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[1] Increasing availability of ensemble outputs from general circulation models (GCMs)
and regional climate models (RCMs) permits fuller examination of the implications of
climate uncertainties in hydrological systems. A Bayesian statistical framework is used
to combine projections by weighting and to generate probability distributions of local
climate change from an ensemble of RCM outputs. A stochastic weather generator
produces corresponding daily series of rainfall and potential evapotranspiration, which are
input into a catchment rainfall-runoff model to estimate future water abstraction
availability. The method is applied to the Thames catchment in the United Kingdom,
where comparison with previous studies shows that different downscaling methods
produce significantly different flow predictions and that this is partly attributable to
potential evapotranspiration predictions. An extended sensitivity test exploring the effect
of the weights and assumptions associated with combining climate model projections
illustrates that under all plausible assumptions the ensemble implies a significant reduction
in catchment water resource availability.
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1. Introduction

[2] Large ensembles of climate model outputs provide the
potential to explore some of the uncertainties in model-
based predictions of future climate at both global and
regional scales. The next generation of the UK Climate
Impacts Programme scenarios (UKCP09) will be based upon
more than 300 integrations of the general circulation model
(GCM) HadCM3, 17 realizations of the regional climate
model (RCM) HadRM3 and a Bayesian analysis structure
that will be used to generate probability distributions of
climate variables on a 25 km grid [Murphy et al., 2007,
2009; Collins et al., 2006]. A stochastic weather generator
(WG) [Kilsby et al., 2007] is to be used to generate daily time
series outputs representative of future climates for impacts
studies where sequencing and covariance of weather varia-
bles is of significance. Though this coupled system of models
will in several respects be state of the art, it is important to
recognize the implications of the various methodological
choices and to present decision makers with information
on the implications of those assumptions to avoid the mis-
representation of uncertainties [Hall, 2007].
[3] Studies of the impacts of modeled climate change on

water resources and the surrounding uncertainties have been
published previously [e.g., Wilby and Harris, 2006; New
et al., 2007; Dessai and Hulme, 2007; Christensen and
Lettenmaier, 2007; Nawaz and Adeloye, 2006]. In this study
we examine the effect of a number of methodological choices

on the uncertainty estimates provided by the increasingly
prevalent use of ensemble climate model outputs. Specifi-
cally we use the outputs from a multimodel ensemble
experiment including several different RCMs [Christensen
et al., 2007], which serves to demonstrate the sensitivity of
hydrological model outputs to the choice of both GCM and
RCM. In addition, we introduce a method to allow the
investigation of the sensitivity of predicted climate impact
to uncertainties in combining output from different RCMs.
[4] To provide an application of practical significance,

and to enable comparison with previous studies [Wilby et
al., 2006; Wilby and Harris, 2006], the methodological
developments are presented in the context of an application
to water resources management in the Thames catchment in
the southern United Kingdom. Over 90% of the water
abstracted from the River Thames supplies drinking water
for London and for other population centers in the Thames
valley, and the entire river is classified as ‘‘overabstracted’’ or
‘‘no water available’’ [Environment Agency, 2004]. In order
to safeguard the existing drinking water supply, while at the
same time maintaining water quality in the river, the Thames
corridor abstraction management strategy [Environment
Agency, 2004] prescribes conditions on the granting of new
consumptive abstraction licenses. New licenses will permit
abstraction only between November and March, and only on
days when the gauged flow at Kingston, near the upper
tidal limit, is above 1780 ML d�1 (20.6 m3 s�1), the median
flow (Q50) calculated over the 15 years prior to the publica-
tion of the strategy. Examination of historical flow records
show that if this regulation had been in place, abstraction
would have been severely restricted during four of the last
thirty five winters. The years with severe restriction would
have been those with the lowest aggregated rainfall from June
to March, i.e., the winters of 1975–1976 (when abstraction
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would have been permitted on 23% of the potentially
available days), 1991–1992 (23% availability), 1996–1997
(25% availability), and 2004–2005 (38% availability).
[5] The structure of the paper reflects the multiple stages

of the analysis required for climate impacts studies, and is as
follows. In section 2 we consider the use of stochastic WGs
for downscaling climate model outputs and examine the
performance of a WG for the Thames catchment. Section 3
examines predictions of water availability in present and
future climates based on an ensemble of GCM and RCM
outputs. In section 4 we discuss the problem of weighting
ensemble outputs and examine the implications of different
weighting schemes for the Thames catchment, leading to an
analysis of the sensitivity of the impact to the weighting
scheme. At each stage in the analysis we present the relevant
methodology, results and discussion so that the reader can
evaluate intermediate outputs before proceeding to the next
stage in the climate impacts study. The paper concludes in
section 5.

2. Downscaling of Climate Model Outputs

[6] While statistical downscaling of GCM outputs is
relatively inexpensive and has been widely used, dynamical
downscaling using RCMs is more attractive if large numbers
of jointly varying outputs are required [Fowler et al., 2007a].
However, further downscaling may still be required to give
more spatial detail, including the effects of local topography,
and to provide the extended time series of variables needed
for risk assessment studies. To this end, stochastic WGs have
been used in a number of hydrological contexts [Wilks and
Wilby, 1999], including the downscaling of future climate
projections. The Environment Agency Rainfall and Weather
Impacts Generator (EARWIG) is a WG that provides simu-
lated rainfall and other weather variables over a 5km grid
throughout Great Britain [Kilsby et al., 2007]. The baseline
rainfall time series is provided by a Neyman-Scott rectan-
gular pulses rainfall model [Cowpertwait, 1991], whose
statistics (rainfall mean, variance, skewness, 24 h lagged
autocorrelation, and percentage of dry days) are derived from
a 5 km grid of observed daily rainfall records throughout
the United Kingdom, produced by interpolation from several
thousand rain gauge records [Perry and Hollis, 2005].
Diurnal temperature mean and range are modeled as autor-
egressive processes, with coefficients determined by the time
of year, and whether the current and previous day are wet
or dry. Other derivative weather variables, such as vapor
pressure, wind speed and sunshine duration, are generated
using multiple regression models, using monthly data from
the same grid, and daily data from a United Kingdom–
wide network of 115 stations. Potential evapotranspiration is
then calculated from these variables, using either the Food
and Agriculture Organization of the United Nations (FAO)
modified version of the Penman method [Allen et al., 1994]
or the MORECS method [Hough and Jones, 1997].
[7] In order to generate output representative of future

climate conditions, multiplicative change factors for the daily
rainfall statistics required by the Neyman-Scott rectangular
pulses model and temperature standard deviation, and addi-
tive change factors for the daily mean temperature are
obtained from the difference between current and future
climates for each RCM grid cell. [Kilsby et al., 2007]. These
change factors are used to adjust the rainfall and temperature

statistics which generate rainfall and weather time series. The
derived variables are calculated as for the current climate.
[8] The use of change factors (CFs), often called the

‘‘perturbation method’’ [Prudhomme et al., 2002] or ‘‘delta
change’’ approach, assumes that the climate models represent
relative change more accurately than absolute climate values,
and relies on the climate model bias being constant through
time [Fowler et al., 2007a]. Normally, the CFs are applied
to only the mean of observed time series and so no changes
are made to the sequencing of weather or to its variability or
extremes. However, here we apply the CFs through a
stochastic method and to variance and extreme statistics,
thus allowing new sequences of weather and changes to
variability and extremes to be accounted for. In situations
where climate models show noticeable bias in reproducing
regional climate then their capacity to represent future may be
questioned. For this reason, while using change factors in the
WG, we adopt an approach, which is explained in more detail
in section 4, that weights the climate model predictions
according to their ability to reproduce observed climate. In
this way models that are particularly biased are down
weighted.
[9] In this study the models used for future climate

projections are the UKCIP02 scenarios [Hulme et al.,
2002] based on the HadRM3H RCM, and 13 RCM integra-
tions from PRUDENCE [Christensen et al., 2007] from
which the change factors for daily weather variables were
extracted. The PRUDENCE models used are listed in
Table 1, and biases in their representation of United
Kingdom precipitation and temperature statistics have been
assessed by Blenkinsop and Fowler [2007] and Blenkinsop et
al. [2008], respectively. It should be noted that while the
ensemble of model integrations represent 11 different RCMs,
there are essentially only 2 driving GCMs represented here,
as HadAM3H and HadAM3P are atmospheric models, used
as an intermediate step between the GCM HadCM3 and the
RCM. HadAM3H and HadAM3P are very similar, with
slight differences in the details of cloud representation and
thresholds for precipitation formation [Moberg and Jones,
2004]. The models are described by Hagemann and Jacob
[2007].
[10] While the EARWIG weather generator was estab-

lished to generate point rainfall (and weather) series, an
areally averaged time series is required for water resources
assessments. It is well known [Faulkner, 1999] that areally
averaged rainfall series demonstrate rather different charac-
teristics from point series, in particular having reduced
variance, and a reduced proportion of dry days. EARWIG
was adapted for use for the Thames catchment (10,000 km2)
as follows. The rainfall parameterization for present-day
climate was performed using statistics derived from the areal
average of historical rainfall series across the catchment.
For future climates, averaged change factors for the relevant
EARWIG variables were generated by calculating the pro-
portion of the catchment within each 50 kmRCM grid square
and calculating the change factors from the areally weighted
average of the daily RCM output.
[11] Kilsby et al. [2007] demonstrated the ability of the

stochastic WG used in this study to reproduce daily and
monthly rainfall and weather statistics, and rainfall
extremes, at Heathrow, near the downstream boundary of
the catchment. In order to further validate the reproduction
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of historical temperature and potential evapotranspiration
(PET) statistics, an ensemble of 20 EARWIG runs was
generated, conditioned on the historical daily areal rain-
fall record for the Thames catchment from 1961 to 1990.
The resulting summer (June–July–August) and winter
(December–January–February) mean temperature was
compared with a mean historical record for the Thames
catchment. Similarly, the cumulative PET, calculated using
the MORECS method [Hough and Jones, 1997], was
compared with the historical MORECS PET record. The
comparison is shown in Table 2, demonstrating that
EARWIG reproduces the overall mean and standard devi-
ation of summer and winter PET and temperature well.
Figure 1, giving annual seasonal means of PET and tem-
perature, shows that EARWIG is able to reproduce the
variability range of summer and winter temperature and PET
apart from the magnitude of individual historic extreme
events (such as the summer of 1976). Total seasonal
PET is well constrained by the historical rainfall pattern,
but EARWIG does not reproduce PET well for the hot, dry
summer of 1976. This shows a limitation of the use of a
first-order autoregressive process in EARWIG to simulate
temperature, and by association sunshine hours, thus failing
to account for the intensification of heat and evaporation in
long dry periods, which is being addressed in further work.
However, the possible underestimation of PET in very hot
summers is offset in the subsequent hydrological modeling
because actual evaporation is limited by moisture supply
rather than determined by PET.
[12] The rainfall and other weather variables modeled in

EARWIG are based upon short-term weather statistics, and
therefore cannot necessarily be expected to reproduce
patterns of longer-term variability. To use EARWIG to
reproduce climates exhibiting significant interannual corre-
lation, the output would need to be conditioned to reflect that
characteristic. However, analysis of the annual rainfall totals
derived from the 133 year spatially averaged historical record
for southeast England show no significant autocorrelation
between annual rainfall totals at lags of 1, 2, or 3, indicating
that at this site no improvement in the model would be
achieved by introducing interannual correlation.
[13] Summer and winter mean temperature and precipi-

tation change predicted by the PRUDENCE models for the
Thames basin, as well as model bias for current climate, are
listed in Table 3. All models predict a rise in temperature in
both winter and summer, while precipitation is predicted to

increase in winter, and decrease in summer. It is noticeable
that the models driven by ECHAM4 predict a higher
increase in summer temperature than the other models; this
has been demonstrated in more detail by Blenkinsop and
Fowler [2007]. The predicted changes in Table 3 refer to the
2080s, and the A2 emissions scenario [Nakicenovic et al.,
2000]. Since RCM output is not available for all time
periods and emissions scenarios, predictions for other time
periods and scenarios are calculated by scaling these outputs
on relative global temperature change from the driving
GCM. Scaling factors for HadCM3-derived models are
given by Hulme et al. [2002], and equivalents for ECHAM4
were calculated using the change factors from the IPCC
Web site, http://www.ipcc-data.org/cgi-bin/ddcvis/gcmcf/.
Further details on the application of scale factors are given
by Kilsby et al. [2007].

3. Ensemble Prediction of Flow Series

[14] The flow series in the Thames catchment has been
modeled using the CATCHMOD rainfall-runoff model,
which is a water balance model used for water resource
planning by the Environment Agency, and has been
described in detail elsewhere [Wilby et al., 1994; Davis,
2001]. CATCHMOD is a lumped parameter conceptual
model, which allows for the subdivision of the catchment
into a number of zones, according to its geological and
surface runoff characteristics. The parameterization of this
model for the Thames basin used here is that described by
Wilby [2005], and involves three zones, representing clay,
limestone and urban regions. Input to the model is in the

Table 1. Climate Models Used From the PRUDENCE Ensemble

Model Acronym Institution RCM Driving GCM

ARP.HAD Meteo-France, France Arpège HadCM3
HADR.HAD Hadley Centre, UK Meteorological Office HadRM3P HadAM3P
HIR.ECH Danish Meteorological Institute (DMI) HIRHAM ECHAM4/OPYC3
HIR.HAD Danish Meteorological Institute (DMI) HIRHAM HadAM3H
RCA.ECH Swedish Meteorological and Hydrological Institute (SMHI) RCAO ECHAM4/OPYC3
RCA.HAD Swedish Meteorological and Hydrological Institute (SMHI) RCAO HadAM3H
CHRM.HAD Swiss Federal Institute of Technology (ETH), Zurich CHRM HadAM3H
CLM.HAD GKSS, Institute for Coastal Research, Germany CLM HadAM3H
REMO.HAD Max Planck Institute for Meteorology, Hamburg, Germany REMO HadAM3H
PROMES.HAD Universidad Complutense de Madrid (UCM), Spain PROMES HadAM3H
REGCM.HAD Abdus Salam International Centre for Theoretical Physics (ICTP), Italy RegCM HadAM3H
RACMO.HAD Royal Netherlands Meteorological Institute (KNMI) RACMO HadAM3H
METNO.HAD Norwegian Meteorological Institute MetNo HadAM3H

Table 2. Comparison Between Historical Data and Model Output

of Daily Mean and Standard Deviation of Temperature and

Potential Evapotranspiration for the Thames Catchment When

Forced by the Historical Rainfall Recorda

Historical Data
1961–1990

EARWIG Model
Output

Summer temperature (deg C) 15.8 (2.6) 15.4 (2.6)
Winter temperature (deg C) 4.2 (3.6) 4.3 (3.4)
Daily PET, summer (mm) 3.0 (1.26) 2.7 (0.85)
Daily PET, winter (mm) 0.62 (0.56) 0.53 (0.44)

aStandard deviation is given in parentheses. Potential evapotranspiration
(PET) is calculated using the MORECS method. Summer is June–July–
August, and winter is December–January–February.
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form of time series of daily rainfall and potential evapo-
transpiration representative of the entire catchment and the
output is a time series of the daily natural flow at Kingston.
This is the flow which would exist in the absence of artificial
abstractions, and the model has been calibrated with refer-
ence to the daily historical flow, corrected for abstraction.
However, since the application requires calculation of the
gauged flow at Kingston for simulated weather series, the
modeled output flow series is modified by the subtraction
of the annually averaged daily difference between historical
gauged and naturalized flows at Kingston, for the time period
over which the rainfall-runoff model was parameterized. The
mean correction over the time period of model calibration
was 18 m3 s�1.
[15] Daily weather records have been simulated using

the WG for 1000 year periods, for both current and future

climate. These have been used as input to the catchment
model, and naturalized flow quantiles have been calculated.
Figures 2 and 3 show box plots of 30 year estimated natural
flow quantiles for the 2050s and 2080s, respectively, under
the A2 emissions scenario, with the baseline current climate
estimates, and a single estimate for historical flows from
1961 to 1990, for comparison. These box plots have been
calculated using the single, manually calibrated, catchment
model parameterization detailed by Wilby [2005], by exam-
ination of the variability in the quantiles calculated for each
30 year period within the model output record. A 30 year
period was chosen for comparison with the historical record.
A progressive decrease with time in the level of each flow
quantile can be seen. The range of predicted change in the
lower flows, Q95 (the flow level exceeded on 95% of days)
and Q50 (exceeded on 50% of days), also decreases with

Table 3. Bias With Respect to Historical Data and Change in Seasonal Temperature and Precipitation Predicted by UKCIP02 and

PRUDENCE Climate Models for the A2 Scenario, 2080sa

Model Acronym

Mean Temperature
Bias (deg C)

Mean Precipitation
Bias (%)

Model Mean
Temperature

Change (deg C)

Model Mean
Precipitation
Change (%)

DJF JJA DJF JJA DJF JJA DJF JJA

UKCIP02 0.83 0.36 5 �8 2.7 4.7 24 �48
ARP.HAD 0.97 �0.07 46 0 2.3 2.9 19 �19
HADR.HAD 1.22 0.94 0 �35 2.3 4.3 25 �34
HIR.ECH 1.64 �0.06 27 31 3.4 5.1 13 �30
HIR.HAD 1.93 0.92 27 �5 2.3 3.6 23 �33
RCA.ECH 2.65 0.14 60 33 3.7 5.7 34 �58
RCA.HAD 2.42 0.53 68 9 2.2 3.9 25 �46
CHRM.HAD 0.61 �0.02 9 �9 1.9 3.5 30 �42
CLM.HAD 0.59 �0.27 17 �7 2.1 4.0 31 �46
REMO.HAD 1.75 1.04 19 37 2.3 3.4 26 �40
PROMES.HAD 1.82 �1.07 27 �3 2.2 3.9 24 �29
REGCM.HAD 1.34 �0.46 30 57 2.1 3.8 31 �39
RACMO.HAD 1.56 0.58 45 5 2.2 3.6 29 �45
METNO.HAD 1.65 0.57 38 �4 2.3 3.6 26 �39

aDJF, December–January–February; JJA, June–July–August.

Figure 1. Comparison of historical record (seasonal mean) with WG output with output from 20 runs
of the WG, conditioned by observed rainfall (Thames catchment mean). (top) Temperature compared
with annual mean observed temperature for the Thames catchment. (bottom) Potential evapotranspiration
compared with MORECS PET record. Solid black lines, historical record; gray lines, simulated data;
dashed black lines, mean of WG outputs.
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time, while the range of the high-flow predictions, Q5
(exceeded on 5% of days), increases.
[16] Figures 2 and 3 also show the additional uncertainty

in the estimation of the flow quantiles caused by hydrolog-
ical uncertainty. Eleven new parameterizations of the catch-
ment model have been tested, based on the two criteria
employed by Wilby [2005], the Nash-Sutcliffe efficiency at
reproducing observed flow, and an absolute flow measure.
These parameterizations are Pareto-optimal, meaning that
for each parameterization, no improvement in agreement
with one criterion can be made without compromising the
other, and have been chosen to represent the full spectrum
of optimal models relating to these two criteria. Agreement
between historical quantiles and those calculated from the
output of these eleven models is better than that obtained for
the manually calculated model shown in Figure 2, although
the model output does underestimate high flows. These,
however, are not the purpose of this study. The change in
total uncertainty due to model parameterization increases
with future time period, as the model input conditions deviate
further from those used for parameterization, and it is
interesting to note that while there is little difference between
the estimation ranges for the high-flow quantile, Q5, the
difference is greatest for the low-flow quantile, Q95, with an
increase in standard deviation (not shown) between a single

and multiple parameterizations by a factor of 2.4 in projec-
tions for the 2050s, and by a factor of 5.5 in projections
for the 2080s. The corresponding proportional increases
in standard deviation for Q50 are 1.4 and 3.3, respectively.
It should be noted that a full appraisal of hydrological
uncertainty should include the uncertainty from alternative
hydrological models. This has not been done here, and the
analysis is restricted to hydrological parameter uncertainty.
[17] The 1000 year output flow series from the catchment

model have been analyzed to create, for each climate model
integration, a cumulative distribution function of the annual
number of days (Na) on which abstraction from the Thames
is permitted under the winter Q50 restriction set out in the
Thames corridor catchment abstraction management strat-
egy [Environment Agency, 2004] described above. Figure 4
shows, as well as future predictions, a comparison of the
number of days on which abstraction would have been
permitted from the river Thames using historical flow records
for the period 1961–1990, corresponding to the calibration
period of the hydrological model, and the estimated number
of days using a synthetic EARWIG weather series calibrated
to current climate. The comparison between historical flows
and current climate simulations show substantial agreement.
Three future time periods, the 2020s, 2050s and 2080s, and
the four UKCIP02 emissions scenarios corresponding to

Figure 2. Estimated natural flow quantiles for the river Thames at Kingston (m3 s�1), 2050s, using each
of the PRUDENCE ensemble outputs and comparing a single parameterization with an ensemble of
11 parameterizations of the catchment model. (Maximum box plot whisker length is 1.5 times the
interquartile range.)
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the four SRES emissions scenarios, A1FI, A2, B1 and B2
[Nakicenovic et al., 2000], are represented. The predictions
demonstrate a significant and increasing loss of abstraction
availability. The effect of different emissions scenarios on
the uncertainty in abstraction availability for the 2020s is

small, as indeed is the predicted difference in emissions by
this time period. The influence of different emissions scenar-
ios increases by the 2080s.
[18] The distribution functions represented in Figure 4

were calculated using EARWIG weather series derived from

Figure 4. Cumulative distribution function of the maximum annual number of days of permitted
abstraction from the river Thames (Na) based upon historical flows for 1961–1990; estimated using WG
for current climate; and for future climate projections, using the UKCIP02 climate scenarios.

Figure 3. Estimated natural flow quantiles for the river Thames at Kingston (m3 s�1), 2080s, using each
of the PRUDENCE ensemble outputs and comparing a single parameterization with an ensemble of
11 parameterizations of the catchment model. (Maximum box plot whisker length is 1.5 times the
interquartile range.)
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the UKCIP02 climate model, while Figures 5 and 6 illus-
trate the predictions for each member of the PRUDENCE
ensemble, for the time periods 2050s and 2080s, and a single
emissions scenario. Note that the range of mean predicted
abstraction availability for a single emissions scenario but a
number of climate models (96 to 128 days, 2050s, and 48 to
118 days, 2080s) is greater than the range for a single climate
model and a number of emissions scenarios (102 to 117 days,
2050s, and 52 to 106 days, 2080s), supporting the finding
of other studies [e.g., Wilby and Harris, 2006; Dessai and
Hulme, 2007], that the greatest source of uncertainty in
climate predictions arises from the climate model.
[19] It is important to consider whether known deficiencies

in the RCM modeling have an effect on these predictions
of abstraction availability. While the driving GCM is
extremely influential in hydrological predictions [Wilby
and Harris, 2006], it can be seen that the predictions in
Figures 5 and 6 from UKCIP02 (derived from HadCM3
and HadAM3H) are more similar to the PRUDENCE
ECHAM4 models than to the other HadAM3H models.
Problems with high summer water vapor pressure deficits
in this RCM, causing overdrying and overheating, were
reported by Ekström et al. [2007]. These problems were

addressed by the introduction of the RCM HadRM3P
(driven by the newer atmosphere-only GCM, HadAM3P,
with some additional reparameterizations) which seems
comparable to the HadAM3H-driven PRUDENCE RCMs
for future climates in southern England. Fowler et al. [2007a]
demonstrated agreement in temperature and precipitation
changes predicted by an ensemble of 6 PRUDENCE RCMs
and by the IPCC-AR4 GCMs for all seasons but summer in
southeast England, where the RCM results are warmer and
drier than the GCM results.
[20] As an additional check on the reasonableness of the

predictions in Figures 5 and 6, a comparison has been made
with two recently published studies of future water resource
availability in the Thames basin [Wilby and Harris, 2006,
hereafter WH06; Wilby et al., 2006, hereafter W06]. WH06
uses Monte Carlo sampling to examine a number of the
sources of uncertainty involved in prediction of future
resource availability in the Thames; namely, GCM choice,
downscaling method and predictor variables, and rainfall-
runoff model parameterization. W06 examines water
resource availability and water quality in a tributary of
the Thames, the Kennet. Both studies examine outputs from
a number of GCMs, including HadCM3 under the A2

Figure 5. Cumulative distribution function of the maximum annual number of days of permitted
abstraction from the Thames (Na), predicted for the UKCIP02 scenarios and PRUDENCE models,
2050s, medium high (SRES A2) emissions scenario.

Figure 6. Cumulative distribution function of the maximum annual number of days of permitted
abstraction from the Thames (Na), predicted for the UKCIP02 scenarios and PRUDENCE models,
2080s, medium high (SRES A2) scenario.

W11411 MANNING ET AL.: PROBABILISTIC CLIMATE CHANGE INFORMATION

7 of 13

W11411



emissions scenario, with downscaling provided by the SDSM
package [Wilby et al., 2002]. These studies predict mean
percentage changes in Q95 for the 2080s by using HadCM3,
as decreases relative to the present day of 15% (WH06) and
10% (W06),whereas the present study predicts decreases of
45% (HadRM3H) and 37% (HadRM3P). The difference
between predictions of change in Q95 for the Thames and
the Kennet may be partly a result of different behavior in the
two catchments [Arnell, 2003], since the Thames, with an
area of approximately 10,000 km2, draws water from a
mixture of chalk and clay horizons, while the Kennet, with
an area of approximately 1000 km2, is predominantly chalk.
However, the key to the difference in the predictions of
change in Q95 flow for the Thames is to be found in the
comparison between climate predictions, shown in Table 4.
While the predictions of change in temperature and rainfall
are comparable, there is considerable difference between the
predictions of change in PET, which is most significant in
the summer months, as the absolute totals during the winter
are comparatively small. The differences between the
current study and those of W06 and WH06 relate to the
different downscaling methods used: an RCM and WG with
MORECS calculation, versus the regression-based method,
SDSM [Wilby et al., 2002]. While this may indicate a further
measure of uncertainty to be found in downscaling, it should
be noted that SDSM was fitted using monthly historical
PET values, although it relies on daily variation of other
weather variables. While performance of SDSM in reproduc-
ing current climate [Wilby et al., 2006] shows reasonable
skill, albeit with similar problems to EARWIG for the
summer of 1976, its parameterization is heavily dependent
on near-surface specific humidity, which may not be well
reproduced by a climate model.
[21] Since the different downscaling methods yield such

different PET change predictions, the values estimated in the
current study by using RCM change factors through the
medium of a WG are also compared with those of Ekström
et al. [2007], who estimated PET values directly from the
RCM output using the FAO modification of the Penman-
Monteith equation. The estimates of summer PET change by
Ekström et al. [2007] are unrealistically high, as noted in
their paper, which attributed this to the tendency of this
RCM to exaggerate drying, and to the enhancement of its
uncertainty by the interaction of errors in other variables.
By contrast, the current study uses temperature and rainfall
distributional changes, and relationships with other variables
derived from current climate, partially avoiding the feed-
back effects arising from direct use of the output of a dry

climate model. This is clearly a problematic area, requiring
further research beyond the scope of this study, including
an improvement in climate model land surface hydrology.
[22] As an indication of the importance of correct PET

calculation for hydrological impacts studies, the following
sensitivity analysis has been performed. Taking a synthetic
record (1000 years) of rainfall and PET representative of the
Thames basin under current climate (with mean values of
rainfall and PET shown in Table 5), the PET record was
increased by a proportion, one season at a time, up to 100%,
and changes in flow quantiles were calculated. For compar-
ison, the rainfall record was increased in a similar way. For
the ranges of PET and rainfall considered, the change in flow
quantiles was directly proportional to the percentage change
in PET or rainfall. Percentage change in flow quantiles are
shown in Figure 7. As might be expected, increasing rainfall
has a larger effect on the flow than increasing PET. It is
interesting to note that apart from autumn and winter rainfall
increase, the largest sensitivity is in the median flow rate. The
high and low quantiles are to be expected to be more
dependent on sequencing than on quantity. The effect of
increasing summer PET is highest, and is approximately half
that of increasing summer rainfall. The implication of this is
that correct calculation of PET is essential in calculating
future water resource availability.

4. Combination of Climate Predictions

[23] The discussion so far has dealt with ensemble outputs
from several combinations of GCMs and RCMs. Experience
in weather and climate forecasting [e.g., Palmer, 2000, Min
and Hense, 2006, Hagedorn et al., 2005] as well as in other
sectors such as crop modeling [e.g., Cantelaube and Terres,
2005] indicate that better forecasting skill can be achieved
by combining multiple models rather than relying upon a
single model. Where observed data are available for model
validation then the problem of model combination can be

Table 4. Comparison Between Climate Model Predictions Made by Different Studies in the Thames Basin, 2080s, Medium High

Scenario, Relative to Present Day, All Based on HadCM3

Study WH06 W06

Calculated From EARWIGa

Calculated Directly From HadRM3HbHadRM3H HadRM3P

Mean winter (DJF) rainfall (%) +30 +20 +28 +27 +24
Mean summer (JJA) rainfall (%) �37 �36 �49 �35 �48
Mean winter (DJF) temperature (deg) - +2.5 +2.7 +2.4 +2.6
Mean summer (JJA) temperature (deg) - +3.7 +5.1 +4.6 +4.8
Mean winter (DJF) PET (%) +12 +5 +98 +83 +58
Mean summer (JJA) PET (%) +16 +8 +51 +46 +103

aCurrent study.
bEkström et al. [2007].

Table 5. Current Mean Rainfall and Potential Evapotranspiration

in the Thames Basina

Season

DJF MAM JJA SON

Mean rainfall (mm d�1) 2.22 1.80 1.78 2.35
Mean PET (mm d�1) 0.51 1.88 2.97 1.10

aDJF, December–January–February; MAM, March–April –May; JJA,
June–July–August; SON, September–October–November.
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interpreted in the following Bayesian terms. The design
and implementation of climate models is founded upon the
representation of basic laws governing climate processes on
Earth, but also require a number of subjective judgments on
the part of modelers. For example, experts will have subjec-
tive beliefs about the appropriate parameter values for a given
model or ensemble of models. This may translate into a
prior distribution over the population of models. However,
it is natural to test models with respect to how accurately
they reproduce observed climate. This combination of sub-
jective modeling judgments and conditioning upon observed
data fits conveniently within the Bayesian framework
whereby a posterior estimate of the uncertain quantities of
interest is computed as an update of prior beliefs conditioned
upon the observed data.
[24] However, several difficulties in application of

Bayesian methods exist in the context of climate modeling
[Rougier, 2007]. Observations of past climate are only of
partial relevance to ensuring that a model adequately
predicts future climate, since climate change will also depend
on response to changing concentrations of atmospheric con-
stituents. Furthermore, climate model experiments have not
in the past lent themselves to maximizing the possible use
of observed data, so rather simplified criteria have been
used for conditioning, including various measures of model
skill in reproducing current climate or trends, and of the
mutual agreement of climate models in the ensemble used
[Giorgi andMearns, 2002; Tebaldi et al., 2005;Greene et al.,
2006; Furrer et al., 2007]. Most methods for combining
projections, including the one adopted here, are based on
implicit or explicit assumptions of independence between
the different models, so that the errors in different models
tend to cancel out. However, GCMs, even from different
centers have been shown not be independent [Tebaldi and
Knutti, 2007; Jun et al., 2008a, 2008b] being based on the

same theoretical or sometimes empirical assumptions and
run at a similar resolution. RCMs will suffer from similar
dependencies, and in addition, RCMs driven by the same
GCM-derived boundary conditions will show dependency
because of those boundary conditions. While these limi-
tations are now well recognized, Tebaldi and Knutti
[2007, p. 2060] remark that ‘‘no formal approach at
quantifying this dependence has been worked out yet.’’
Therefore, here, as in previous studies, we start with a
method based upon a model independence assumption,
but then go on to explore, more comprehensively than in
previous studies, sensitivity of the predictive variable to
model weights.
[25] Two relevant methods have been published, both

providing Bayesian estimates of climate change based on
GCM predictions, both conditioned on performance in
predicting mean temperature over part-continental regions
specified by Giorgi and Francisco [2000]. The method of
Greene et al. [2006] weights models on their performance
in matching historical trends of mean regional temperature
throughout the 20th century and applies this weighting
throughout future integrations. However, this method
requires transient climate model output, and is unsuitable
for application to stationary RCM time slice output. By
contrast, the method of Tebaldi et al. [2005] and Smith et
al. [2007], motivated by the study of Giorgi and Mearns
[2002], applies to an ensemble of different realizations of a
current and future time slice. This method weights models
by two criteria: their ability to reproduce current mean
regional temperature (or alternatively rainfall), and their
agreement with the ensemble consensus estimate of the future
temperature mean.
[26] The method of Tebaldi et al. [2005] has been adapted

by Fowler et al. [2007a, 2007b], to combine RCM pre-
dictions for a division of the United Kingdom into nine
smaller, climatologically coherent regions [Wigley et al.,
1984], with areas of the order of 10,000 km2, and has been
applied here for the Thames basin (10,000 km2). As well
as producing probability density functions for the change
in rainfall and temperature, a set of jointly estimated param-
eters can be interpreted as weights for the members of the
ensemble of climate models, which depend on each model’s
success in describing the current climate and to a lesser
degree on the model’s agreement with the consensus estimate
of change.
[27] The Bayesian method combining projections from

multiple climate models is fully described by Tebaldi et al.
[2005]. Rather succinctly, it is assumed that n climate models
are used to predict the change in a desired (scalar) climate
attribute, such as mean regional temperature or precipitation,
over a given season of the year. Each model i simulates the
attribute under current (Xi) and future (Yi) climate. We also
observe the value of the attribute in the real world, X0. The
following statistical model is assumed for the data:

Xi ¼ mþ hi; i ¼ 0; . . . ; n

Yi ¼ n þ bðXi � mÞ þ xi=
ffiffiffi
q
p
; i ¼ 1; . . . ; n;

where m is the real but uncertain climate attribute under
current conditions, around which both observations and
modeled quantities are distributed with a random error; n is
the corresponding uncertain mean of the climate attribute

Figure 7. Percentage change in flow in the river Thames
per percentage of increased (a) rainfall and (b) PET.

W11411 MANNING ET AL.: PROBABILISTIC CLIMATE CHANGE INFORMATION

9 of 13

W11411



under future conditions; b represents correlation between
current and future climate simulation for a given model, and
is assumed here as common to all models; q is a variance
scaling parameter between current and future climate
simulations, assumed here the same for all models, allowing
for future projections to be less accurate than current
simulations; and hi � N(0, li

�1), xi � N(0, li
�1) are

Gaussian error terms, whose variances depend specifically
on each of the different models.
[28] All the parameters in this formulation are considered

random variables with prior distributions chosen to be as
uninformative as possible. As a result of the Bayesian
updating, the posterior mean of n, the future value of the
climate attribute, is, using standard techniques [O’Hagan
and Forster, 2004], approximately Sli[Yi � b(Xi � m)]/Sli,
a weighted sum of the model predictions. The weights are
given by the values li, the inverse of the model-specific
error variances, which are variables estimated in the Bayes-
ian scheme, and have their own posterior probability dis-
tributions; an approximation to the posterior mean value of
each li is given by

E lij X0; � � � Xn; Y1; � � � Ynf gð Þ

� aþ 1

b þ 1

2
Xi � ~mð Þ2 þ q Yi � ~n � b Xi � ~mð Þ½ �2

n o ; ð1Þ

where a and b are parameters of the Gamma prior dis-
tributions, and ~m and ~n are the posterior means of the
current (m) and future (n) climate attribute under considera-
tion [Tebaldi et al., 2005]. Tebaldi et al. [2005] estimated the
parameters of this model using a Markov chain Monte Carlo
algorithm to predict mean temperature changes over 22 large
regions covering the globe, from an ensemble of 9 GCM
integrations. The method was extended by Fowler et al.
[2007a] to apply to changes in either mean temperature or

mean rainfall over the northwest region of the United
Kingdom, based on an ensemble of six RCM model
integrations from PRUDENCE. Fowler et al. [2007b] used
the same method to produce probability distributions of
change for all nine UK regions using 13 RCM integrations.
[29] The model combination studies discussed above,

together with some alternative proposals in the literature
have used ensembles of climate projections to produce
probability distributions of global, regional or gridded mean
temperature [Tebaldi et al., 2005; Greene et al., 2006;
Furrer et al., 2007; Jun et al., 2008a, 2008b]. Such methods
could be adapted to provide distributions of change in other
climate variables. However, these approaches are less
readily usable to provide input for WGs, which use a large
number of climate variables to provide scenarios of local
future climate i.e., for the WG described above: monthly or
seasonal change factors for rainfall mean, variance, skewness
and 24 h lagged autocorrelation, percentage of dry days, and
temperature mean and variance. One approach to resolving
this problem would be to generate (joint) predictive distribu-
tions for all of the variables used to adjust the WG to future
climate predictions This is a challenging task that has not
to date been achieved. An alternative approach is to fit the
WG to each of the RCM outputs separately, and weight
each WG output on the basis of the performance of the
RCM [Fowler et al., 2007a, 2007b]. This approach relies
upon the assumption that the predictive variable used for
weighting is also an appropriate predictive variable for the
impact of interest. In the context of water resources assess-
ment, the use of rainfall and temperature as predictive
variables for weighting is appropriate.
[30] The method of Fowler et al. [2007b] was applied to

the Thames catchment, for both mean annual temperature
change, and mean annual rainfall change, using as input the
13 PRUDENCE RCM outputs listed in Table 3, for the
2080s, under the assumption of A2 emissions scenario.
Figure 8 shows the probability distribution functions of these
changes, together with the actual mean changes for each of
the contributing RCMs. A median increase of mean temper-
ature of some 3�C is predicted, while the median change in
mean rainfall is close to zero. Distributions of weighting
variables li have been also calculated, weighting both on
mean annual temperature change, and on mean annual
rainfall change. The mean values for these distributions,
together with the 90% posterior probability intervals, are
given in Table 6.
[31] Figure 9 shows the cumulative distribution functions

for abstraction availability in the Thames, using unweighted
averaging of climate predictions, and also using weightings
derived from the mean values in Table 6, with weighting on
the basis of both temperature and precipitation. Either choice
in predictive variable used for weighting is justified in that
the winter abstraction availability is well correlated with
both variables. The weighting scheme of Fowler et al.
[2007b] in this case generates results that are close to a
uniform weighting scheme, although where output derived
from the contributing climate models show large variations,
the weighting scheme may produce very different results.
Thus, at first sight, it may seem unnecessary to use a complex
weighting scheme to combine climate projections. However,
while in this instance the weights are not far from uniform
the estimate of associated uncertainty is of utmost relevance

Figure 8. Probability distribution functions of the changes
in annual mean temperature and precipitation in the Thames
catchment. Circles show mean change predicted by
individual models.
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to water resource planning decisions. Nonetheless, it should
be noted in this context that care must be taken in interpreting
the uncertainty ranges depicted by this analysis. It is recog-
nized that the uncertainties arising from model choice have a
dominant role in shaping the range of possible future out-
comes [see Tebaldi and Knutti, 2007], and that uncertainties
found here are limited by the narrow choice of climate
models used, which are recognized as being unlikely to be
independent. A broader range of climate models may approx-
imate more closely the full range of uncertainty.
[32] In order to explore the sensitivity of the predicted

water resource to the weighting of climate model outputs we
have constructed the following sensitivity model. The
expected values from the Bayesian analysis are written as
a vector of model weights li: i = 1, . . . , n, calculated
according to the posterior analysis including equation (1).
Using the procedure of Fowler et al. [2007b] we have
estimated the weights ~li with the 90% posterior probability
intervals in Table 6, now denoted [~li � Di

�, ~li + Di
+]. In

our sensitivity test we consider the set of weights:

Uða;lÞ ¼ l : ~li � aD�i � li � ~li þ aDþi ; i ¼ 1; . . . ; n;
Xn
i¼1

li ¼ 1; 0 � li; 8i
( )

; a � 0:

In other words, we explore the effect of different weighting
combinations, where the scale on which the weights are
permitted to vary depends on the relative size of the Bayesian

posterior probability interval. This uncertainty model does
not make any assumptions about the distribution of the
weights, beyond the limited information available from the
analysis in the form of these posterior probability intervals,
and the constraint that themodel weights are nonnegative and
sum to unity. The effect of different levels of uncertainty on
the predicted abstraction availability is shown in Figure 10.
For each value of a we plot the greatest and least values
of the predictive probability of interest (the exceedance
probability of the number of days of abstraction).
[33] The sensitivity analysis demonstrated here provides

decision makers with a means of testing the robustness of
water resource management decisions to the uncertainties in
climate model weighting, by analyzing the range of perfor-
mance of each option at increasing values of the parameter a
[Hipel and Ben-Haim, 1999]. Different management options
may be expected to perform in different ways at different
levels of uncertainty. A robust option is thought of as one
whose performance is acceptable even at high levels of
uncertainty. The approach is analogous to the methods of
Dessai and Hulme [2007] andGroves and Lempert [2007] in
that it deals with a set of possible climate futures, but here the
set-based approach is used to demonstrate the uncertainties in
an underlying probabilistic model. Robust decision making
can be supported by testing a range of alternative water
resource management strategies in order to identify those
that perform acceptably well under the uncertain range of
possible futures. In this case, the uncertainties are encapsu-
lated in the climate model weighting uncertainty, which also
effectively explores other (but not all) aspects of uncertainty,
including the unknown dependence between the different
climate models in the ensemble.

5. Conclusions

[34] A practical approach for using ensembles of climate
model outputs in a water resources assessment has been

presented. While the example has been one of water
resources assessment the techniques used are applicable

Table 6. Mean Values for Weighting Functions, l i
a

Temperature Precipitation

ARP.HAD 0.07 (0.01, 0.21) 0.13 (0.03, 0.30)
HADR.HAD 0.12 (0.02, 0.28) 0.02 (0.00, 0.05)
HIR.ECH 0.1 (0.02, 0.21) 0.08 (0.01, 0.18)
HIR.HAD 0.07 (0.01, 0.15) 0.09 (0.02, 0.22)
RCA.ECH 0.04 (0.01, 0.12) 0.02 (0.00, 0.06)
RCA.HAD 0.04 (0.01, 0.10) 0.06 (0.01, 0.15)
CHRM.HAD 0.06 (0.01, 0.15) 0.03 (0.01, 0.09)
CLM.HAD 0.04 (0.01, 0.11) 0.07 (0.01, 0.18)
REMO.HAD 0.07 (0.01, 0.18) 0.12 (0.02, 0.27)
PROMES.HAD 0.05 (0.01, 0.14) 0.08 (0.01, 0.20)
REGCM.HAD 0.08 (0.01, 0.19) 0.06 (0.01, 0.14)
RACMO.HAD 0.12 (0.02, 0.28) 0.12 (0.02, 0.27)
METNO.HAD 0.13 (0.03, 0.29) 0.14 (0.03, 0.30)

aThe 90% probability intervals are given in parentheses.

Figure 9. Combined prediction of abstraction availability: comparison of unweighted and weighted
combinations, A2 scenario.
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to a host of climate impacts assessments that require high-
resolution time series downscaled from climate model
outputs.
[35] An ensemble of RCM outputs has been used to

generate an estimate of the uncertainties in regional climate
change, and a stochastic weather generator has been used to
produce daily weather series for each of the RCM model
outputs. These series have been input to a rainfall-runoff
model of the Thames catchment. Comparison between this
and other studies of the Thames shows that different down-
scalingmethods, even from the sameGCM, can produce very
different results in terms of predicted changes in flow. It has
been shown that the estimation of potential evapotranspira-
tion for future climates is very significant in the assessment of
water resource availability in the Thames catchment.
[36] A Bayesian approach has been used to generate

catchment-specific weighting factors for each of the climate
model outputs and hence a weighted combination of pre-
dictions. An extended sensitivity analysis has been used to
explore the potential range of variation in the predictive
quantity of interest, making use of the variance estimates
obtained from the Bayesian model. The results demonstrate
the prospect of severe reduction in water availability in the
Thames catchment in a wide range of combinations of
climate model projections. This provides the basis for deci-
sion making that is robust to model uncertainties. The
approach to combining ensemble outputs of RCMs with
weather generators and impacts models is generally appli-
cable and is expected to become widely used with the
increasing availability of ensemble model output, for exam-
ple from the forthcoming UKCP09 climate scenarios.
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