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s u m m a r y

The future management of hydrological systems must be informed by climate change projections at rel-
evant time horizons and at appropriate spatial scales. Furthermore, the robustness of such management
decisions is dependent on both the uncertainty inherent in future climate change scenarios and the nat-
ural climate system. Addressing these needs, we present a new transient rainfall simulation methodology
which combines dynamical and statistical downscaling techniques to produce transient (i.e. temporally
non-stationary) climate change scenarios. This is used to generate a transient multi-model ensemble of
simulated point-scale rainfall time series for 1997–2085 for the polluted Brévilles spring in Northern
France. The recovery of this previously potable source may be affected by climatic changes and variability
over the next few decades. The provision of locally-relevant transient climate change scenarios for use as
input to hydrological models of both water quality and quantity will ultimately provide a valuable
resource for planning and decision making.

Observed rainfall from 1988–2006 was characterised in terms of a set of statistics for each calendar
month: the daily mean, variance, probability dry, lag-1 autocorrelation and skew, and the monthly var-
iance. The Neyman–Scott Rectangular Pulses (NSRP) stochastic rainfall model was fitted to these
observed statistics and correctly simulated both monthly statistics and extreme rainfall properties. Mul-
tiplicative change factors which quantify the change in each statistic between the periods 1961–1990 and
2071-2100 were estimated for each month and for each of 13 Regional Climate Models (RCMs) from the
PRUDENCE ensemble. To produce transient climate change scenarios, pattern scaling factors were esti-
mated and interpolated from four time-slice integrations of two General Circulation Models which con-
dition the RCMs, ECHAM4/OPYC and HadCM3. Applying both factors to the observed statistics provided
projected transient rainfall statistics (PTRS) to which piece-wise smoothly varying transient rainfall
model parameterizations were fitted. These fits provided good representations of the PTRS for each
RCM. An ensemble of 100 continuous daily rainfall time series, with steadily varying stochastic properties
which model these projections of transient climate change, was then simulated using a new transient
NSRP simulation methodology for each RCM. Together the ensembles form a 1300 member transient
multi-model ensemble of rainfall time series.

The simulated transient ensemble properties were investigated, identifying RCMs giving rise to unu-
sual behaviour. For the Brévilles, annual rainfall is projected to decrease until 2085 but the change is
highly sensitive to General Circulation Model forcing; ECHAM4-driven RCMs project larger annual
decreases than HadCM3/HadAM3H/P driven RCMs. All RCMs project an increase in winter rainfall and
a larger summer decrease. An increase of �10% in the 10-year return period annual maximum rainfall
is projected by 2085, however both strong increasing trends and a slight decreasing trend are found
for individual RCMs. Compared with transient RCMs, the new methodology provides a number of advan-
tages: reduced biases, point scale scenarios relevant for local-scale impact studies, improved representa-
tion of natural variability and improved representation of extremes.

� 2009 Elsevier B.V. All rights reserved.

Introduction

Downscaling methods are typically used to resolve the mis-
match of scales between coarse General Circulation Model (GCM;
�300 km grid) outputs and hydrological applications at the basin
scale. These may be divided into two main types, dynamical and
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statistical downscaling, which have been reviewed in detail by
Wilby and Wigley (1997) and Fowler et al. (2007). In dynamical
downscaling, Regional Climate Models (RCMs) with a higher spa-
tial resolution and a limited spatial domain are forced by boundary
conditions from a GCM. However, the spatial resolution of the out-
puts is still too coarse for many hydrological applications, there are
biases in relation to observed climate statistics and typically only
one integration or a small ensemble of integrations is available.
Until recently outputs have also generally been restricted to
�30-year ‘time-slices’; e.g. for a control from 1961 to 1990 and
for a perturbed climate from 2071 to 2100. However, climate
change impacts on shorter time horizons (10–50 years) and smal-
ler spatial scales (e.g. river catchment) are of greater relevance to
water resources managers and planners.

Alternatively, a wide range of statistical downscaling methods
have addressed the coarse resolution of GCM outputs by establish-
ing empirical relationships between GCM-resolution climate vari-
ables and local climate. These methods enable climate scenarios
to be generated at a much lower computational cost than dynam-
ical downscaling, particularly where large ensembles of integra-
tions are required. One of the simplest, the perturbation method
(Prudhomme et al., 2002), applies ‘change factors’, calculated as
the multiplicative or additive difference between the control and
future GCM simulations, to observations. More sophisticated sta-
tistical downscaling methods include those based on regression
models (e.g. Hellström et al., 2001), artificial neural networks
(e.g. Cavazos and Hewitson, 2005), analogue methods based on
empirical orthogonal functions (e.g. Zorita and von Storch, 1999),
weather typing schemes (e.g. Goodess and Palutikof, 1998) and
stochastic methods, including weather generators (e.g. Wilks,
1992). Stochastic methods such as weather generators confer the
advantage of being able to model natural climatic variability at
time scales from daily to sub-decadal and may be resampled many
times to produce ensembles of projections, though variability aris-
ing from volcanism, teleconnections or sun-spot cycles is not in-
cluded. They have been used to generate climate change
scenarios for hydrological impacts assessment, e.g., Scibek and Al-
len (2006) derived change factors from a GCM and used these in
conjunction with a weather generator to produce simulations for
three stationary future time-slices for an aquifer in Canada. The
Environment Agency Rainfall and Weather Impacts Generator
(EARWIG; Kilsby et al., 2007) applies change factors for a more
extensive range of statistics derived from RCM simulations and is
capable of generating stationary climate change scenarios at the
point scale or for river catchments in the UK. This approach has
been validated against RCM simulations for the UK Climate Projec-
tions (Jones et al., 2009).

Key issues remain in the application of downscaling methods to
hydrological impacts assessments. The first of these is the provi-
sion of decision-making tools for planning and management that
are robust to uncertainty in future scenarios (Fowler and Wilby,
2007) such as that arising from the climate modelling process,
e.g. grid resolution, process parameterisation, model physics and
emissions scenario (e.g. Giorgi and Francisco, 2000; Covey et al.,
2003). Some of these uncertainties have been analysed by running
perturbed-physics climate model simulations in which model
parameters are varied within their range of uncertainty (e.g. Mur-
phy et al., 2004). Alternatively methods using multi-model ensem-
bles to provide probabilistic projections of climate change have
recently been developed (Allen et al., 2000; Palmer et al., 2005).
However, only limited research has applied such probabilistic
methods to the simulation of the impacts on hydrological systems
(e.g., Wilby and Harris, 2006; Fowler et al., 2007).

A second key issue is the need to produce scenarios for time
horizons that are ‘impact-relevant’. Planners and managers of
many hydrological systems, such as water resources and flood

infrastructure, require realistic estimates of climate change for
the near-future. Statistical downscaling relationships can be ap-
plied directly to transient GCM simulations (e.g. Benestad, 2002;
Burlando and Rosso, 2002; Serrat-Capdevila et al., 2007) and tran-
sient RCM integrations are now becoming available through pro-
jects such as the EU-funded ENSEMBLES (Hewitt and Griggs,
2004) and UK Climate Projections (Murphy et al., 2007). However,
probabilistic scenarios of climate change impacts would require a
large number of computationally expensive GCM or RCM integra-
tions, would still contain biases in relation to observations and,
particularly for GCMs, require some form of downscaling for use
in hydrological impact studies.

Here we address both issues with a hybrid dynamical and sta-
tistical downscaling scheme to generate a large multi-model
ensemble of transient climate change rainfall scenarios with spa-
tial and temporal scales of relevance to hydrological planners
and managers. This involves the development of a new transient
rainfall generator based on the EARWIG approach (Kilsby et al.,
2007) which is demonstrated using projections from 13 RCM inte-
grations from the PRUDENCE project (Christensen et al., 2007) for
the Brévilles spring in northern France. Transient scenarios are of
particular interest for the managers of the previously potable but
now polluted Brévilles spring as they are concerned with when
the aquifer system is likely to achieve good potable water quality
status rather than considering aquifer response to a stationary
time-slice future climate scenario (e.g. 2071–2100). Ultimately
such analysis will not provide a precise date when this will be
achieved but instead a distribution of years, where the distribution
represents elements of the uncertainty arising from natural cli-
matic variability and from climate model uncertainty.

Meteorological data and climate model outputs

Observations

The Brévilles spring rises from a well instrumented hill top
aquifer of �3 km2 located 500 m south of Buhy, about 40 km
north-west of Paris in northern France (Fig. 1). Historically this
spring provided drinking water but currently the water is undrink-
able due to atrazine pollution caused by agricultural practices from
the 1960s to the 1990s (Roulier et al., 2006). The temporal develop-
ment of the spring’s quality and quantity are interesting from a
management perspective and may be sensitive to unsteady climate
change effects. Therefore this spring was selected as a case study
within the AquaTerra project (Barth et al., 2009). A 19-year daily
rainfall series for the period 1988–2006 was available for a
raingauge located at Buhy. This series indicates an annual rainfall
of 736 mm distributed fairly uniformly throughout the year,
although August is drier and December is wetter than average. In
addition, the summer months from June to September have fewer
wet days than other months.

Climate models

Different climate models adopt a range of physical models of
processes and parameterize subgrid scale processes differently
and so vary in their ability to accurately model atmospheric pro-
cesses. Future projections of climatic changes are therefore subject
to many sources of uncertainty. One way of partially representing
these uncertainties is through the use of multi-model ensembles,
as in the EuropeaN Union Fifth Framework Programme (FP5)
PRUDENCE project (Prediction of Regional scenarios and Uncer-
tainties for Defining EuropeaN Climate change risks and Effects;
Christensen et al., 2007). The PRUDENCE project provides high spa-
tial resolution (�0.5� � 0.5�) time-slice simulations of European

A. Burton et al. / Journal of Hydrology 381 (2010) 18–32 19



Author's personal copy

climate for the control period, 1961-1990, and for a future sce-
nario, 2071–2100, for a range of RCMs. These time-slice simula-
tions represent a stationary climate over each 30-year period.
Table 1 describes the 13 PRUDENCE RCMs (see also Jacob et al.,
2007; and Fowler and Ekström, 2009) used here, each of which
used the SRES A2 (medium–high) (Nakicenovic et al., 2000) emis-
sions scenario used by most of the available experiments.

Each PRUDENCE RCM derives its boundary conditions from a
GCM (Table 1) and so the choice of driving GCM introduces an
additional layer of uncertainty in future projections. However, this
representation of uncertainty is constrained by the experimental
framework provided by the PRUDENCE project (Déqué et al.,
2007). Boundary conditions for the RCMs are derived from what
may be considered to be two different GCMs, the HadAM3H atmo-
sphere only model (Pope et al., 2000) and the ECHAM4/OPYC cou-
pled atmosphere–ocean model (Roeckner et al., 1996). The
HadRM3P and ARPEGE RCM simulations derive boundary condi-
tions from HadAM3P and the coupled atmosphere–ocean model
HadCM3 respectively. Both HadAM3H and HadAM3P are dynami-
cally downscaled to an intermediate resolution from the HadCM3
coupled atmosphere–ocean model and are thus closely related.

The spatial extent of the aquifer is considerably smaller than the
relevant RCM grid cell, however sampling from the smallest reso-
lution of a numerical model may be sensitive to numerical instabil-
ities in the RCM. Therefore the time series of the daily rainfall was
obtained for each RCM for the nine grid cells centred on the

Brévilles spring for the control and future time-slices. Together
these RCMs provide a range of alternative representations of cli-
mate change so providing a representation of the uncertainty of
climate models’ projections. This will be an underestimate, how-
ever, as components of the uncertainty are not included, e.g. the
range of models may not fully represent the full range of possible
climate changes, decadal and sub-decadal variability arising from
teleconnections is not well represented and only one emissions
scenario is considered.

The projected global mean temperature was also obtained from
the Intergovernmental Panel on Climate Change (IPCC) data centre
for four 30-year time-slices (centred on the years 1975, 2025, 2055
and 2085) extracted from transient integrations of the two GCMs
for the IPCC SRES A2 emissions scenario.

Methodology

A transient Neyman–Scott Rectangular Pulses model

Stochastic rainfall models based on Poisson cluster processes
represent rainfall occurrence and amount as a single continuous
process and are attractive in that they represent the observed
temporal clustering nature of rainfall. They have been used widely
over the last 20 years following Rodriguez-Iturbe et al. (1987) and
two main variants, the Neyman–Scott Rectangular Pulses (NSRP)
and the Bartlett–Lewis Rectangular Pulses models, have been
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Fig. 1. The location of the Brévilles spring in northern France.

Table 1
The 13 RCMs used from the PRUDENCE project. The AquaTerra acronyms are used throughout this paper, the suffix of each denotes the driving GCM.

AquaTerra acronym Institute RCM Driving GCM PRUDENCE acronym

HIRHAM_H DMI HIRHAM HadAM3H A2 HC1/HS1
HIRHAM_E DMI HIRHAM ECHAM4/OPYC A2 ecctrl/ecscA2
RCAO_H SMHI RCAO HadAM3H A2 HCCTL/HCA2
RCAO_E SMHI RCAO ECHAM4/OPYC A2 MPICTL/MPIA2
CLM_H GKSS CLM HadAM3H A2 CTL/SA2
RACMO_H KNMI RACMO HadAM3H A2 HC1/HA2
METNO_H METNO HIRHAM HadAM3H A2 HADCN/HADA2
HAD_P_H HC HadRM3P HadAM3P A2 adeha/adhfa
CHRM_H ETH CHRM HadAM3H A2 HC_CTL/HC_A2
REMO_H MPI REMO HadAM3H A2 3003/3006
PROMES_H UCM PROMES HadAM3H A2 control/a2
REGCM_H ICTP RegCM HadAM3H A2 ref/A2
ARPEGE_H Météo-France Arpège HadCM3 A2 DA9/DE6
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extensively developed and evaluated (Velghe et al., 1994; Onof
et al., 2000; Burton et al., 2008).

The NSRP model is the basis for standard UK industrial urban
drainage design software, regional parameterizations have been
obtained for single-site applications to UK raingauges
(Cowpertwait and O’Connell, 1997) and a spatial–temporal version
of the model has been developed (see Cowpertwait, 1995; Burton
et al., 2008). The NSRP model has been shown to realistically repro-
duce both daily and hourly extreme rainfall for both single-site
(e.g. Cowpertwait, 1998; Kilsby et al., 2000, 2004, 2007) and
multi-site investigations in Europe (Cowpertwait et al., 2002;
Burton et al., 2008). For the assessment of future climate projec-
tions the NSRP model has been used in a stochastic downscaling
role either (i) fitted to projected monthly rainfall statistics (e.g.
Kilsby et al., 2000) or (ii) conditioned on Lamb weather types
(Fowler et al., 2000, 2005). Developing the first approach, the NSRP
model has been incorporated into EARWIG (Kilsby et al., 2007)
which provides daily rainfall and consistent weather time series
for user-selected locations and catchments in the UK for the pres-
ent day and for future scenarios. It also fulfils a similar role for the
UK Climate Projections 2009 climate change impact scenarios
(Jones et al., 2009). A more detailed review of applications of the
NSRP model is provided by Burton et al. (2008).

Here we develop a single-site transient NSRP model in which
the rainfall process is conceptualised as a sequence of storm events
consisting of temporal clusters of raincells. Storm time origins oc-
cur with a Poisson process and each generates a random number
of raincells each with a time origin that follows the storm origin
after a random time delay. Each raincell has a random rainfall
intensity which remains constant throughout its random duration.
Discrete daily or hourly rainfall time series may be obtained by
accumulating the raincell intensities. The sampling procedures
and parameters of the model’s random variables are given in
Table 2. Transient climate change is modelled by means of differ-
ent parameterizations for each year and seasonality through the
use of different parameterizations for each calendar month. A time
series simulated by this model has specific dates associated with it,
however, it is a projection of synthetic rainfall rather than a fore-
cast. Such a transient simulation is limited in length to the time
horizon of the RCM projections as each simulation year corre-
sponds to a specific year in the future. Therefore, to model the cli-
mate’s natural variability it is necessary to generate an ensemble
consisting of a number of different realizations of the simulated
transient rainfall time series. It must be noted however, that the
natural variability being modelled is limited to that typically found
in case study observations and does not include decadal to sub-
decadal variability arising from teleconnections or sun-spot cycles
or large independent influential events such as volcanism.

In contrast with the new transient scheme, the traditional sin-
gle-site NSRP model uses the same set of monthly parameteriza-
tions for each year of the simulation. Consequently rainfall time
series with arbitrary length may be generated for a stationary cli-
mate, i.e. the simulation date of an event does not correspond to an
observation date but instead the entire time-series corresponds to
the average climate of an observational period. The specific distri-

butions used for the number of raincells in a storm and the raincell
intensity may vary between applications. Detailed descriptions of
the single-site NSRP model may be found in Cowpertwait (1991)
and Burton et al. (2008).

Projected rainfall statistics for transient climate scenarios

Rainfall statistics derived from the observed timeseries and
from the RCM control and future time-slices were combined with
GCM derived global temperature projections to obtain a set of pro-
jected transient rainfall statistics (PTRS) for each calendar month
using a change factor and pattern scaling approach described in
this section and summarized in Fig. 2. This considerably extends
the approach of Kilsby et al. (2007) which only projects statistics
for discrete time-slices of a single climate model. Here, a set of
six statistics were selected to characterise rainfall: the five used
by Kilsby et al. (2007), daily mean, daily variance, the probability
of a dry day1 (PDD; <1 mm), daily skewness coefficient and daily
lag-1 autocorrelation (AC); and one with particular relevance to
groundwater applications, the variance in monthly (specifically
672 h) accumulation.

Step 1 (see Fig. 2) is based on the change factor or ‘perturbation’
approach (Prudhomme et al., 2002). Projected future changes to
observed point rainfall statistics are assumed to be in proportion
to the spatially averaged rainfall changes simulated by an RCM.
Such an approach has the benefits of insensitivity to bias in RCM
projections and simplicity. Change factors, aR

g;i Eq. (1), were calcu-
lated to measure the change in each statistic, g, for each RCM, R, be-
tween the control (Con) and future (Fut) time-slices for each
calendar month, i, for the grid box corresponding to the study area.
Since PDD and AC can only take values on a limited range they
were first transformed using the invertible transformations given
by Eq. (2) (Kilsby et al., 2007) and Eq. (3) respectively before eval-
uating their change factors.

aR
g;i ¼

gR
Fut;i

gR
Con;i

ð1Þ

XðPDDÞ ¼ PDD
1� PDD

ð2Þ

WðACÞ ¼ 1þ AC
1� AC

ð3Þ

(2)

RCM control and future
time slice scenarios Change factors

Observed rainfall statistics
centred on 1997

Projected transient 
rainfall statistics

Interpolated transient
pattern scaling factors

Four GCM time-slices: 
1975, 2025, 2055 and 2085

Transient scaled
change factors

Transient scaled
change factors

rebased to 1997

(1)

(3)

(4)

(5)

(2)

RCM control and future
time slice scenarios Change factors

Observed rainfall statistics
centred on 1997

Projected transient 
rainfall statistics

Interpolated transient
pattern scaling factors

Four GCM time-slices: 
1975, 2025, 2055 and 2085

Transient scaled
change factors

Transient scaled
change factors

rebased to 1997

(1)

(3)

(4)

(5)

Fig. 2. Schematic summarizing the procedure used to prepare the projected
transient rainfall statistics. Numbering corresponds to the steps described in the
text.

Table 2
The transient NSRP model’s random variables (RVs) detailing the corresponding
stochastic sampling procedure, parameter and the parameter’s unit.

Random variable Sampling Parameter Unit

Storm origin time Poisson process k (1/h)
Number of raincells Poisson RV m (–)
Raincell origin delay Exponential RV b (1/h)
Raincell intensity Exponential RV n (h/mm)
Raincell duration Exponential RV g (1/h)

1 The importance of clearly specified dry day thresholds is discussed in Burton et al.
(2008). The threshold used here is chosen for consistency with typical climate model
analyses (e.g. Haylock et al., 2006) and the EARWIG methodology (Kilsby et al., 2007).
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In numerical models the limits to process integration and
numerical instabilities at the grid scale means that projections
for a single RCM grid box must be treated with caution. However
the RCM projections of each rainfall statistic, as used in Eq. (1),
are temporal averages estimated from 30-year time-slices, which
has the advantage of reduced sample variability. Change factors
for the nine element grid centred on the study area were found
to be spatially consistent indicating that the results from the single
RCM grid box centred on the Brévilles spring was appropriate for
use for this study.

Whilst the change factor approach provides estimates of how
rainfall statistics might vary between the control and a specific
future time-slice, to estimate transient statistics a method is re-
quired to project the likely variation during the intervening period.
Pattern scaling (Santer et al., 1990; Mitchell, 2003) is in wide-
spread use providing a pragmatic means to produce scenarios for
stationary time-slices not covered by GCM/RCM simulations. Pat-
tern scaling makes the assumption that future changes in climatic
variables will occur steadily and in proportion to the projected
change in global mean temperature. Mitchell (2003) and Tebaldi
et al. (2004) have analysed a range of GCM experiments and found
these assumptions to be generally accurate for temperature and
precipitation change at seasonal and grid scales.

The pattern scaling for this study was based on the HadCM3 and
ECHAM4 projections of global mean temperature, TG

y , available for
periods centred on the years 1975 (control), 2025, 2055 and 2085
(future). These were used to calculate the scale factor, SFG

y , for each
year, y, and GCM, G, according to Eq. (4). For the new transient meth-
odology, scale factors were estimated for the intervening years by
linear interpolation (step 2) to obtain a continuous set of transient
scale factors (Fig. 3). ECHAM4 projects a global mean temperature
increase by 2100 that is slightly greater than that for HadCM3. There-
fore three results from the GCM projections of the control-future
period are shown by Fig. 3: both GCMs project global temperature in-
crease with an increasing rate; ECHAM4 has a consistently greater
temperature increase than HadCM3; ECHAM4 has a slightly more
evenly distributed temperature increase than HadCM3.

SFG
y ¼

TG
y � TG

1975

TG
2085 � TG

1975

ð4Þ

Pattern scaling was applied to the change factors (step 3) by
assuming that the future change in rainfall statistics will be in pro-
portion to the interpolated scale factors, Eq. (5), where /R

g;y;i are
scaled change factors and G(R) indicates the GCM providing lateral
boundary conditions to the RCM, R (see Table 1).

/R
g;y;i ¼ 1þ ðaR

g;i � 1ÞSFGðRÞ
y ð5Þ

Since the central year, Y = 1997, of the observed data period
(1988–2006) was distinct from the centre of the control period
(1961–1990) /R

g;y;i was rebased to year Y using /R
g;Y;i (step 4). Note

that if observations were instead centred on the control period,
/R

g;Y;i would be one. The PTRS, gEst;R
y;i , were then calculated (step 5)

by scaling the observed rainfall statistics, gObs
Y;i , according to the pro-

portionality assumption stated in step 1. Eq. (6) summarizes both
steps 4 and 5 algebraically. Finally, projected transient PDD and
AC statistics were obtained using their inverse transformations.

gEst;R
y;i ¼

/R
g;y;i

/R
g;Y ;i

gObs
Y ;i ð6Þ

The PTRS then comprised the six estimated statistics for each
year of the transient period, 1997–2085, for each calendar month
and for each RCM. The PTRS is illustrated using the ARPEGE_H
scenario projections: Fig. 4a shows the transient PDD for July;
Fig. 4b shows the seasonal cycle for selected years during the
transient period. It can be seen that ARPEGE_H projects a steady in-
crease in the number of dry days in the summer (May–September)
but almost no change in PDD in other months.

Model fitting

Following the preparation of a full set of PTRS for each RCM, the
development of a methodology to obtain a parameterization of the
transient NSRP rainfall model was required. A two-stage process
was adopted. Firstly, a stationary (i.e. non-transient) single-site
NSRP model was fitted to the observed rainfall statistics. This in-
volved adjusting the automatic model fitting procedure to obtain
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the optimal match to observed rainfall by adjusting statistic
weights and parameter bounds, reducing the number of fitted
parameters and validating the fitted model against observed rain-
fall properties. Secondly time series of model parameters were ob-
tained to represent the transient climate, using an iterative fitting
procedure based on that for the initial stationary fit.

Fitting a stationary NSRP model to observations
The stationary NSRP model may be fitted automatically for each

calendar month using a bounded numerical optimization of an
objective function comprising a weighted sum of squared errors
between a selected set of observed statistics and their equivalent
analytically expected model statistics (Burton et al., 2008). How-
ever, a set of optimization weights and parameter bounds must
be selected to ensure both model physicality and the optimal
match of observed statistics for the application. As sub-daily ob-
served statistics were not used the g parameter was fixed to a
value of 4 h�1 (corresponding to a mean raincell duration of
15 min) to avoid over-parameterization involving the g and n
parameters, which as a pair are only sensitive to finer time-scale
data. This considerably improved the identifiably of the n parame-
ter and reduced the stationary NSRP model fitting problem to four
parameters. Further, the lower bound to b was set to 0.01 h�1 to
limit the effect of numerical drift biases, whereby the rainfall prop-
erties of the preceding month affect the following month by means
of the presence or absence of rainstorms which persist beyond the
end of the month (e.g. as noted by Fowler et al. (2000) in an appli-
cation of a stationary NSRP model to simulate rainfall in Yorkshire,
UK). Fitting the stationary NSRP model to the observed statistics
then provided a full set of monthly model parameters representing
a stationary climate corresponding to the observed record.

To evaluate the model’s representation of the present day cli-
mate an assessment was made of two sets of climatic diagnostics:
the statistics used to calibrate the NSRP model and extreme rainfall
statistics which were not used in the fitting. An ensemble of 50
synthetic 19-year stationary-climate time series was generated
using a stationary NSRP generator with the parameters fitted to
the observed record. Fig. 5 compares the observed monthly rainfall
statistics with the corresponding fitted statistics and the distribu-
tion of the simulated statistics evaluated from the stationary-cli-
mate ensemble. The difference between each fitted and
corresponding mean simulated statistic represents a combination
of stochastic variability and biases in the estimation of model
parameters. Since these differences are generally small compared
with the variability of the model statistics then in general the ob-
served statistics are simulated well by the stationary NSRP model.

Additionally the RCM 30-year control time-slice statistics are
also shown for the grid cell representing the Brévilles, albeit for
spatial average rainfall and noting that the control period is cen-
tred on 1975 and the observation on 1997. This allows an assess-
ment of the control RCMs against the observed climate. No
individual RCM was found to match all of the statistics well: the
seasonality of the mean is too high with large overestimates for
November–January; PDD, daily variance and skew are typically
underestimated; AC is typically overestimated. However, grid
square average rainfall is expected to have lower PDD, variance
and skew and higher AC than point rainfall. On spatial scales of a
grid square or greater such biases may not be of concern, however,
biases in mean rainfall statistics will remain and for small catch-
ments the need for downscaling is indicated.

Fig. 6 shows a comparison of daily annual maxima from the 19-
year observed dataset, an ensemble of fifty 19-year observed-cli-
mate stationary NSRP simulations and the thirteen 30-year RCM
control time-slice integrations using a Gumbel plot (e.g. Shaw,
1994). Since the annual maxima of the observations, NSRP simula-
tions and RCM time series were all evaluated for discrete daily

time-steps rather than for arbitrary 24 h periods, these have been
multiplied by a fixed-window correction factor of 1.16 (Dwyer
and Reed, 1995) to provide an estimate of the true 24-h maximum.
This increases the absolute value of all maxima shown but not their
relative values. A further correction was also applied to the RCM
extremes to account for comparing spatial average extremes with
point samples. Assuming a grid size of approximately 2500 km2

an areal reduction factor, ARF, of �0.864 for daily extremes is im-
plied (see NERC, 1975; Svensson, 2007), so the RCM maxima were
scaled by a factor (1/ARF). Each of the NSRP simulated series of ex-
tremes was ranked in the same manner as for the observed series,
following the standard Gumbel plotting procedure (e.g. Shaw,
1994), and the 10th, 50th and 90th percentiles were evaluated
for each return period. The extremes generated for the stationary
simulation of the observed climate are seen to provide a good
match to the 19 years of observed extremes, which were not used
in model fitting, as well as an estimate of the sample variability. In
comparison three of the RCMs appear to match the observations
for some return periods whereas the majority of the RCMs are
shown to underestimate the extremes.

Fitting a transient NSRP model
An initial transient NSRP model parameterisation was obtained

using the same weights, parameter bounds and reduced set of
parameters as used for fitting the stationary model of the observed
climate. The automatic fitting scheme was used to fit the model
independently to the PTRS of each month and year of the transient
period (1997–2085) providing transient time series of parameters
for each RCM and month. Whilst fitting an NSRP model to a single
year of observations is not recommended due to sample variability,
here the PTRS for each year is calculated from 19 years of observa-
tions and 30-year RCM integrations and so has an acceptable level
of sample variability. Typically the transient time series of param-
eters closely approximate smooth curves, for example as illus-
trated in Fig. 7a for the ARPEGE_H RCM. Although some of the
parameter time series exhibit some roughness as shown in
Fig. 7b, this is of relatively small magnitude compared with the
overall trend in the parameter. Kinks may also occur in the time-
series when a parameter hits a bound (e.g. Fig. 7c and d) or the
trend in a parameter may reverse if the fitting error of a statistic
changes sign. Smooth parameterizations throughout the transient
period, as typically obtained here, are desirable as these indicate
that the model is not over-parameterized whereas parameteriza-
tions that are highly variable from one year to the next may pro-
duce unsteady projections in which certain years are simulated
with unusual rainfall characteristics in all transient timeseries
realizations.

Three different effects can affect the accuracy with which sim-
ulations of each transient year match the PTRS. Firstly, an exact
match between the PTRS and the expected simulated statistics
may not be achieved by the model fit. Secondly, biases between
the expected and actual simulated statistics may occur, either
though numerical drift (see ‘‘Fitting a stationary NSRP model to
observations”) or from the approximate analytical expression for
PDD used in the automatic fitting (e.g. see Burton et al., 2008).
Thirdly, the actual simulated statistics are a realization of the sto-
chastic NSRP process, and so are themselves random variables sub-
ject to sampling variability.

Two refinements were therefore made to the initial transient
fitting procedure to address the first two of these effects. Firstly a
correction was made for biases in the mean and PDD arising from
numerical drift and the approximate PDD expression. For each
RCM, a separate stationary simulation of 1000 years was generated
for each year in the transient period so that simulation statistics
could be estimated with low sample variability. Then for each
RCM and calendar month the transient-average mean and PDD
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biases were estimated and used as an additive bias-correction to
the transient projected mean and PDD statistics. This refinement
was found to significantly reduce these biases even for cases when
the mean or PDD statistics varied non-linearly along the transient.
The second refinement involved adjusting the fitting weights to
provide the best overall fit to the PTRS. The transient NSRP model
parameterization for each RCM was then obtained by automati-

cally fitting to the bias-corrected PTRS for each transient year
and month in turn.

A comparison of the PTRS, the fitted statistics and stationary
simulation statistics for each year from 1997 to 2085 is reported
here in detail for only one RCM, ARPEGE_H. Fig. 8 provides an
example comparison of the transient projected, fitted and simu-
lated statistics for ARPEGE_H in June. In this figure a 1000-year
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Fig. 5. Fitted (Fitted) and simulated (Simulated) monthly rainfall statistics for the rainfall model of the observed climate compared with observed statistics from 1988 to 2006
(Observed). The error bars indicate the mean and the 10th and 90th percentiles evaluated from an ensemble of 50 19-year simulations. The control time-slice statistics are
also shown for each RCM (RCMs).
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stationary simulation of each year in the transient is used to pro-
vide a low sample variability estimate of transient simulation
properties. For the mean and PDD the model is well fitted and
the bias-correction successfully removes simulation biases,

although small biases remain (most notably in August and Septem-
ber). For the daily variance, the fitting error is small compared to
the variability in the observed variance statistics but small simula-
tion biases are noticeable in some months, consistent with the drift
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bias affecting the mean. The fit to monthly variance is generally
good, although in March the model under fits the high monthly
variability found in the observed dataset. Biases in the simulated
monthly variance are also small compared with the sampling var-
iability of the observations. AC was fitted with the least precision
of all of the statistics but has a large sampling variability. However,
AC has no simulation bias, except for April in which a small bias
tends to improve the simulation over the fit. For the skewness coef-
ficient most months were fitted well compared with the underly-
ing variability of this statistic although some under-fitting was
noted in Feb and Mar and overfitting in September. The skewness
coefficient is generally unbiased in the simulations. Overall the sta-
tionary simulations were found to provide good matches to the
PTRS.

The transient rainfall parameterizations were similarly evalu-
ated for the other 12 RCMs. Whilst the details of the quality of
the fits and the stationary simulations differed, the characteristics
of the transient time series of parameters, fitted statistics and
1000-year stationary-simulated statistics were found to be broadly
similar to those for ARPEGE_H and for all RCMs provided good fits
to the PTRS.

Results

For each RCM an ensemble of 100 transient NSRP daily simula-
tions were generated for the time period from 1997 to 2085 using
the appropriate transient rainfall parameterization. This produced
a multi-model ensemble consisting of a total of 1300 transient sim-

ulations. Whilst the simulated time series’ values correspond to
specific dates, the values themselves are realizations of stochastic
projections and so represent possible future events rather than
forecasts.

Validation of the ensemble of transient simulations

The multi-model transient ensemble statistics were compared
with the relevant PTRS and the transient fitted statistics to evalu-
ate whether simulations were accurately representing the tempo-
ral changes in the PTRS. First, statistics of the transient simulations
were evaluated for each RCM, ensemble member, year in the tran-
sient series and calendar month. The 10th, 25th, 75th and 90th per-
centiles across each ensemble were then evaluated for each case of
RCM, statistic, transient year and month. Fig. 9 shows the time
series of these percentiles compared with the corresponding PTRS
for ARPEGE_H for January and July, which represent one of the best
and one of the worst monthly fits to the PTRS. The skewness coef-
ficient and monthly variance cannot be compared with the PTRS in
the manner used in Fig. 9, and are therefore excluded, as the former
is biased by sample size and the latter cannot be estimated from a
single month’s data.

Fig. 9 shows that the percentiles estimated from the 100-mem-
ber ensembles are highly variable as expected for a single year’s
data. In most cases the quartiles also indicate considerable
variability when compared with the fitting and simulation biases;
for example the magnitude of the bias-correction of the daily
mean and the PDD statistics is relatively minor compared to the

2000 2020 2040 2060 2080

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Year

D
ai

ly
 m

ea
n 

(m
m

)

(a)

Projection
Fit
Sta. Sim

2000 2020 2040 2060 2080
0.

60
0.

65
0.

70
0.

75
0.

80
0.

85

Year

PD
D

(b)

2000 2020 2040 2060 2080

0
5

10
15

20
25

30
35

Year

D
ai

ly
 v

ar
ia

nc
e 

(m
m

2 )

(c)

2000 2020 2040 2060 2080

0
50

0
10

00
15

00
20

00
25

00

Year

M
on

th
ly

 v
ar

ia
nc

e 
(m

m
2 )

(d)

2000 2020 2040 2060 2080

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Year

La
g−

1 
au

to
co

rre
la

tio
n

(e)

2000 2020 2040 2060 2080
0

2
4

6
8

Year

Sk
ew

ne
ss

(f)
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stochastic variability in the ensemble simulation. For most cases
the simulated statistics lie close to the means of the distributions
and the quantiles appear to follow the PTRS in a smooth and tem-
porally consistent manner. However, Fig. 9f and h illustrate cases
for ARPEGE_H where simulation biases vary throughout the tran-
sient period, which may slightly bias projections for this month.

The other 12 RCMs were also analysed across all months and
statistics. Overall the fits appear to be reasonable representations
of the PTRS for each RCM and to provide a reasonable representa-
tion of the trends in the PTRS. Exceptions tend to be of relatively

small magnitude compared with the ensemble variability of the
simulated transient time series.

Assessment of simulated future changes in rainfall

The utility of the multi-model ensemble of simulated transient
rainfall time series ultimately arises from its use as input to a
groundwater quantity and water quality model for the Brévilles,
enabling the production of probabilistic transient hydrological
scenarios which allow the impacts of future changes in climate
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to be evaluated. However, in this section simple illustrative analy-
ses of the projected changes to rainfall and the associated uncer-
tainties in those projections are detailed.

First, the multi-model ensemble of simulated annual rainfall
was examined and is shown in Fig. 10. For each year the 10th,
25th, 75th and 90th multi-model ensemble-percentiles are shown.
Additionally the transient time series of the 50th percentile of an-
nual rainfall corresponding to each RCM is also shown. Whilst most
RCMs were found to project a small decrease in annual rainfall over
the simulated transient period, three were found to project a much
stronger decrease (HIRHAM_E, HAD_P_H and RCAO_E). Fig. 10 also
shows that the variability of annual totals is projected to remain
largely unchanged.

Future changes in rainfall are not expected to be evenly distrib-
uted throughout the year and therefore linear trends in annual and
seasonal rainfall were evaluated for all 13 RCM ensembles (Table 3)
which in most cases were significant at the 5% level. Comparison of
the annual trend with the PTRS confirmed that these were consis-
tent. All of the RCMs project decreasing trends in annual rainfall,
decreasing trends in summer rainfall and increasing trends in win-
ter rainfall (of a smaller magnitude than the summer decreases). In
autumn most models project a decrease which is typically smaller

than the increase in winter rainfall. Projections for spring are split
as to whether the trend is increasing or decreasing. RCAO_E shows
the largest decreasing trend in spring and summer, HAD_P_H and
HIRHAM_E the smallest winter increases, HAD_P_H the largest
decreasing autumn trend and HIRHAM_E the second largest
decreasing spring trend. Consequently, these three RCMs project
the greatest decreases in annual rainfall seen in Table 3 and
Fig. 10. It is also interesting to note that the annual trends are
strongly affected by the driving GCM whereby RCMs taking bound-
ary conditions from ECHAM4 project larger decreases in annual and
spring rainfall than the corresponding HadAM3H forced RCMs. The
unusual behaviour of the HAD_P_H model may perhaps relate to
forcing by the HadAM3P GCM in contrast with the other RCMs in
the HadCM3 group. These annual and seasonal analyses provide
an example of how the multi-model approach can represent a range
of alternative projections arising from a range of alternative dynam-
ical downscaling schemes and driving GCM boundary conditions.

Summer and winter trends in daily mean and PDD are shown in
Fig. 11. In summer the multi-model ensemble projects a decrease in
mean rainfall throughout the period (with the rate of decrease
becoming larger through time) whereas for winter there is an
increasing trend (with the rate increasing through time) in mean
rainfall which is of a slightly smaller magnitude than the summer
decrease (compare Fig. 11a and b). Outlying behaviour by RCAO_E,
HAD_P_H, HIRHAM_E and ARPEGE as described in Table 3 is also
shown in Fig. 11. In summer the multi-model ensemble projects a
�10% increase in the PDD. RCAO_E again follows a distinct trajec-
tory, projecting a much greater increase in the PDD than the other
RCMs. This change contributes to two-thirds of the 59% decrease
in mean summer rainfall described in Table 3 for this RCM, by
decreasing the number of wet days. For the winter season, most
RCMs indicate a decrease in PDD of around 8% (with the rate
increasing through time), which corresponds to an increase in win-
ter mean rainfall of approximately 0.4 mm/year. This accounts for
most of the change to winter mean rainfall described in Table 3
for the majority of RCMs. RCAO_E, HAD_P_H, HIRHAM_E and ARPE-
GE_H are exceptional in that they show little change in winter PDD
as well as the smallest winter increase in mean rainfall (Table 3).
Therefore, the increase in winter mean rainfall in these models must
arise mainly from an increase in the wet day rainfall amount.

Although changes to mean climate are of interest, the most sig-
nificant hydrological impacts are likely to be associated with
changes in extreme events. Analyses of rainfall intensities in
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Fig. 10. The multi-model ensemble variation of the transient-simulated annual
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10th–90th percentile range (darker grey). Time series of the simulated median
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Table 3
The fitted linear trends in the simulated annual and seasonal total rainfall for each RCM’s ensemble. The standard error of each trend is roughly 0.05 mm/year for the annual
trends and up to 0.03 mm/year for the seasonal trends. All trends are significant at the 5% level except in MAM for four of the RCMs (omitted). The mean, minimum and maximum
of the annual and seasonal trends over the RCM multi-model ensemble are indicated. The mean observed annual and seasonal rainfall totals are provided for reference.

RCM Annual (mm/y) MAM (mm/y) JJA (mm/y) SON (mm/y) DJF (mm/y)

PROMES_H �0.16 0.11 �0.53 �0.25 0.49
ARPEGE_H �0.18 �0.09 �0.44 0.07 0.28
REMO_H �0.21 0.16 �0.55 �0.30 0.49
REGCM_H �0.30 �0.65 �0.14 0.46
CLM_H �0.31 0.09 �0.70 �0.25 0.54
RACMO_H �0.42 �0.78 �0.18 0.48
HIRHAM_H �0.45 �0.58 �0.33 0.43
CHRM_H �0.46 0.05 �0.82 �0.26 0.57
METNO_H �0.53 �0.72 �0.30 0.43
RCAO_H �0.55 0.15 �0.90 �0.27 0.46
HIRHAM_E �1.01 �0.25 �0.64 �0.31 0.20
HAD_P_H �1.06 �0.05 �0.70 �0.52 0.20
RCAO_E �1.46 �0.46 �1.15 �0.29 0.42

Mean �0.55 �0.01 �0.70 �0.26 0.42
Min �1.46 �0.46 �1.15 �0.52 0.20
Max �0.16 0.16 �0.44 0.07 0.57

Observed (mm) 736 173 173 186 203
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observed data on global (e.g. Frich et al., 2002) and regional scales
(e.g. Fowler and Kilsby, 2003) indicate that the high latitudes of the
northern Hemisphere are currently experiencing a trend towards
increased rainfall and enhanced variability, particularly in winter.
Such a trend is likely to continue into the future as GCMs indicate
that enhanced greenhouse conditions will result in increases in the
frequency and intensity of heavy rainfall (e.g. Giorgi et al., 2001;
Tebaldi et al., 2006).

To assess whether RCM changes in heavy rainfall were consis-
tent with downscaled projections, a stationary climate comparison
was made of the projected proportion change in the median annual
24-h maximum rainfall between the control and the future scenar-
ios for each RCM and between downscaled stationary NSRP simu-
lations corresponding to each scenario. The RCMs were found to
project a mean increase of 11% compared with the mean down-
scaled projection of a 6% increase. These estimates are both statis-
tically significant compared with a no-change hypothesis though
indistinguishable from each other at the 95% confidence level,
although the projections of change are highly variable (RCM and
downscaled projections of change have ranges of 35% and 16%
respectively).

The likely transient changes in extreme rainfall for the Brévilles
spring were assessed by evaluating the annual maximum daily
rainfall for each year and for each simulated time series in the tran-
sient 100-member ensemble for each RCM. The 10-year return
period 24-h event was estimated for each RCM and year as the
mean of the 10th and 11th ranked maxima across the ensemble
multiplied by the fixed window correction factor. This provided a
time series of 10-year return period events for each RCM’s ensem-
ble to each of which linear and quadratic regression fits were
made, each constrained to the 1997 value. Table 4 shows the coef-
ficient of the linear fit, a1, and the rate of change of the quadratic
fit, a2, where these were significant at the 5% level. Fig. 12 also
shows the fitted quadratic trends, demonstrating the range of pro-
jected changes and identifying models with outlying behaviour.

REGCM_H was found to project the largest increasing trend in
extreme rainfall, which is projected to increase with an increasing
rate over the 1997–2085 period. The models projecting the least
change were PROMES_H for which no trend can be discerned, HIR-
HAM_H which shows a small linear increase and HAD_P_H which
is the only model to project a decreasing trend in extreme rainfall.
The remaining nine RCM 100-member ensembles all project simi-
lar increases of �10%.

This analysis provides an example of an assessment of transient
and future climate that cannot be carried out using RCM integra-
tions alone because of biases and short time-slice integrations. In
this case the analysis uses the stochastic conceptualisation of rain-
fall embodied in the NSRP model (validated against the observed
data) to downscale the RCM projections to the local scale required
for impact studies. Furthermore, the multi-model, ensemble and
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Fig. 11. The transient time series of the ensemble-mean (a) daily mean, summer (JJA), (b) daily mean, winter (DJF), (c) PDD, summer, and (d) PDD, winter, statistics for each
RCM. Outlying RCMs are distinguished by dotted lines: (a) RCAO_E; (b) HIRHAM_E, HAD_P_H and ARPEGE_H; (c) RCAO_E; and (d) HIRHAM_E, HAD_P_H, RCAO_E and
ARPEGE_H.

Table 4
Coefficients of trends fitted to the simulated ensemble of the 10-year return period
annual maximum 24-h rainfall event for each RCM. The coefficient a1 is for a linear
trend and the coefficient a2 is the rate of change of a quadratic trend. Only trends
significant at the 5% level are shown.

Model a1 a2

(mm/year) (mm/year2)

HAD_P_H �0.018
PROMES_H
HIRHAM_H 0.030
METNO_H 0.062
ARPEGE_H 0.071
RCAO_H 0.073
CLM_H 0.082
HIRHAM_E 0.084
REMO_H 0.090
CHRM_H 0.091 �0.0017
RCAO_E 0.096
RACMO_H 0.099 0.0023
REGCM_H 0.188 0.0035
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transient nature of the synthetic datasets include relevant ele-
ments that represent the alternative dynamical downscaling
schemes of the various RCMs, alternative future realizations and
time varying future projections respectively.

Discussion and conclusions

Despite the large number of studies applying downscaling
methods to climate models for use in hydrological impacts assess-
ments policy makers and practitioners are not currently provided
with the necessary tools to allow effective robust decision making
over appropriate time-horizons (Fowler and Wilby, 2007). Future
climate scenarios are required that represent future climate uncer-
tainty at the planning and decision making time scales of policy
makers which account for the transient nature of climate change
effects.

We have sought to address these issues by developing a new
methodology to generate a large multi-model stochastic ensemble
of transient climate scenarios for the Brévilles spring in northern
France. Whilst the ensemble provides some very short term projec-
tions, these are stochastic realizations of possible future weather
rather than forecasts. The methodology provides several benefits.
It is a computationally efficient hybrid dynamical–statistical
downscaling methodology which avoids the computational burden
of a transient dynamical downscaling approach and may be auto-
mated easily. A number of additional advantages are also demon-
strated: (i) reduced biases compared with Regional Climate
Model (RCM) simulations; (ii) relevance to the point scale, needed
for local impact assessments, rather than the RCM grid cell; (iii) a
representation of uncertainty, arising from natural variability by
means of a large ensemble of stochastic simulations whereas
RCM ensembles are currently limited to about three members;
(iv) a representation of the structural uncertainty of future climate
models through the use of a multi-model approach to account for
alternative projections of climate change; and (v) improved simu-
lation of extremes compared to most RCM simulations. Such a
transient ensemble allows the evaluation of the probability of an
event or impact by a certain future date or the estimation of a date
by which an event or impact becomes likely. It also provides the
basis for continuous modelling and assessment of the future tem-
poral development of hydrological systems rather than limiting
such analysis to comparisons arising from discrete scenarios.

The new methodology considerably extends and updates an ap-
proach used in the EARWIG weather generator (Kilsby et al., 2007),
which can produce only stationary climate scenarios for four
UKCIP02 time-slices for the UK. A multi-model approach was
adopted whereby 13 RCMs from the PRUDENCE project provided
an up-to-date range of alternative climate change projections. No-
vel sets of projected transient rainfall statistics were estimated,
through the application of change factor and pattern scaling ap-
proaches to observed rainfall statistics, one set representing the
transient climate projected for each RCM. A transient NSRP rainfall
model was developed in which model parameterization was al-
lowed to vary by year, to represent transient climate change, and
calendar month, to represent seasonality. In contrast the stationary
NSRP model (e.g. Burton et al., 2008) could represent seasonality
but reused the parameter set for each simulated year thus provid-
ing a stationary-climate simulation. After fitting, the new model is
able to generate continuous stochastic simulations representing
both seasonal and transient effects for the projected transient per-
iod 1987-2085. Repeated transient stochastic simulations were
used to generate an ensemble of 100 transient rainfall time series
based on each of the RCMs. Together the multi-model ensemble
comprised 1300 simulations and provides a representation of the
uncertainty associated with future projections.

A simple evaluation of the downscaled transient rainfall projec-
tions was carried out. Seasonal analysis of trends derived from the
ensemble of each RCM indicated a decrease (with increasing mag-
nitude) in summer rainfall, a smaller magnitude increase in winter
rainfall (with an increasing rate) and typically a decrease in
autumn rainfall. The overall balance of these trends was for a slight
decrease in annual rainfall. The frequency of rainfall, as measured
by the number of wet days, also appears to increase in winter (with
an increasing rate) and decrease in summer and was found to con-
tribute significantly to seasonal rainfall totals. Change in annual
rainfall also appears to be highly sensitive to the choice of driving
GCM, with ECHAM4-driven RCMs projecting larger annual de-
creases than RCMs driven by HadCM3/HadAM3H/P. 10-year return
period daily extremes estimated from the ensemble of each RCM
indicated a likely increase of �10% by 2085 although the trends
of individual RCMs ranged from an increasing trend of twice this
magnitude to a decreasing trend. These findings are broadly con-
sistent with results reported in the literature (e.g. Tebaldi et al.,
2006; Giorgi et al., 2001).
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Fig. 12. Quadratic curves fitted to the 24-h 10-year return period event time series estimated from each RCM’s transient downscaled ensemble time series. Models exhibiting
outlying behaviours are identified in the legend.
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For management of the Brévilles aquifer the most useful evalu-
ation of climatic changes based on the multi-model ensemble will
derive from a transient groundwater water quantity and quality
assessment using a hydrological model. To support such studies
daily time series of temperature and potential evapotranspiration
need to be estimated that are consistent with the ensemble of rain-
fall time series. For this purpose a weather generator is required,
such as the Climatic Research Unit’s daily weather generator (Jones
and Salmon, 1995; Watts et al., 2004) a second component of the
EARWIG system (Kilsby et al., 2007). Together ensembles of rain-
fall, temperature and potential evapotranspiration may then be
used as input to a hydrological water quantity and quality model
of the aquifer supplying the Brévilles spring.

The new methodology makes the assumptions that changes in
spatial rainfall as modelled by the RCMs will reflect changes in
rainfall observed at a single raingauge and that these changes will
vary steadily and in proportion with global mean temperature. The
fitting precision or the simulation biases of the NSRP model may
vary throughout the transient period which may lead to transient
variation in the simulated time series in addition to projected
changes in the PTRS. However, the main properties of the projected
transient scenarios are broadly reproduced by the transient
parameterizations.

Whilst the strength of the new methodology lies in represent-
ing both natural variability and uncertainty in future climate pro-
jections, this representation underestimates the full contribution
of all sources of uncertainty which will affect projections of both
the magnitude and the timing of climatic changes. The natural
variability will be underestimated because the transient scenarios
do not realistically represent decadal and sub-decadal variability
arising from naturally occurring teleconnections such as the El
Niño Southern Oscillation nor the effects of volcanic activity
which can produce significant effects on global rainfall and tem-
perature patterns. However, transient RCM integrations do not
realistically represent decadal and sub-decadal variability either
so this situation cannot be improved upon using the currently
available RCMs and ensembles. Here the EARWIG approach (Kil-
sby et al., 2007) was extended by deriving change factors from
single runs of each of the 13 PRUDENCE RCMs which were condi-
tioned on two GCMs. It should be noted that these RCMs provide
an ensemble of opportunity rather than describing the full range
of future climate possibilities and so may underestimate the full
range of uncertainty in climate response to global warming. Fur-
thermore in this study only a single, medium–high, CO2 emissions
scenario was selected due to the experimental design of the PRU-
DENCE project, future studies could also include the effects of
other emissions scenarios as suitably large ensembles become
available.

The 19-year observed time series is subject to natural variation
and so uncertainty due to sampling variability is also attached to
the monthly values of each statistic. Whilst characterisation of this
uncertainty is beyond the scope of this paper it should be consid-
ered when interpreting results derived from this simulated dataset.
In contrast, long observed time series, say over 100 years in length,
would already include a component of climatic change. Thus the
implicit assumption that the observations represent a stationary
climate would become invalid. An interesting extension of the ap-
proach reported here would therefore be to devise the means to fit
a rainfall model to a climatically non-stationary observed record.

The new transient NSRP model has a large number of parame-
ters, 4296 (i.e. four parameters per month per transient year plus
two bias-corrections per month), which may make this model ap-
pear over-parameterized. However, the model is fitted to 6408
PTRS (six per month per transient year), the transient time series
of model parameters is smooth and the correct modelling of ob-
served extreme rainfall statistics which were not used in model

parameterization provide evidence that the model is not over-
parameterized.

Whilst the new methodology is based on time-slice projections
from a GCM/RCM pair, transient RCM integrations are now becom-
ing available through projects such as the EU-funded ENSEMBLES
(Hewitt and Griggs, 2004) and UK Climate Projections (Murphy
et al., 2007). Similar to current RCM results, such transient integra-
tions may not comprise large ensembles to represent climatic var-
iability (due to computational expense), they may underestimate
extremes and they may exhibit biases in rainfall statistics. There-
fore a major benefit of the methodology presented here is that such
limitations are addressed and the methodology easily adapted. As
transient RCM projections become available change factors may be
evaluated directly from the transient RCMs thereby eliminating the
need for pattern scaling.

The introduction of a downscaling step between RCM outputs
and hydrological modelling adds complexity. Simpler models or
even omitting the downscaling step altogether should therefore be
considered as alternatives with respect to the ultimate hydrological
application. Multiplicative bias-correction of RCM integrations can-
not correct the frequency of wet days nor the modelling of extremes
and cannot simulate events beyond those already found in the
observational record or the RCM time-slices (limiting the represen-
tation of natural variability). However, the methodology presented
here is relatively simple for the range of advantages it presents
and in addition it also leads to a number of potential extensions
not demonstrated here: relevance to a broad range of hydrological
applications at smaller spatial scales, the simulation of rainfall at
sub-daily time steps and the simulation of spatial rainfall fields.
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