Eq. (5) can

be written as:

F
In;POW
BAT ðtÞ ¼

XN

l¼1

el!BAT tð ÞFOut;POW
l!BAT ðtÞ

� �

¼ eFC!BATðtÞFOut;POW
FC!BATðtÞþ eRES!BATðtÞFOut;POW

RES!BATðtÞ
þ eDSL!BATðtÞFOut;POW

DSL!BATðtÞ
ð6Þ

where F
Out;POW
RES!BAT ¼ F

Out;POW
PV!BAT þ F

Out;POW
WG!BAT .

The binary variables that determine the connection can

be defined as

el!nðtÞ ¼ L eAvll!nðtÞ; e
Req
l!nðtÞ; eGenl!nðtÞ

� �
ð7Þ

where L is a logical operator (like AND, OR, …) and

eAvll!nðtÞ; e
Req
l!nðtÞ; eGenl!nðtÞ are three binary variables that

determine the availability, the requirement, and other

general conditions necessary to activate the connection l to

n. In general, the activation of a connection (from node l to

n) depends on logical propositions ci that can be described

by binary variables qi. For example, for the activation of

the FC in order to supply power to the battery, we have

cFC?BAT. There is a requirement for energy to be delivered

to the battery which it terms of the q variables can be

written as:

qSOCðtÞFC!BAT ¼ SOCðtÞ\Str
SOCðtÞ
FC!BATðtÞ

h i
ð8Þ

where the numerical variable Str
SOCðtÞ
FC!BATðtÞ defines the lack

of available energy in the battery, and SOC is the state of

charge. In case there is a hysteresis zone (as it is usually the

case in such systems), then Eq. (8) can be written as:

qSOCðtÞFC!BAT ¼ SOCðtÞ\Lo
SOCðtÞ
FC!BATðtÞ

h i

_ Str
SOCðtÞ
FC!BATðtÞ\SOCðtÞ\Stp

SOCðtÞ
FC!BATðtÞ

h ih

^ eFC!BATðt�Þ ¼ 1½ ��
ð9Þ

where Stp
SOCðtÞ
FC!BATðtÞ is the upper limit of the hysteresis

zone, and t- is the previous observation instant. Using this

approach, it is possible to systematically represent any

PMS for a microgrid.

4 Combination of the flexible PMS representation
and weather forecast

In order to test the efficiency of the proposed model, an

already implemented system HYRES was taken under

consideration. As a result, the meteorological measure-

ments used in this study are real data collected from the

location of Olvio near the city of Xanthi in Greece, where

Fig. 10 continued

cFig. 11 Data and modeling results for August: a monthly estimation

(1 h/sample) of the active and predicted solar radiation (W/m2),

b monthly (1 h/sample) power estimation (W) of the PV output

provided the mean power estimation, c daily estimation for 24 h of

the solar radiation (W/m2), d daily for 24 h of power estimation

(W) of the PV output provided the mean power estimation, e monthly

estimation (12 samples/h) of wind speed (m/s), f monthly (12

samples/h) power estimation (W) of the wind turbine provided the

mean power estimation, g daily estimation (12 samples/h) of wind

speed (m/s), h daily (12 samples/h) power estimation (W) of the wind

turbine provided the mean power estimation
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the main compound of Systems Sunlight S.A. is located

[29]. In Fig. 15, there is a block diagram describing the

general architecture and components of the available

HYRES system. At the first level, there is a 8.5 kW pho-

tovoltaic array (PV Array), a 3 kW wind generator, a

polymer electrolyte membrane (PEM) fuel cell, and a

48 volt, 3000 Ah battery array. These subsystems are all

directly connected to the DC bus and indirectly to the AC

bus through a DC/AC converter. In addition, there is a

diesel generator and a PEM Electrolyzer directly connected

to the AC bus. The specific system combines different

renewable technologies, has some storing capabilities and

also includes a conventional energy generator as a backup

unit. The current HYRES system supplies a part of Systems

Sunlight facilities with electricity, without the interference

of any other power plant.

In the following, we use the solar radiation and wind

speed prediction RNN presented in Sect. 2, and we com-

bine it with the PMS representation of Sect. 3. As it has

been said, when the second PMS is utilized, the FC is not

allowed to operate during the summer months even in the

case where the SOC is low (during the night) and there is

available hydrogen. The main argument for that is that

there will be intense solar irradiation after a few hours and

hence energy will be produced that not only will charge the

battery but most likely it will also produce hydrogen that

can be stored in the FT. While in most cases this approach

will reduce the usage of the FC without over depleting the

battery or force the activation of the DSL, in some cases it

is possible to cause many problems. This is happening if

during the next 24 h, there is a rather low (comparing to the

other days) solar irradiation, and hence, the DSL is forced

to be activated. This issue becomes more serious in case

that there are multiple successive days with low solar

irradiation. This problem can be overcome if using the

weather forecast method explained before. This knowledge

can be used to enable the selective usage of the FC (i.e.,

operate under the first PMS) during these periods of time.

As a case study in Fig. 16a, we see the power produced by

the PVs in the system for 4 days during August. We see

that in August 3, the maximum power is above 12 kW

while in August 5 less than 8 kW. More specifically, the

total energy produced during these 4 days is approximately

92kWh, 41kWh, 48kWh, and 67kWh, respectively. In this

case study, the load was fixed at 3 kW, and hence, each day

has a requirement of 72 kWh. The FC was operated at 2kW

and the DSL at 3 kW (in order to protect the battery).

In Fig. 16b, we see the charge state of the battery when

the two PMS were used. In the first case (solid trace), the

PMS did not allow the activation of the FC, and while this

did not cause any problems during day 1 (August 3) at the

end of the second day, the SOC dropped below 0.2 and the

DSL was activated. In the second case where the weather

Fig. 11 continued

cFig. 12 Data and modeling results for October: a monthly estimation

(1 h/sample) of the active and predicted solar radiation (W/m2),

b monthly (1 h/sample) power estimation (W) of the PV output

provided the mean power estimation, c daily estimation for 24 h of

the solar radiation (W/m2), d daily for 24 h of power estimation

(W) of the PV output provided the mean power estimation, e monthly

estimation (12 samples/h) of wind speed (m/s), f monthly (12

samples/h) power estimation (W) of the wind turbine provided the

mean power estimation, g daily estimation (12 samples/h) of wind

speed (m/s), h daily (12 samples/h) power estimation (W) of the wind

turbine provided the mean power estimation
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Fig. 14 Network diagram of

the stand-alone microgrid [28].

The parameters of the system

are given in Table 1

Fig. 12 continued
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Fig. 13 An overview of the proposed approach presenting the interaction between RNN, PMS, and HYRES
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prediction is used, based on the fact that the solar irradia-

tion in August 4–5 may not be high enough, the system

changed the PMS and activated the FC. As a result, the

SOC was prevented from dropping below 0.26.

After careful consideration, an appropriate PMS was

selected based on overall system-related criteria considering

the provided input from the RNN for the solar radiation and

wind speed. The decision variables during the operation of a

stand-alone power system are the power level from the PV

system and the wind generators and the voltage of the accu-

mulators. The most effective PMS was the one that the lead-

acid accumulator along with the RES can support the elec-

trolyzer operation in cases of excess of power [30]. Below a

minimum limit for the SOC of the accumulator, the fuel cell

will meet the system’s energy demands in cases of shortage of

energy. The simulation time period is for 1 month, and the

solar radiation and wind speed data have been calculated on a

10-min average value. The power from the PV array and the

windgenerators due to the solar radiationprofile in a particular

day is presented in Figs. 17 and 18, respectively.

Part of the power produced was to be supplied to the

load unit with a constant power of 1 kW. Figure 18

presents the net amount of power, as the difference

between the power produced from the RES and the power

needed for the load. The negative values indicate that

current from the accumulator had to be drawn in order to

cover the need while positive values implied the excess

power that could be stored to the accumulator or supplied

to the electrolyzer. A very important parameter that needed

to be studied in detail is the state of charge (SOC) of the

battery as it influences the operation of the accumulator, of

the electrolyzer, and of the fuel cell. The upper SOC limit

(it was assumed to be 91 %) sets the upper bound that

charging needs to be stopped in order to start the operation

of the electrolysis as long as there is sufficient surplus

energy to be provided from the RES to the electrolyzer.

The lower SOC limit (it was assumed to be 84 %) sets the

lower bound that the fuel cell needs to provide the nec-

essary power to charge the accumulator, as long as there is

not surplus energy according to Fig. 19.

As was mentioned before, the electrolysis took place

only when sufficient surplus energy existed from the RES,

and the state of charge of the accumulator (Fig. 20) was

above the upper limit. In that case, the hydrogen was

produced from the excess energy. Figure 21 represents the

hydrogen production and consumption during the various

stages of operation in a one-month period. Hydrogen is

stored in compressed cylinders for future use.

As it can been seen from Fig. 22, there was a constant

rise in the pressure when the electrolyzer was operating,

and after it was stopped, there was a constant pressure

inside the bottle until it started again. When the fuel cell

was working, hydrogen was removed from the bottle and

the pressure decreased while this operation took place. It

is highlighted that the pressure at the cylinders did not fall

down a lower limit and it did not overcome the upper

limit. Table 3 shows the total operation time for each

subsystem. As can be seen, there was a period of a total

time of 8 h during the month where the amount of energy

was beyond the one that the electrolyzer could use.

Therefore, this extra amount can be used elsewhere to

cover other needs. Furthermore, the hydrogen stored at

the end of the month was approximately 17.2 m3. This

amount of hydrogen provides autonomy of the fuel cell of

16.5 h.

In this study, the simulated results for the various

subsystems of the stand-alone power system during a one-

month period were presented. The application scenarios

that took place revealed that there was sufficient amount

of stored hydrogen at the end of month. The fuel cell

autonomy for the stored hydrogen was calculated at

approximately 16.5 h, which is equivalent to

33 kWh/month. Moreover, there were short periods dur-

ing the month when there was surplus energy. Part of it

was provided to the electrolyzer and the rest (if any)

Table 1 Microgrid parameters

PV (66.64 W rated power) 217

WG (1 kW rated power) 3

BAT 3000 Ah

EL 5000 W

BF 8 bar, *1 m3

FT 20 bar, *220 m3

Table 2 Terminology of the stand-alone microgrid presented in

Fig. 14

Pow Power

WG Wind generators

PV Photovoltaic panels

DSL Diesel generator

FC Fuel cell

FT Final hydrogen storage tank (high pressure)

BF Buffer hydrogen storage tank (low pressure)

CMP Compressor

Elec or

EL

Electrolyzer

WT Water tank

H2HP Hydrogen at high pressure

H2LP Hydrogen at low pressure

H2O Water

LD Load

BAT Battery

el!nðtÞ Binary variable determining the connection between two

subsystems l and n (e.g., electrolyzer with buffer tank)
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could be used to cover secondary electrical needs of the

system. The hydrogen compressor is more likely to be

provided with the extra energy.

One important outcome of the study was that several

charges and discharges took place during the month. This

situation can be hazardous for the accumulator as it reduces

its lifetime. The total cycles during the simulation were

calculated at 42 which is considered a bit high for an

accumulator of this type. Thus, in order to protect the

accumulator and increase its lifetime, it is vital to introduce

a backup diesel generator (DG) which would provide the

system with the necessary power when there is lack of

energy. Another critical comment is that the state of charge

of the accumulator though it is a parameter that provides

important information about its condition cannot be mea-

sured easily online. Therefore, a more applicable parameter

to be used is the voltage of the accumulator where there

would also exist a lower and an upper limit to control the

operation of the accumulator.

5 Conclusions and discussion

In this paper, a RNN for solar radiation and wind speed

prediction is presented for the enhancement of the PMSs of

HYRES. The presented RNN with NAR architecture can

AC

DC

AC

DC

DC

AC

DC

DC

DC

DC

DC BUS

AC BUS

PEM Electrolyzer
5 kW

Diesel Generator

3ph Inverter

Ba�ery
48 volt, 3000 Ah

Wind Generator
3 kW

PEM Fuel Cell
5 kWPV Array

8.5 kW

LOAD

Fig. 15 Schematic of the available hybrid renewable energy systems (HYRES) that is installed in the location of Olvio, Xanthi, Greece, and is

used for the needs of the current research
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offer both daily and hourly predictions concerning solar

irradiation and wind speed forecasting.

The accuracy and the effectiveness of the proposed

NAR model indicates that its estimations could be used for

the direct calculation of the exact amount of the future

produced green energy by the target HYRES. Through a

simple mathematical model, the produced forecasting

could be imported to calibrate the current HYRES mathe-

matical model for the calculation of the future production.
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Fig. 16 a Power produced by the PVs. b SOC response under the two PMSs
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Fig. 20 State of charge of the accumulator during the month
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Finally, solar radiation and wind speed data were demon-

strated so far. Of course, each of the examined case has its

own requirements, but the average problem complexity still

remains relatively the same.

The goal of the current research was to design and

propose an intelligent model for the estimation of the

future meteorological parameter values that are consid-

ered critical for the efficiency of HYRES. The intense

dependence that these systems have on parameters such as

solar radiation, air temperature, and wind speed makes

their forecasting quite a significant task. This a priori

knowledge of the future values can be utilized for the

overall function and efficiency optimization of these

systems through the creation and application of the cor-

responding strategies. The most recent and advanced

analytical weather forecasting models offer far more

superior accuracy than the proposed NAR model. How-

ever, they necessitate the use of series of expensive

sensing devices and some great amount of information.

This fact makes them quite difficult to adopt in cases

when some fully automated function is required. On the

contrary, the proposed NAR model has the capability of

estimating the needed meteorological parameters, requir-

ing only the data from a local sensing device. In addition,

it can easily adapt to the current conditions by learning

and assimilating the available past data and can thereafter

function completely autonomously.

The presented NAR model was calibrated on real meteo-

rological data collected from the location of Olvio, Xanthi, in

Greece. The simulation results indicated that it is capable of

assimilating the given information and delivering some satis-

factory future estimation that can be used to safely calculate the

available green energy.Moreover, it has some sufficient for the

specific problem computational power, as it can deliver the

final results in just a few seconds. All the above were the result

of the proper network architecture and sizing.

Additionally, the presented model has been also applied

to the aforementioned autonomous HYRES, where its

estimations were been used by a central control unit in

order to create in real time the proper power management

strategies (PMSs) for the efficient subsystems utilization

that can lead to the overall optimization. For doing so, a

generic network model was also described for the repre-

sentation of the hybrid power generation systems taking

into consideration in this work. Subsequently, the RNN

when combined with the presented network model of

HYRES serves as a novel framework for a generic

approach aiming to facilitate the derivation of various

PMSs in a simple and flexible way. As a result, the pro-

posed framework will make the specific HYRES suit-

able for use as a stand-alone remote energy plant. As a

proof of concept, the results of the proposed NN model for

solar radiation and wind speed forecasting when applied to

an available HYRES system were also presented. It is clear
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Fig. 21 Hydrogen production and consumption during the month
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Fig. 22 Bottle pressure during the inlet and outlet of hydrogen

Table 3 Results of the

integrated system
Operation time (h) Hydrogen (l)

Charge of the accumulator 248 –

Discharge of the accumulator 398 –

PEM electrolyzer 66 29,430

PEM fuel cell 13 12,220

Excess power for other electrical needs 8 –
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that the proposed RNN after training with meteorological

data of the understudy area in our case Olvio of Xanthi in

Greece and applied to the proposed HYRES of Systems

Sunlight S.A. finally manages to enhance and optimize its

PMS based on the provided solar radiation and wind speed

prediction.

Despite the satisfactory results, it should be once again

remarked that the designed NAR model cannot compete

with the advanced weather forecasting tools also because

the described ANN model and its performance are not

generic but many more described periodically. A quite

obvious disadvantage refers to its inability to estimate any

sudden and extreme value changes that may be caused by

random and unexpected phenomena. Nevertheless, it offers

a cheap, sufficient, and easy-to-implement-and-apply

forecasting solution suitable for use in HYRES.

Moreover, it should also be noted that most of the avail-

able studies in the literature [6, 8, 11] that adopt the NN

paradigm for the estimation ofmeteorological parameters do

not produce an actual future estimation. They usually make

use of a series of different variables in order to statically

estimate the target parameter for the given time and thus

produce an artificial time series that refer to the past. This

resemblesmore to the function approximation approach than

the forecasting one. However, when dealing with some

actual temporal estimations, the complexity of the problem

becomes much greater. Furthermore, the lack of additional

input data makes the specific task even more demanding.

In addition, another characteristic of the proposed NAR

model that should be taken under consideration refers to its

ability to learn and adapt to the data of the target system.

Even when there is no available a sufficient amount of data

in order to fully describe the local system behavior, the

designed NAR can adapt over time to the current condi-

tions. Whenever a certain amount of information is gath-

ered, the specific model can be retrained in order to

assimilate the newly acquired datasets. This characteristic

makes it suitable for use in remote areas, where previous

weather data are usually scarce.

Finally, as a future work, some additional NN architec-

tures could be studied. Furthermore, the adoption of hybrid

artificial intelligence systems could be also considered.

Additionally, another significant task is the hardware

implementation of the designed NAR and its integration to

the available HYRES. In specific, the hardware implemen-

tation of the proposer NAR in a Field Programmable Gate

Array (FPGA) device could be proven advantageous in

terms of computational power, computational speedup, and

parallelization. Taking advantage of the inherent parallelism

of the proposed hardware chip, the outcome will be benefi-

cial for the computational performance of the designed NAR

as also for the proposed power management strategy. Con-

sequently, these implementations could be considered as

modules of a generic system that will work autonomously

providing all the requested functionality in a real-time

fashion. In view of the foregoing and as a preliminary

approach and proof of concept, the proposed RNN has been

already implemented with some relaxations in a 16-bit PIC

microprocessor with prominent features that helps us to

speed up the learning and forecasting process of the designed

RNN. Nevertheless, more work is requested to proceed with

the final hardware implementation, and this should be con-

sidered part of a future work.
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