
 
 

Determining Collisions between Moving Spheres for Distributed Virtual 
Environments 

 
Kier Storey, Fengyun Lu, Graham Morgan 

School of Computing Science 
Newcastle University, Newcastle upon Tyne, NE1 7RU, UK 

Telephone: + 44 191 222 7983, Fax: + 44 191 222 8232 
E-mail: {Kier.Storey, Fengyun.Lu, Graham.Morgan}@newcastle.ac.uk 

 
Abstract 

 
We present an approach to collision detection that 

is appropriate for satisfying the requirements of 
interest management schemes used in distributed 
virtual environments. Such environments are 
characterized by their distributed deployment over a 
number of nodes connected via a computer network. 
The aim of an interest management scheme is to 
identify when objects that populate a simulation 
supported by a distributed virtual environment (objects 
could be hosted on different nodes) should be 
interacting via message exchange while preventing 
objects that should not be interacting from exchanging 
messages. The approach to collision detection 
presented in this paper produces accurate results when 
determining object interactions. Furthermore, we 
present variations on our approach that exploit any 
coherence that may exist in a simulation to provide a 
solution that may scale for large numbers of objects. 
 
1. Introduction 
 

Applications that simulate some geographical model 
populated with moving objects require collision 
detection algorithms to identify when objects collide. 
A number of these applications allow a user to interact 
with a simulation, and possibly other users, in real-
time. Such applications have been used for training 
purposes [2], computer supported collaborative work 
(CSCW) [1] [4] and social play [3]. These applications 
require collisions to be identified between all objects in 
a timely fashion. Satisfying this requirement ensures 
there exists no collisions that go undetected by the 
application. Simulations may contain thousands of 
objects, making the delivery of real-time collision 
detection a challenging problem. A further 
complication introduced by many applications is the 
inability to predict accurately the position and 
orientation of objects in advance due to the non-
predictive nature of object movements, ruling out the 

ability to solve collision detection as a function of 
time.  

Collision detection is an important requirement when 
applications present a simulation of moving solid 
objects. Assuming the simulation is an approximation 
of some real-world location, the ability to view objects 
as solid is essential for promoting the validity of the 
simulation. Solid objects should not share the same 
area of the virtual world. In this scenario, collision 
detection and response algorithms present a more 
realistic simulation to users. However, the modelling 
of solid objects may not be the only time an application 
may require a collision detection algorithm. 

Distributed Virtual Environments (DVEs) provide a 
geographical representation of a virtual world that may 
be navigated by geographically dispersed users. Users 
may interact with each other and the virtual world in 
real-time. Objects that populate a simulation supported 
by a DVE may reside on different nodes, requiring 
objects to participate in message exchange (possibly 
across computer networks such as the Internet) in order 
to ensure objects are aware of each other’s actions 
(e.g., vector position updates as a result of object 
movement). Propagating actions to all objects is not 
scalable due to the processing overheads associated to 
message exchange and delays imposed on message 
delivery by the underlying network. Therefore, limiting 
the number of recipient objects associated to a message 
is desirable. This may be achieved by identifying the 
geographic area of a virtual world an object may exert 
influence and limiting the sending of messages to only 
those recipient objects that exist in the sender object’s 
area of influence. This requires an approach to 
collision detection that determines which objects 
(likely recipients) are present in a sender object’s area 
of influence. Unlike the modelling of solid objects, 
objects are expected to exist within an area of 
influence for some time. An approach to collision 
detection is required that returns a set of objects 
identifying the recipients for a sender object’s message 
based on their shared occupation of the sender object’s 
area of influence. 



In this paper we present an approach to collision 
detection which is well suited to satisfying the 
requirements of a DVE. We attempt to satisfy real-time 
requirements of a DVE by reducing the number of 
comparisons needed to derive the sets of objects 
identified as the recipient of a message. 

The rest of the paper is organized as follows. In 
section 2 we describe background and related work. In 
section 3 we describe our approach to collision 
detection. In section 4 we discuss the performance of 
our approach and in section 5 we present our 
conclusions. 
  
2. Background and Related Work 

 
Algorithms that compare all objects with all other 

objects implement a brute force approach to collision 
detection. Such an approach is an O(n2) problem and 
satisfying collision detection requirements for large 
numbers of objects may not be possible in real-time. 
This problem has been well studied in the literature 
and a number of algorithms have been proposed that 
perform better than O(n2) [5] [6] [7] [8] [9].  

Temporal coherence that exists in a simulation has 
been exploited when determining collisions [8] [9]. An 
application may exploit temporal coherence if the state 
of a simulation does not change significantly between 
consecutive state updates. For the purposes of collision 
detection, this equates to objects moving only slightly 
from one frame of animation to the next. Collision 
detection based on axis aligned bounding boxes 
(AABBs) using the sweep and prune approach is a well 
known technique for exploiting coherence [9]. This is 
achieved via the projection of the bounding box onto 
the x, y and z axes with the sorting of the endpoints 
allowing overlap to be detected separately on each 
axis. If an AABB, say A1, has end points that come 
after a different AABB’s, say A2’s, start points but 
before A2’s end points on the x, y and z axes then A2 
collides with A1. As the assumption is taken that 
objects travel relatively small distances between 
frames, coherence is exploited via the fact that the 
points associated to AABBs may be sorted in near 
linear time on each axis as the distribution of points 
associated to AABBs along each axis are already 
nearly sorted from the previous iteration of the 
algorithm. 

Spheres are commonly used in computer graphics for 
modelling objects and exploiting coherence to reduce 
the number of pairwise comparisons when determining 
sphere collisions [10] [11]. In this paper we are 
primarily interested in applying sphere based collision 
detection techniques to aid in deriving scalable DVEs.  

We assume a DVE represents a geographic (virtual) 
space containing objects that may navigate such a 

space. The DVE is deployed across geographically 
separated nodes connected by an underlying network. 
Each node may host a number of objects, their local 
objects, with nodes responsible for informing each 
other of the actions (e.g., movement) of local objects 
via the exchange of messages across the network. 
Limiting network traffic and unnecessary message 
processing is desirable to achieve scalability. This may 
be possible via the division of the virtual space, only 
allowing a node, say N1, to exchange messages with 
another node, say N2, when one or more objects hosted 
by N1 coexist in the same division of virtual space as 
one or more objects hosted by N2.  Interest 
management is the term commonly used to describe 
restricted message dissemination between objects 
using virtual space division. Interest management may 
be classified into two categories: (i) region based [2]; 
(ii) aura based [12]. In the region based approach the 
virtual world is commonly, but not always, divided 
into well defined uniform sized regions that are static 
in nature (i.e., their boundaries are defined at virtual 
world creation time). The recipient of a message is 
limited to only interested participants (i.e., reside 
within the same, or neighbouring, region as the 
sender). In the aura based approach each object is 
associated to an aura that defines an area of the virtual 
world over which an object may exert influence. 
Ideally, an object may potentially communicate their 
actions to only objects that fall within their influence. 
An aura is commonly defined as a sphere. 

The aura approach provides a basis for accurately 
modelling the degree of influence between objects [13] 
and provides a model for appropriate implementation 
of an interest management scheme. However, in 
practise the regionalisation approach tends to be 
favoured as spatial sub-division collision detection 
algorithms are well suited to their needs [5] [14] [15]. 
Successful implementation of the aura based approach 
requires an approach to collision detection that is based 
on spheres and also produces appropriate sets that 
indicate which objects should be the recipient of a 
message. 

In this paper we present an approach to collision 
detection that is suited to aura based interest 
management schemes. Our approach reduces the 
number of pairwise comparisons that brute force would 
result in and provides appropriate sets indicating 
potential recipients of a message. Furthermore, we 
reduce the pairwaise comparisons still further by 
exploiting coherence that exists in the simulation. We 
describe two variations of our approach in which we 
exploit coherence. Both of our variations exploit 
coherence for improved performance with one of our 
variations based on the well known sweep and prune 



approach popular with AABB based collision detection 
algorithms. Initial performance results look promising. 

 
3. Collision Detection for DVEs 

 
In this section we describe our approach to collision 

detection. We explain how the properties of spheres 
may be exploited to derive sets of intersecting spheres 
(spheres that partially or fully share an area of the 
virtual world) in fewer comparisons than would be 
expected when using a brute force approach. We then 
describe two enhancements that use coherence to speed 
up the ability to derive sets of intersecting spheres and 
reduce the number of comparison tests required to gain 
such sets. 
 
3.1 Expanding Sphere 
 

We assume each object present in the virtual world to 
be a sphere (for clarity we refer to spheres/auras as 
objects from now on) with each object in the virtual 
world a member of the set VR. A collision between two 
objects, say Oa and Ob, is said to have occurred if Oa 
and Ob intersect (i.e., there exists an area of the virtual 
world that lies within the spheres of Oa and Ob). A 
collision relation (CR) identifies a set of objects that 
share, in part or fully, an area of the virtual world. 
Therefore, an object that belongs to a collision relation, 
say CRi, collides with every other object that belongs 
to CRi. A collision relation may contain one or more 
objects. A collision relation that contains only a single 
object indicates that such an object does not collide 
with any other object in the virtual world. These 
collision relations provide the object groups that 
dictate the appropriate recipients of a message for an 
interest management implementation. A set SU 
contains objects that are to be considered for collision; 
hence SU contains a subset of objects in the virtual 
world such that SU = {O1, O2, O3, …, On}. The 
determination of this subset is arbitrary, but will 
usually be equivalent to the full membership of VR at 
the start of the process of determining collisions. When 
an object, say Oa, from SU is considered for collision it 
is said to be the object under consideration (OUC – 
when an object, say Oa, becomes the object under 
consideration we write Oa

OUC).  A set SC contains the 
collision relations between objects previously 
identified as the OUC. A collision relation is an 
element of set SC. For example, if SC = {{Oa, Ob, 
Oc,Od}, {Oa,Oe}, {Of, Og}, {Oh}} we may state that SC 
contains four collision relations that are made up from 
the objects Oa, Ob, Oc, Od, Oe, Of, Og and Oh. A 2D 
graphical representation of the collisions between these 
objects is shown in figure 1 (the scheme is applicable 

in 3D virtual worlds but we limit our diagrams to 2D 
for clarity).  
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Figure 1 – Collision relations. 

 

We now consider the identification of collision 
relations in more detail. We base our approach on 
determining if two spheres collide, say Oa and Ob, if 
the distance separating Oa and Ob is less than the sum 
of the radii of Oa and Ob. We assume an object’s 
position vector and radius is known and may be 
described as Opos and Orad respectively. Additionally, 
our method also requires a CR to maintain position 
vector and radius information (CRpos, CRrad). CRpos is 
taken from the first object identified in the CR and 
CRrad is also initially taken from the first object 
identified in the CR when the CR is created (i.e., CR 
only has one object within it). CRrad is re-evaluated 
each time an object is added to a CR. Assume an 
object, say Ox, is to be added to a CR, say CRi, the 
value of CRi

rad is incremented using the following 
method: 
 

1. Let SD be the separating distance between 
Ox

pos and CRi
pos.  

2. If SD+Ox
rad is less than or equal to CRi

rad then 
CRi

rad remains unchanged. 
3. If SD+Ox

rad is greater than CRi
rad then let 

CRi
rad become SD+Ox

rad. 
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CR2 =  {Oa, Oe} 

 
Figure 2 – Minimising comparisons via 

collision relations. 
 

When CRrad remains unchanged after the addition of 
an object (as in 2 above) the new object lies fully 
within CRrad (this would be the case when adding Oe to 
the collision relation that contains Oa to make CR = 



{Oa, Oe} in the example shown in figure 1). When 
CRrad is changed (as in 3 above) the new object is not 
fully within CRrad and therefore we must extend CRrad 
to encompass the new object (this would be the case 
when adding Od to the collision relation that contains 
Oa, Ob and Oc to make CR = {Oa, Ob, Oc, Od} in the 
example shown in figure 1). Extending CRrad in this 
manner provides an opportunity to reduce the number 
of comparisons that need to be made in determining 
which objects intersect. In figure 2 we show how this 
can be possible by further considering the example 
shown in figure 1 when determining the collision 
relations of Of (Of is the OUC). Assume we have 
already deduced collision relations and calculated their 
associated CRrad values for the first five objects 
considered in alphabetical order. The dotted circles in 
the diagram identify the expanded radii representing 
CR1 and CR2 (CR2 is actually the true radius of Oa). It 
is clear that Of does not intersect CR1 and CR2. 
Therefore Of cannot intersect with any of the objects 
that lie within CR1 and CR2. By comparing Of with CR1 
and CR2 (two comparisons), we do not need to compare 
Of with any of the objects within CR1 and CR2 (five 
comparisons). 

 
Pseudo code main collision detection algorithm: 
Algorithm CollisionDetection 
Inputs  SU : Set of Objects;  
Returns SC : Set of CRs // CR – Collision Relation; 
Variables  Ox, Oi: Object; CL, CRy: CRs; newCRs: Set of CRs 
 
Begin 
 SC:= ∅;  

 for each Ox ∈ SU do 
  newCRs:= ∅; 

  for each CRy ∈ SC do 
   if (Ox collides with CRy) then  
    CL:= ∅; 
    /** Find colliding objects in CR **/ 
    for each Oi ∈ CRy do 
     if (Ox collides with Oi) then CL:=CL ∪ {Oi} fi 
    od 
    /** Remove CRy if complete collision, add later **/ 
    if (card CL = card CRy) then SC:=SC\{CRy} fi 
    if (CL ≠ ∅) then  
     /** Turn CL into a CR by adding Ox **/ 
     CL:=CL ∪ {Ox}; 

     /** Add to set of new CRs for Ox **/ 
     /** Check for sub/super sets in newCRs **/ 
     newCRs:= addCR(CL, newCRs); 
    fi 
   fi  
  od 
  /** Add new CRs for Ox to SC **/ 
  if (newCRs = ∅) then /* Add singleton CR */ 
   SC:= SC ∪ {{Ox}}; 
  else 
   SC:= SC ∪ newCRs; 

  fi 
 od 
 return SC; 
End  

Figure 3 – Pseudo code describing algorithm. 
 

We now describe the algorithm required for 
determining all collision relations from the set of 
objects contained within VR. SU is initialised to be the 
equivalent of VR. Each element in SU is considered in 
turn and identified as the OUC. The OUC is compared 
with each CR in SC (an element of the set SC is a CR 
which has fully or partially been deduced during an 
iteration of the algorithm).  If the OUC has not collided 
with any CRs then the OUC is appended to SC as a 
new CR. If SC is empty (i.e., this is the first member of 
SU to be identified as the OUC) then the OUC is 
immediately placed in SC. When a collision between 
the OUC and a CR, say CRi, is identified then each 
member object of CRi is compared to the OUC to 
identify OUC/object collisions. If the OUC collides 
with every object in CRi then CRi

rad is updated and the 
OUC is appended to CRi. If the OUC does not collide 
with any objects within CRi then CRi remains 
unchanged. If the OUC collides with a strict subset of 
objects in CRi then this is potentially a new collision 
relation and is placed in a temporary set collision list 
(CL). Each time the OUC is compared to a different 
CR for collision purposes the CL is initialised to empty 
set. Therefore, after the OUC has been compared with 
all existing objects within a CR then a CL may contain 
a new CR to be appended to SC. Duplicate entries are 
not allowed in CL (this prevents duplicate CRs from 
been appended to SC). The pseudo code representing 
the algorithm is presented in figure 3. For clarity, the 
duplication test is not shown as it is located in the 
function addCR(CL, newCR). 

 
3.2 Ordered Collision Relations 
 

In the expanding sphere algorithm just described we 
consider the order in which members of the set SU 
become the OUC to be arbitrary. We now impose 
ordering on the set SU to derive a sequence (SU*) for 
dictating the order in which members of SU become 
the OUC in an effort to take advantage of coherence. 
Ideally, we require CRs with the largest cardinality to 
be identified early in the execution of the algorithm to 
ensure the least number of comparisons to derive SC. 
This happens in the example in figure 2, where the CRs 
are formed in the order of their cardinality (largest to 
smallest) when considering objects in alphabetical 
order. We may show the benefit of early identification 
of CRs with the largest cardinality by considering a 
new ordering of OUC identification in figure 2. As Oh 
is considered the OUC last then three comparisons are 
required to rule out the need to compare Oh with all the 
other objects (7 comparisons). However, if we change 
the ordering only slightly and assume Oh is considered 
the OUC first then all other objects will be compared 



with Oh as they assume the role of the OUC (7 
comparisons). 

The ordering of when members of SU* become the 
OUC is based on the cardinality of the CRs derived 
from the previous iteration of the expanding sphere 
algorithm. For this purpose the set SC is ordered based 
on the cardinality of CRs from largest to smallest to 
form SC*. Once ordered, each CR in SC* is considered 
in turn, with the object membership of a CR added to 
SU*. As an object may occur in multiple CRs, there is a 
need to ensure that if an object already exists in SU* 
(previously added) it is not added again. This 
guarantees that an object does not become the OUC 
more than once during the same iteration of the 
algorithm (this could result in repeat comparisons). 

The first iteration of the algorithm in any given run 
will have to rely on SU and not the ordered sequence 
SU* to dictate the order in which objects become the 
OUC (as there is no SC* from a previous iteration of 
the algorithm on which to base the ordering of 
elements in SU*). However, after the completion of the 
first iteration and the deriving of SC then SC* may be 
derived via a sorting algorithm. Assuming a random 
distribution of CRs throughout SC (as expected with an 
SU of arbitrary ordering dictating the ordering of when 
objects become the OUC in the previous iteration) then 
an appropriate algorithm such as Quicksort that 
operates in O(n logn) is required. However, in further 
iterations of the algorithm the coherence will become 
evident (as we assume objects move only small 
distances between each frame) and an expectation 
arises that the SC created is not a random distribution 
but closely resembles the SC* from the previous 
iteration. Therefore, a more appropriate sorting 
algorithm would be Insertion sort as such sorting 
algorithms typically perform in O(n) for nearly sorted 
sets of data. 
 
3.3 Ordered Axis 
 

We now attempt to exploit coherence based on the 
sweep and prune approach. Usually, in this approach 
AABBs representing each object are checked for 
overlap. As we are dealing with spheres we have to 
alter the approach used for AABBs to suite our needs. 
However, the principle notion of sorting a nearly 
sorted list (axis) to exploit coherence is still the same. 

A single axis is chosen to provide the basis of our 
algorithm. This choice is arbitrary but could be 
dictated by the nature of the simulation (e.g., the x or 
the y axis may be more suitable than the z axis for 
objects commonly located on or near flat terrain). For 
ease of explanation we chose the x axis to use in the 
examples presented here. The start and end points of an 
object, say Oa, are determined via Oa

pos – Oa
rad and 

Oa
pos + Oa

rad respectively. All x axis start and end 
points associated to all objects in SU are placed in the 
sequence OS* and ordered in ascending order. It is now 
possible to identify which objects overlap in the x axis 
in the same manner as described in sweep and prune 
algorithms. Objects that share overlap in the x axis are 
determined to be members of an overlap relation (OR). 
We continue the example we have used throughout the 
paper and show in figure 4 the overlap area that is used 
to determine ORs. There is a relationship between the 
membership of ORs and CRs: an OR may be 
equivalent to a CR or a superset of a CR. From this 
observation we may assume that a CR may be derived 
by only considering a single OR. Therefore, we may 
apply expanding sphere, or the ordered CR expanding 
sphere, to an OR to derive the CRs. This may provide 
an alternative way to reduce the number of pairwise 
comparisons required from the previous two 
algorithms.     
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OR1 OR2 OR3 
{d, b, a, c} {a, e} {f, g, h}  

Figure 4 – Identifying overlap relations. 
 

An ordered sequence of ORs (ORS*) may be derived 
from OS*. Each OR in ORS* is inspected in turn and 
associated CRs are derived. Each inspection of an OR 
is simply a run of either one of the previous expanding 
sphere algorithms, with the OR assuming the role of 
SU. In principle, we are applying an expanding sphere 
algorithm on distinct sets (defined by ORS*) of objects 
within the virtual world. Unfortunately, simply 
applying expanding sphere in this manner creates a 
problem. We alter our example slightly to explain this 
problem. 

In figure 5 we have introduced three new objects (Oi, 
Oj and Ok). The introduction of these new objects has 
resulted in four ORs. Let us assume we have applied 
the expanding sphere algorithm to OR1 and OR2 and 
derived CR1 = {Od, Ob, Oa, Oc} and CR2 = {Oa, Oe, Oj, 
Oi}. We now apply expanding sphere to OR3. 
Following the iteration of the expanding sphere 
algorithm taking OR3 as the SU (input) we derive two 
CRs (CR3 = {Oi, Oj}, CR4 = {Ok}). Unfortunately, CR3 
is a subset of CR2 and should not exist as a collision 
relation in its own right. Solving this problem is trivial 



and just requires that an object may not assume the 
identity of the OUC more than once during an iteration 
of the algorithm (across all ORs). 
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{d, b, a, c} {a, e, i, j} {f, g, h}
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OR3 
{ i, j, k}  

Figure 5 – Exploiting already determined CRs. 
 

We may enhance this algorithm still further (reducing 
pairwise comparisons) by utilising CRs produced from 
earlier ORs. Applying expanding sphere to OR3 with 
the remit that neither Oi nor Oj may become the OUC 
results in two comparisons (comparing Ok (the OUC) 
with Oj then Oi) resulting in CR3 = {Ok}. This 
comparison may be reduced to one if we allow Ok to be 
compared with CR2 (as Oi and Oj are both in CR2). If 
we can dismiss CR2 as not colliding with Ok then we 
may assume Ok does not collide with Oi or Oj. To 
accommodate this, a set of CRs may be maintained 
with which the OUC may be compared with. Such a 
set may only contain CRs that have members which 
also exist in the same OR as the OUC. In our example, 
if the OUC is Ok then this set would only contain CR2 
(as Oi and Oj are not present in any other CR). 
 
4. Performance Evaluation 
 

Experiments were carried out to determine the 
performance of the expanding sphere algorithm, 
expanding sphere with ordered CRs and expanding 
sphere with ordered x axis. To enable comparative 
analysis of the performance figures, a brute force 
collision detection algorithm was implemented. 
However, it must be noted that the brute force 
algorithm does not provide the CRs as our algorithms 
do, this would require further processing above and 
beyond the brute force algorithm.  

There are two performance measures which are of 
interest: (i) Number of comparisons; (ii) Number of 
frames achieved. The number of comparisons is a 
count of the number of pairwise intersection tests 
required to determine appropriate CRs for all objects 
between two consecutive frames of animation (brute 
force just provides pairings). This measurement may 
not be influenced by implementation details (e.g., 
hardware configuration, memory management). The 

number of frames achieved identifies the time taken for 
all CRs to be identified (a frame equates to one 
iteration of the collision detection algorithm). This 
measurement is influenced by the processing overhead 
of updating object positions. The time required for 
drawing a frame of animation is not a measurement we 
are interested in so is zero in our experiments (i.e., we 
draw no graphics).  

We are interested in the scalability of our algorithms. 
Therefore, object numbers were increased gradually 
from 1000 to 4000 with the number of comparisons 
and time taken to derive CRs recorded at each 
increment. The experiments were repeated with 4 
different levels of coverage via the resizing of the 
virtual world. Each level identifies the percentage of 
the virtual world contained within objects given that no 
two objects overlap (low density (1%), medium density 
(5%), high density (10%), and very high density 
(20%)). Experiments were conducted on a Pentium III 
700MHz PC with 512MB RAM running Red Hat 
Linux 7.2 and all algorithms were implemented in C. 

An attempt is made to provide realistic movement of 
objects within the virtual world. A number of targets 
(T) are positioned within the virtual world that objects 
(O) travel towards. Each target has the ability to 
relocate during the execution of an experiment. 
Relocation of targets is determined after the elapse of 
some random time (between Tt

min and Tt
max) from the 

time the previous relocation event occurred. 
Furthermore, objects may change their targets in the 
same manner (random time between Ot

min and Ot
max). 

Given that the number of targets is less than the 
number of objects and Tt

min, Tt
max, Ot

min and Ot
max are 

set appropriately, objects will cluster and disperse 
throughout the experiment. The objects are uniform in 
size and their size does not change throughout the 
experiments. Objects may pass through each other and 
may move freely in any direction. 
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Graph 2
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Graph 3
Comparisons (units of 10, 000) - 10% Coverage
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Graph 4
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Graphs 1 through 4 identify the number of 

comparisons required to determine all CRs. The first 
observation to be made is that all variations of 
expanding sphere outperform brute force. This 
improved performance over brute force becomes more 
evident when the number of objects and coverage 
increases. From these observations, we may assume 
that our approach to determining CRs appear 
successful in reducing pairwise comparisons compared 
to brute force. When coverage is low (1%) we may 
assume that CRs are of a lower cardinality than when 
coverage is higher. Therefore, as coverage increases 
there is more opportunity to dismiss comparisons as 
CRs are more likely to be larger. This explanation 
appears appropriate for the similar performance 
expanding sphere and ordered CRs has compared to 
brute force. 

The ordered axis variation of expanding sphere 
outperforms all the other approaches by lowering the 

number of comparisons significantly. Ordered axis 
requires approximately 12% of the comparisons 
associated to brute force to derive CRs. Furthermore, 
the rate of increase in comparisons of ordered axis is 
lower than all other approaches, appearing to scale 
nearly linearly.  
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Graph 7 

Frames - 10% Coverage
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Graph 8 

Frames - 20% Coverage
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Graphs 5 through 8 identify how the number of 
seconds per frame scales with increasing numbers of 



objects. The expanding sphere and ordered CR 
variation of expanded sphere perform similar or 
slightly worse than brute force in all degrees of 
coverage. This indicates that expanding sphere is 
computationally expensive. Even though comparisons 
are lower in number (as identified in the graphs 1 
through 4), the time taken to execute the algorithm is 
not much better than brute force. However, expanding 
sphere is producing sets of CRs which brute force is 
not and therefore this is not a fair comparison. A more 
promising observation is the performance of the 
ordered axis variation of expanding sphere. The 
ordered axis approach appears to scale nearly linearly. 
Even at 20% coverage, where there is a high 
expectation of collision and therefore more CRs, the 
ordered axis variation performs better than the other 
approaches. 
 
5. Conclusions 

 
We have presented an approach to collision detection 

that, we believe, is well suited to the aura based 
interest management schemes used in DVEs. 
Furthermore, we believe our algorithms to be suited to 
collision detection for non-solid moving spheres in 
more general cases of graphics processing. 

Two variations of our approach that exploit 
coherence have been developed. We have shown that 
we can provide collision detection that scales nearly 
linearly when object numbers are increased beyond 
1000. We are currently working on a distributed 
implementation of our algorithms for integration into 
our own DVE middleware services [16]. 
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