

Determining Collisions between Moving Spheres for Distributed Virtual
Environments

Kier Storey, Fengyun Lu, Graham Morgan

School of Computing Science
Newcastle University, Newcastle upon Tyne, NE1 7RU, UK

Telephone: + 44 191 222 7983, Fax: + 44 191 222 8232
E-mail: {Kier.Storey, Fengyun.Lu, Graham.Morgan}@newcastle.ac.uk

Abstract

We present an approach to collision detection that

is appropriate for satisfying the requirements of
interest management schemes used in distributed
virtual environments. Such environments are
characterized by their distributed deployment over a
number of nodes connected via a computer network.
The aim of an interest management scheme is to
identify when objects that populate a simulation
supported by a distributed virtual environment (objects
could be hosted on different nodes) should be
interacting via message exchange while preventing
objects that should not be interacting from exchanging
messages. The approach to collision detection
presented in this paper produces accurate results when
determining object interactions. Furthermore, we
present variations on our approach that exploit any
coherence that may exist in a simulation to provide a
solution that may scale for large numbers of objects.

1. Introduction

Applications that simulate some geographical model
populated with moving objects require collision
detection algorithms to identify when objects collide.
A number of these applications allow a user to interact
with a simulation, and possibly other users, in real-
time. Such applications have been used for training
purposes [2], computer supported collaborative work
(CSCW) [1] [4] and social play [3]. These applications
require collisions to be identified between all objects in
a timely fashion. Satisfying this requirement ensures
there exists no collisions that go undetected by the
application. Simulations may contain thousands of
objects, making the delivery of real-time collision
detection a challenging problem. A further
complication introduced by many applications is the
inability to predict accurately the position and
orientation of objects in advance due to the non-
predictive nature of object movements, ruling out the

ability to solve collision detection as a function of
time.

Collision detection is an important requirement when
applications present a simulation of moving solid
objects. Assuming the simulation is an approximation
of some real-world location, the ability to view objects
as solid is essential for promoting the validity of the
simulation. Solid objects should not share the same
area of the virtual world. In this scenario, collision
detection and response algorithms present a more
realistic simulation to users. However, the modelling
of solid objects may not be the only time an application
may require a collision detection algorithm.

Distributed Virtual Environments (DVEs) provide a
geographical representation of a virtual world that may
be navigated by geographically dispersed users. Users
may interact with each other and the virtual world in
real-time. Objects that populate a simulation supported
by a DVE may reside on different nodes, requiring
objects to participate in message exchange (possibly
across computer networks such as the Internet) in order
to ensure objects are aware of each other’s actions
(e.g., vector position updates as a result of object
movement). Propagating actions to all objects is not
scalable due to the processing overheads associated to
message exchange and delays imposed on message
delivery by the underlying network. Therefore, limiting
the number of recipient objects associated to a message
is desirable. This may be achieved by identifying the
geographic area of a virtual world an object may exert
influence and limiting the sending of messages to only
those recipient objects that exist in the sender object’s
area of influence. This requires an approach to
collision detection that determines which objects
(likely recipients) are present in a sender object’s area
of influence. Unlike the modelling of solid objects,
objects are expected to exist within an area of
influence for some time. An approach to collision
detection is required that returns a set of objects
identifying the recipients for a sender object’s message
based on their shared occupation of the sender object’s
area of influence.

In this paper we present an approach to collision
detection which is well suited to satisfying the
requirements of a DVE. We attempt to satisfy real-time
requirements of a DVE by reducing the number of
comparisons needed to derive the sets of objects
identified as the recipient of a message.

The rest of the paper is organized as follows. In
section 2 we describe background and related work. In
section 3 we describe our approach to collision
detection. In section 4 we discuss the performance of
our approach and in section 5 we present our
conclusions.

2. Background and Related Work

Algorithms that compare all objects with all other

objects implement a brute force approach to collision
detection. Such an approach is an O(n2) problem and
satisfying collision detection requirements for large
numbers of objects may not be possible in real-time.
This problem has been well studied in the literature
and a number of algorithms have been proposed that
perform better than O(n2) [5] [6] [7] [8] [9].

Temporal coherence that exists in a simulation has
been exploited when determining collisions [8] [9]. An
application may exploit temporal coherence if the state
of a simulation does not change significantly between
consecutive state updates. For the purposes of collision
detection, this equates to objects moving only slightly
from one frame of animation to the next. Collision
detection based on axis aligned bounding boxes
(AABBs) using the sweep and prune approach is a well
known technique for exploiting coherence [9]. This is
achieved via the projection of the bounding box onto
the x, y and z axes with the sorting of the endpoints
allowing overlap to be detected separately on each
axis. If an AABB, say A1, has end points that come
after a different AABB’s, say A2’s, start points but
before A2’s end points on the x, y and z axes then A2
collides with A1. As the assumption is taken that
objects travel relatively small distances between
frames, coherence is exploited via the fact that the
points associated to AABBs may be sorted in near
linear time on each axis as the distribution of points
associated to AABBs along each axis are already
nearly sorted from the previous iteration of the
algorithm.

Spheres are commonly used in computer graphics for
modelling objects and exploiting coherence to reduce
the number of pairwise comparisons when determining
sphere collisions [10] [11]. In this paper we are
primarily interested in applying sphere based collision
detection techniques to aid in deriving scalable DVEs.

We assume a DVE represents a geographic (virtual)
space containing objects that may navigate such a

space. The DVE is deployed across geographically
separated nodes connected by an underlying network.
Each node may host a number of objects, their local
objects, with nodes responsible for informing each
other of the actions (e.g., movement) of local objects
via the exchange of messages across the network.
Limiting network traffic and unnecessary message
processing is desirable to achieve scalability. This may
be possible via the division of the virtual space, only
allowing a node, say N1, to exchange messages with
another node, say N2, when one or more objects hosted
by N1 coexist in the same division of virtual space as
one or more objects hosted by N2. Interest
management is the term commonly used to describe
restricted message dissemination between objects
using virtual space division. Interest management may
be classified into two categories: (i) region based [2];
(ii) aura based [12]. In the region based approach the
virtual world is commonly, but not always, divided
into well defined uniform sized regions that are static
in nature (i.e., their boundaries are defined at virtual
world creation time). The recipient of a message is
limited to only interested participants (i.e., reside
within the same, or neighbouring, region as the
sender). In the aura based approach each object is
associated to an aura that defines an area of the virtual
world over which an object may exert influence.
Ideally, an object may potentially communicate their
actions to only objects that fall within their influence.
An aura is commonly defined as a sphere.

The aura approach provides a basis for accurately
modelling the degree of influence between objects [13]
and provides a model for appropriate implementation
of an interest management scheme. However, in
practise the regionalisation approach tends to be
favoured as spatial sub-division collision detection
algorithms are well suited to their needs [5] [14] [15].
Successful implementation of the aura based approach
requires an approach to collision detection that is based
on spheres and also produces appropriate sets that
indicate which objects should be the recipient of a
message.

In this paper we present an approach to collision
detection that is suited to aura based interest
management schemes. Our approach reduces the
number of pairwise comparisons that brute force would
result in and provides appropriate sets indicating
potential recipients of a message. Furthermore, we
reduce the pairwaise comparisons still further by
exploiting coherence that exists in the simulation. We
describe two variations of our approach in which we
exploit coherence. Both of our variations exploit
coherence for improved performance with one of our
variations based on the well known sweep and prune

approach popular with AABB based collision detection
algorithms. Initial performance results look promising.

3. Collision Detection for DVEs

In this section we describe our approach to collision

detection. We explain how the properties of spheres
may be exploited to derive sets of intersecting spheres
(spheres that partially or fully share an area of the
virtual world) in fewer comparisons than would be
expected when using a brute force approach. We then
describe two enhancements that use coherence to speed
up the ability to derive sets of intersecting spheres and
reduce the number of comparison tests required to gain
such sets.

3.1 Expanding Sphere

We assume each object present in the virtual world to
be a sphere (for clarity we refer to spheres/auras as
objects from now on) with each object in the virtual
world a member of the set VR. A collision between two
objects, say Oa and Ob, is said to have occurred if Oa
and Ob intersect (i.e., there exists an area of the virtual
world that lies within the spheres of Oa and Ob). A
collision relation (CR) identifies a set of objects that
share, in part or fully, an area of the virtual world.
Therefore, an object that belongs to a collision relation,
say CRi, collides with every other object that belongs
to CRi. A collision relation may contain one or more
objects. A collision relation that contains only a single
object indicates that such an object does not collide
with any other object in the virtual world. These
collision relations provide the object groups that
dictate the appropriate recipients of a message for an
interest management implementation. A set SU
contains objects that are to be considered for collision;
hence SU contains a subset of objects in the virtual
world such that SU = {O1, O2, O3, …, On}. The
determination of this subset is arbitrary, but will
usually be equivalent to the full membership of VR at
the start of the process of determining collisions. When
an object, say Oa, from SU is considered for collision it
is said to be the object under consideration (OUC –
when an object, say Oa, becomes the object under
consideration we write Oa

OUC). A set SC contains the
collision relations between objects previously
identified as the OUC. A collision relation is an
element of set SC. For example, if SC = {{Oa, Ob,
Oc,Od}, {Oa,Oe}, {Of, Og}, {Oh}} we may state that SC
contains four collision relations that are made up from
the objects Oa, Ob, Oc, Od, Oe, Of, Og and Oh. A 2D
graphical representation of the collisions between these
objects is shown in figure 1 (the scheme is applicable

in 3D virtual worlds but we limit our diagrams to 2D
for clarity).

a

b

c
d

e

f

g

h

Figure 1 – Collision relations.

We now consider the identification of collision
relations in more detail. We base our approach on
determining if two spheres collide, say Oa and Ob, if
the distance separating Oa and Ob is less than the sum
of the radii of Oa and Ob. We assume an object’s
position vector and radius is known and may be
described as Opos and Orad respectively. Additionally,
our method also requires a CR to maintain position
vector and radius information (CRpos, CRrad). CRpos is
taken from the first object identified in the CR and
CRrad is also initially taken from the first object
identified in the CR when the CR is created (i.e., CR
only has one object within it). CRrad is re-evaluated
each time an object is added to a CR. Assume an
object, say Ox, is to be added to a CR, say CRi, the
value of CRi

rad is incremented using the following
method:

1. Let SD be the separating distance between
Ox

pos and CRi
pos.

2. If SD+Ox
rad is less than or equal to CRi

rad then
CRi

rad remains unchanged.
3. If SD+Ox

rad is greater than CRi
rad then let

CRi
rad become SD+Ox

rad.

a
b

c
d

e

f

CR1 = {Oa, Ob, Oc, Od}

CR2 = {Oa, Oe}

Figure 2 – Minimising comparisons via

collision relations.

When CRrad remains unchanged after the addition of
an object (as in 2 above) the new object lies fully
within CRrad (this would be the case when adding Oe to
the collision relation that contains Oa to make CR =

{Oa, Oe} in the example shown in figure 1). When
CRrad is changed (as in 3 above) the new object is not
fully within CRrad and therefore we must extend CRrad
to encompass the new object (this would be the case
when adding Od to the collision relation that contains
Oa, Ob and Oc to make CR = {Oa, Ob, Oc, Od} in the
example shown in figure 1). Extending CRrad in this
manner provides an opportunity to reduce the number
of comparisons that need to be made in determining
which objects intersect. In figure 2 we show how this
can be possible by further considering the example
shown in figure 1 when determining the collision
relations of Of (Of is the OUC). Assume we have
already deduced collision relations and calculated their
associated CRrad values for the first five objects
considered in alphabetical order. The dotted circles in
the diagram identify the expanded radii representing
CR1 and CR2 (CR2 is actually the true radius of Oa). It
is clear that Of does not intersect CR1 and CR2.
Therefore Of cannot intersect with any of the objects
that lie within CR1 and CR2. By comparing Of with CR1
and CR2 (two comparisons), we do not need to compare
Of with any of the objects within CR1 and CR2 (five
comparisons).

Pseudo code main collision detection algorithm:
Algorithm CollisionDetection
Inputs SU : Set of Objects;
Returns SC : Set of CRs // CR – Collision Relation;
Variables Ox, Oi: Object; CL, CRy: CRs; newCRs: Set of CRs

Begin
 SC:= ∅;

 for each Ox ∈ SU do
 newCRs:= ∅;

 for each CRy ∈ SC do
 if (Ox collides with CRy) then
 CL:= ∅;
 /** Find colliding objects in CR **/
 for each Oi ∈ CRy do
 if (Ox collides with Oi) then CL:=CL ∪ {Oi} fi
 od
 /** Remove CRy if complete collision, add later **/
 if (card CL = card CRy) then SC:=SC\{CRy} fi
 if (CL ≠ ∅) then
 /** Turn CL into a CR by adding Ox **/
 CL:=CL ∪ {Ox};

 /** Add to set of new CRs for Ox **/
 /** Check for sub/super sets in newCRs **/
 newCRs:= addCR(CL, newCRs);
 fi
 fi
 od
 /** Add new CRs for Ox to SC **/
 if (newCRs = ∅) then /* Add singleton CR */
 SC:= SC ∪ {{Ox}};
 else
 SC:= SC ∪ newCRs;

 fi
 od
 return SC;
End

Figure 3 – Pseudo code describing algorithm.

We now describe the algorithm required for
determining all collision relations from the set of
objects contained within VR. SU is initialised to be the
equivalent of VR. Each element in SU is considered in
turn and identified as the OUC. The OUC is compared
with each CR in SC (an element of the set SC is a CR
which has fully or partially been deduced during an
iteration of the algorithm). If the OUC has not collided
with any CRs then the OUC is appended to SC as a
new CR. If SC is empty (i.e., this is the first member of
SU to be identified as the OUC) then the OUC is
immediately placed in SC. When a collision between
the OUC and a CR, say CRi, is identified then each
member object of CRi is compared to the OUC to
identify OUC/object collisions. If the OUC collides
with every object in CRi then CRi

rad is updated and the
OUC is appended to CRi. If the OUC does not collide
with any objects within CRi then CRi remains
unchanged. If the OUC collides with a strict subset of
objects in CRi then this is potentially a new collision
relation and is placed in a temporary set collision list
(CL). Each time the OUC is compared to a different
CR for collision purposes the CL is initialised to empty
set. Therefore, after the OUC has been compared with
all existing objects within a CR then a CL may contain
a new CR to be appended to SC. Duplicate entries are
not allowed in CL (this prevents duplicate CRs from
been appended to SC). The pseudo code representing
the algorithm is presented in figure 3. For clarity, the
duplication test is not shown as it is located in the
function addCR(CL, newCR).

3.2 Ordered Collision Relations

In the expanding sphere algorithm just described we
consider the order in which members of the set SU
become the OUC to be arbitrary. We now impose
ordering on the set SU to derive a sequence (SU*) for
dictating the order in which members of SU become
the OUC in an effort to take advantage of coherence.
Ideally, we require CRs with the largest cardinality to
be identified early in the execution of the algorithm to
ensure the least number of comparisons to derive SC.
This happens in the example in figure 2, where the CRs
are formed in the order of their cardinality (largest to
smallest) when considering objects in alphabetical
order. We may show the benefit of early identification
of CRs with the largest cardinality by considering a
new ordering of OUC identification in figure 2. As Oh
is considered the OUC last then three comparisons are
required to rule out the need to compare Oh with all the
other objects (7 comparisons). However, if we change
the ordering only slightly and assume Oh is considered
the OUC first then all other objects will be compared

with Oh as they assume the role of the OUC (7
comparisons).

The ordering of when members of SU* become the
OUC is based on the cardinality of the CRs derived
from the previous iteration of the expanding sphere
algorithm. For this purpose the set SC is ordered based
on the cardinality of CRs from largest to smallest to
form SC*. Once ordered, each CR in SC* is considered
in turn, with the object membership of a CR added to
SU*. As an object may occur in multiple CRs, there is a
need to ensure that if an object already exists in SU*
(previously added) it is not added again. This
guarantees that an object does not become the OUC
more than once during the same iteration of the
algorithm (this could result in repeat comparisons).

The first iteration of the algorithm in any given run
will have to rely on SU and not the ordered sequence
SU* to dictate the order in which objects become the
OUC (as there is no SC* from a previous iteration of
the algorithm on which to base the ordering of
elements in SU*). However, after the completion of the
first iteration and the deriving of SC then SC* may be
derived via a sorting algorithm. Assuming a random
distribution of CRs throughout SC (as expected with an
SU of arbitrary ordering dictating the ordering of when
objects become the OUC in the previous iteration) then
an appropriate algorithm such as Quicksort that
operates in O(n logn) is required. However, in further
iterations of the algorithm the coherence will become
evident (as we assume objects move only small
distances between each frame) and an expectation
arises that the SC created is not a random distribution
but closely resembles the SC* from the previous
iteration. Therefore, a more appropriate sorting
algorithm would be Insertion sort as such sorting
algorithms typically perform in O(n) for nearly sorted
sets of data.

3.3 Ordered Axis

We now attempt to exploit coherence based on the
sweep and prune approach. Usually, in this approach
AABBs representing each object are checked for
overlap. As we are dealing with spheres we have to
alter the approach used for AABBs to suite our needs.
However, the principle notion of sorting a nearly
sorted list (axis) to exploit coherence is still the same.

A single axis is chosen to provide the basis of our
algorithm. This choice is arbitrary but could be
dictated by the nature of the simulation (e.g., the x or
the y axis may be more suitable than the z axis for
objects commonly located on or near flat terrain). For
ease of explanation we chose the x axis to use in the
examples presented here. The start and end points of an
object, say Oa, are determined via Oa

pos – Oa
rad and

Oa
pos + Oa

rad respectively. All x axis start and end
points associated to all objects in SU are placed in the
sequence OS* and ordered in ascending order. It is now
possible to identify which objects overlap in the x axis
in the same manner as described in sweep and prune
algorithms. Objects that share overlap in the x axis are
determined to be members of an overlap relation (OR).
We continue the example we have used throughout the
paper and show in figure 4 the overlap area that is used
to determine ORs. There is a relationship between the
membership of ORs and CRs: an OR may be
equivalent to a CR or a superset of a CR. From this
observation we may assume that a CR may be derived
by only considering a single OR. Therefore, we may
apply expanding sphere, or the ordered CR expanding
sphere, to an OR to derive the CRs. This may provide
an alternative way to reduce the number of pairwise
comparisons required from the previous two
algorithms.

a

b

c
d

e

f

g

h

OR1 OR2 OR3
{d, b, a, c} {a, e} {f, g, h}

Figure 4 – Identifying overlap relations.

An ordered sequence of ORs (ORS*) may be derived
from OS*. Each OR in ORS* is inspected in turn and
associated CRs are derived. Each inspection of an OR
is simply a run of either one of the previous expanding
sphere algorithms, with the OR assuming the role of
SU. In principle, we are applying an expanding sphere
algorithm on distinct sets (defined by ORS*) of objects
within the virtual world. Unfortunately, simply
applying expanding sphere in this manner creates a
problem. We alter our example slightly to explain this
problem.

In figure 5 we have introduced three new objects (Oi,
Oj and Ok). The introduction of these new objects has
resulted in four ORs. Let us assume we have applied
the expanding sphere algorithm to OR1 and OR2 and
derived CR1 = {Od, Ob, Oa, Oc} and CR2 = {Oa, Oe, Oj,
Oi}. We now apply expanding sphere to OR3.
Following the iteration of the expanding sphere
algorithm taking OR3 as the SU (input) we derive two
CRs (CR3 = {Oi, Oj}, CR4 = {Ok}). Unfortunately, CR3
is a subset of CR2 and should not exist as a collision
relation in its own right. Solving this problem is trivial

and just requires that an object may not assume the
identity of the OUC more than once during an iteration
of the algorithm (across all ORs).

a

b

c
d

e

f

g

h

OR1 OR2 OR4
{d, b, a, c} {a, e, i, j} {f, g, h}

i

j

k

OR3
{ i, j, k}

Figure 5 – Exploiting already determined CRs.

We may enhance this algorithm still further (reducing
pairwise comparisons) by utilising CRs produced from
earlier ORs. Applying expanding sphere to OR3 with
the remit that neither Oi nor Oj may become the OUC
results in two comparisons (comparing Ok (the OUC)
with Oj then Oi) resulting in CR3 = {Ok}. This
comparison may be reduced to one if we allow Ok to be
compared with CR2 (as Oi and Oj are both in CR2). If
we can dismiss CR2 as not colliding with Ok then we
may assume Ok does not collide with Oi or Oj. To
accommodate this, a set of CRs may be maintained
with which the OUC may be compared with. Such a
set may only contain CRs that have members which
also exist in the same OR as the OUC. In our example,
if the OUC is Ok then this set would only contain CR2
(as Oi and Oj are not present in any other CR).

4. Performance Evaluation

Experiments were carried out to determine the
performance of the expanding sphere algorithm,
expanding sphere with ordered CRs and expanding
sphere with ordered x axis. To enable comparative
analysis of the performance figures, a brute force
collision detection algorithm was implemented.
However, it must be noted that the brute force
algorithm does not provide the CRs as our algorithms
do, this would require further processing above and
beyond the brute force algorithm.

There are two performance measures which are of
interest: (i) Number of comparisons; (ii) Number of
frames achieved. The number of comparisons is a
count of the number of pairwise intersection tests
required to determine appropriate CRs for all objects
between two consecutive frames of animation (brute
force just provides pairings). This measurement may
not be influenced by implementation details (e.g.,
hardware configuration, memory management). The

number of frames achieved identifies the time taken for
all CRs to be identified (a frame equates to one
iteration of the collision detection algorithm). This
measurement is influenced by the processing overhead
of updating object positions. The time required for
drawing a frame of animation is not a measurement we
are interested in so is zero in our experiments (i.e., we
draw no graphics).

We are interested in the scalability of our algorithms.
Therefore, object numbers were increased gradually
from 1000 to 4000 with the number of comparisons
and time taken to derive CRs recorded at each
increment. The experiments were repeated with 4
different levels of coverage via the resizing of the
virtual world. Each level identifies the percentage of
the virtual world contained within objects given that no
two objects overlap (low density (1%), medium density
(5%), high density (10%), and very high density
(20%)). Experiments were conducted on a Pentium III
700MHz PC with 512MB RAM running Red Hat
Linux 7.2 and all algorithms were implemented in C.

An attempt is made to provide realistic movement of
objects within the virtual world. A number of targets
(T) are positioned within the virtual world that objects
(O) travel towards. Each target has the ability to
relocate during the execution of an experiment.
Relocation of targets is determined after the elapse of
some random time (between Tt

min and Tt
max) from the

time the previous relocation event occurred.
Furthermore, objects may change their targets in the
same manner (random time between Ot

min and Ot
max).

Given that the number of targets is less than the
number of objects and Tt

min, Tt
max, Ot

min and Ot
max are

set appropriately, objects will cluster and disperse
throughout the experiment. The objects are uniform in
size and their size does not change throughout the
experiments. Objects may pass through each other and
may move freely in any direction.

Graph 1

Comparisons (units of 10, 000) - 1% Covereage

0
100
200
300
400
500
600
700
800
900

1000 2000 3000 4000

Number of Objects

N
um

be
r

of
 C

om
pa

ri
so

ns

Brute Force
Expanding Spheres
Ordered CRs
Ordered Axis

Graph 2
Comparisons (units of 10,000) - 5% Coverage

0
100
200
300
400
500
600
700
800
900

1000 2000 3000 4000

Number of Objects

N
um

be
r

of
 C

om
pa

ri
so

ns

Brute Force
Expanding Spheres
Ordered CRs
Ordered Axis

Graph 3
Comparisons (units of 10, 000) - 10% Coverage

0
100
200
300
400
500
600
700
800
900

1000 2000 3000 4000

Number of Objects

N
um

be
r

of
 C

om
pa

ri
so

ns

Brute Force
Expanding Spheres
Ordered CRs
Ordered Axis

Graph 4

Comparisons (units of 10, 000) - 20% Coverage

0
100
200
300
400
500
600
700
800
900

1000 2000 3000 4000

Number of Objects

N
um

be
r

of
 C

om
pa

ri
so

ns Brute Force
Expanding Spheres
Ordered CRs
Ordered Axis

Graphs 1 through 4 identify the number of

comparisons required to determine all CRs. The first
observation to be made is that all variations of
expanding sphere outperform brute force. This
improved performance over brute force becomes more
evident when the number of objects and coverage
increases. From these observations, we may assume
that our approach to determining CRs appear
successful in reducing pairwise comparisons compared
to brute force. When coverage is low (1%) we may
assume that CRs are of a lower cardinality than when
coverage is higher. Therefore, as coverage increases
there is more opportunity to dismiss comparisons as
CRs are more likely to be larger. This explanation
appears appropriate for the similar performance
expanding sphere and ordered CRs has compared to
brute force.

The ordered axis variation of expanding sphere
outperforms all the other approaches by lowering the

number of comparisons significantly. Ordered axis
requires approximately 12% of the comparisons
associated to brute force to derive CRs. Furthermore,
the rate of increase in comparisons of ordered axis is
lower than all other approaches, appearing to scale
nearly linearly.

Graph 5
Frames - 1 % Coverage

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1000 2000 3000 4000

Number of Objects

Se
co

nd
s

pe
r

Fr
am

e

Brute Force
Expanding Spheres
Ordered CRs
Ordered Axis

Graph 6

Frames - 5% Coverage

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1000 2000 3000 4000

Number of Objects

Se
co

nd
s

pe
r

Fr
am

e

Brute Force
Expanding Spheres
Ordered CRs
Ordered Axis

Graph 7

Frames - 10% Coverage

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1000 2000 3000 4000

Number of Objects

Se
co

nd
s

pe
r

Fr
am

e

Brute Force
Expanding Spheres
Ordered CRs
Ordered Axis

Graph 8

Frames - 20% Coverage

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1000 2000 3000 4000

Number of Objects

Se
co

nd
s

pe
r

Fr
am

e

Brute Force
Expanding Spheres
Ordered CRs
Ordered Axis

Graphs 5 through 8 identify how the number of
seconds per frame scales with increasing numbers of

objects. The expanding sphere and ordered CR
variation of expanded sphere perform similar or
slightly worse than brute force in all degrees of
coverage. This indicates that expanding sphere is
computationally expensive. Even though comparisons
are lower in number (as identified in the graphs 1
through 4), the time taken to execute the algorithm is
not much better than brute force. However, expanding
sphere is producing sets of CRs which brute force is
not and therefore this is not a fair comparison. A more
promising observation is the performance of the
ordered axis variation of expanding sphere. The
ordered axis approach appears to scale nearly linearly.
Even at 20% coverage, where there is a high
expectation of collision and therefore more CRs, the
ordered axis variation performs better than the other
approaches.

5. Conclusions

We have presented an approach to collision detection

that, we believe, is well suited to the aura based
interest management schemes used in DVEs.
Furthermore, we believe our algorithms to be suited to
collision detection for non-solid moving spheres in
more general cases of graphics processing.

Two variations of our approach that exploit
coherence have been developed. We have shown that
we can provide collision detection that scales nearly
linearly when object numbers are increased beyond
1000. We are currently working on a distributed
implementation of our algorithms for integration into
our own DVE middleware services [16].

Acknowledgements

This work is funded by the UK EPSRC under grant
GR/S04529/01: “Middleware Services for Scalable
Networked Virtual Environments”. The authors would
like to thank Dr. J. Steggles for his advice on algorithm
descriptions.

References

[1] C. Greenhalgh, and S. Benford, “MASSIVE: A Virtual
Reality System for Tele-conferencing”, ACM Transactions on

Computer Human Interfaces (TOCHI), 2(3):239-261, September
1995
[2] D. Miller, J. A. Thorpe. “SIMNET: The advent of simulator
networking”, In Proceedings of the IEEE 83(8), p 1114-1123,
August 1995.
[3] T. Sweeney, “Unreal Networking Architecture”,
http://unreal.epicgames.com/Network.htm, as viewed August
2003.
[4] C. Carlssom, O. Hagsand, “DIVE – A platform for multi-user
VE”, Computer & Graphics 17(6), p 663-669, 1993
[5] M. H. Overmars, “Point Location in Fat Subdivisions”,
Inform. Proc. Lett., 44:261-265, 1992
[6] P. M. Hubbard, “Collision Detection for Interactive Graphics
Applications”, IEEE Transactions on Visualization and
Computer Graphics, 1(3) 218-230. 1995
[7] S. Gottschalk, M, C. Lin, D. Monocha, “OBB-Tree: A
Hierarchical Structure for Rapid Interference Detection”,
SIGGRAPH 93, p247-254, USA, 1993
[8] M. C. Lin, “Efficient Collision Detection for Animation and
Robotics”, In proceedings of the third Eurographics Workshop
on Animation and Simulation, Cambridge, England, 1991
[9] J. D. Cohen, M. C. Lin, D. Manocha, M. K. Ponamgi, “I-
COLLIDE: An Interactive and Exact Collision Detection System
for Large-Scale Environments”, In Proceedings of the 1995
symposium on Interactive 3D graphics, pages 189–196, 218.
ACM, Press, 1995
[10] D. Baraff, “Curved Surfaces and Coherence for Non-
Penetrating Rigid Body Simulation”, Computer Graphics,
24(4):19-28, August 1990
[11] D. J. Kim, L. J. Guibas, S. Y. Shin, “Fast Collision
Detection among Multiple Moving Spheres”, IEEE Transactions
on Visualization and Computer Graphics, 4(3):230--242, 1998.
[12] C. Greenhalgh, S. Benford, “MASSIVE: a distributed
virtual reality system incorporating spatial trading”, Proceedings
IEEE 15th International Conference on distributed computing
systems (DCS 95), Vancouver, Canader, June 1995.
[13] C, Greenhalgh, S, Benford, “Boundaries, Awareness and
Interaction in Collaborative Virtual Environments”, 6th
Workshop on Enabling Technologies Infrastructure for
Collaborative Enterprises (WET-ICE '97), USA, 1997
[14] M. S. Paterson, F. F. Yao, “Efficient Binary Space
Partitions for Hidden-Surface Removal and Solid Modeling”,
Disc. Comput. Geom., 5, p 485-503, 1990
[15] S. Singhal, M. Zydra, “Networked Virtual Environments,
Design and Implementation”, Addison Wesley, 1999
[16] G. Morgan, F. Lu, “Predictive Interest Management: An
Approach to Managing Message Dissemination for Distributed
Virtual Environments”, Richmedia2003, Switzerland, 2003

