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a b s t r a c t

RainSim V3 is a robust and well tested stochastic rainfall field generator used successfully in a broad
range of climates and end-user applications. Rainfall fields or multi-site time series can be sampled from
a spatial–temporal Neyman–Scott rectangular pulses process: storm events occur as a temporal Poisson
process; each triggers raincell generation using a stationary spatial Poisson process; raincells are clus-
tered in time lagging the storm event; each raincell contributes rainfall uniformly across its circular
extent and throughout its lifetime; raincell lag, duration, radius and intensity are random variables;
orographic effects are accounted for by non-uniform scaling of the rainfall field. Robust and efficient
numerical optimization schemes for model calibration are identified following the evaluation of five
schemes with optional log-transformation of the parameters. The log-parameter Shuffled Complex
Evolution (lnSCE) algorithm with a convergence criterion is chosen for single site applications and an
effort limited restarted lnSCE algorithm is selected for spatial applications. The new objective function is
described and shown to improve model calibration. Linear and quadratic expressions are identified
which can reduce the bias between the fitted and simulated probabilities of both dry hours and dry days
as used in calibration. Exact fitting of mean rainfall statistics is also implemented and demonstrated. An
application to the Dommel catchment on the Netherlands/Belgian border illustrates the ability of the
improved model to match observed statistics and extremes.

� 2008 Elsevier Ltd. All rights reserved.

Software availability

Name of software: RainSim V3
Developer: School of Civil Engineering and Geosciences,

Newcastle University, NE1 7RU, UK
Contact: Aidan Burton, School of Civil Engineering and

Geosciences, Newcastle University, NE1 7RU, UK,
aidan.burton@ncl.ac.uk

Year first available: 2007
Hardware: PC with windows 2000 or XP
User interface: Command line with a simple visual interface
Size: 1 Mb
Availability: May be available for research purposes on applica-

tion to the authors

1. Introduction

Daily and hourly stochastic rainfall models provide useful sup-
porting roles in the analysis of risk and vulnerability within

hydrological and hydraulic systems. These roles include the gen-
eration of synthetic precipitation records where none are available;
the extrapolation of short observed records; temporal downscaling
of observed records; the downscaling of climate change scenarios
in both space and time. Applications of synthetic rainfall data may
then be made in such diverse fields as flood modelling and urban
drainage (e.g. Moretti and Montanari, 2004; Brath et al., 2006;
Dawson et al., 2006; Hall et al., 2006), pesticide fate modelling (e.g.
Nolan et al., in press), landslide modelling (e.g. Bathurst et al.,
2005), desertification vulnerability (e.g. Bathurst and Bovolo,
2004), water resource assessment (e.g. Fowler et al., 2005) and
flood risk assessment (e.g. Kilsby et al., 2000).

Traditional approaches to stochastic rainfall modelling used
Markov chains to simulate the occurrence of wet and dry days in
the precipitation process (e.g. Gabriel and Neumann, 1962). These
readily extend to multi-site models of both amounts and occur-
rence, and sophisticated extensions now exist, e.g. Wilks (1998)
obtains spatially smooth transitions to zero rainfall using spatially
correlated random state variables. Although such models ac-
knowledge the event-based nature of the precipitation process,
they are generally inadequate in the modelling of extremes and
persistence (e.g. Gregory et al., 1992). A number of alternative types
of model have since developed. These include models that, at least
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in part, represent the rainfall process in terms of its scaling prop-
erties (e.g. Pegram and Clothier, 2001; Seed et al., 1999; Jothi-
tyangkoon et al., 2000); conceptual point-process event-based
precipitation models which model the occurrence of precipitation
events as a Poisson process in continuous time (more detail later);
atmospheric state simulators linked with downscaling methodol-
ogies based on multi-site autoregressive models (e.g. Bardossy and
Plate, 1992; Stehlik and Bardossy, 2002); Markov models (e.g.
Fowler et al., 2005; Mehrotra and Sharma, 2005); Generalized
Linear Models (GLMs) (Chandler and Wheater, 2002; Furrer and
Katz, 2007); resampling approaches (Wilby et al., 2003); other
procedures whose objective is to mimic observed rainfall statistics
(e.g. Bardossy, 1998). More detailed reviews are provided by Wilks
and Wilby (1999) and Srikanthan and McMahon (2001).

Poisson cluster models were originally developed in a spatial
context by Neyman and Scott (1958) and were first applied to
precipitation modelling by Le Cam (1961). One of their natural
advantages is that they can be extended to simulate continuous
spatial–temporal precipitation (e.g. Gupta and Waymire, 1979)
which is increasingly important in support of distributed hydro-
logical modelling.

Rodriguez-Iturbe et al. (1987a,b) first developed the Bartlett–
Lewis rectangular pulses (BLRP) model and the Neyman–Scott
rectangular pulses (NSRP) model. BLRP model developments have
included the use of random sampling of parameters and the use of
the gamma distribution for rainfall intensity (e.g. Velghe et al.,
1994; Onof et al., 2000). The model has also been used in a meth-
odology to disaggregate multi-site daily rainfall from a GLM to
hourly aggregations (Segond et al., 2006). The GLM’s simulation
was conditioned on atmospheric circulation properties (Chandler
and Wheater, 2002) which led to the possibility of generating
rainfall simulations for future climate scenarios.

Brief histories of the NSRP model can be found in Cowpertwait
(1991) and Onof et al. (2000). NSRP or BLRP storms occur as Poisson
processes with characteristic timescales and so theoretically cannot
exhibit either persistence or apparent scaling behaviour over more
than a limited range of temporal scales (e.g. see Marani, 2003).
Olsson and Burlando (2002), however, provide an empirical ex-
amination of this issue consisting of a comprehensive evaluation of
the apparent scaling behaviour of an NSRP model. Power spectra
shapes were found to be well reproduced (though biased) as were
the apparent scaling behaviours of statistical moments of various
rainfall aggregations (20 min to 2 weeks). Model deficiencies were
ascribed to exponential rather than hyperbolic rainfall intensities
and poor modelling of the dry period probability. Comparisons
between the NSRP and BLRP models are limited in the literature.
However, random parameter versions of both models were de-
veloped, to address deficiencies in dry period probability statistics,
and compared by Velghe et al. (1994). They found that the NSRP
model parameterization was less affected by the arbitrary choice of
fitting statistics than the BLRP model and preferred sampling the
number of raincells using a geometric rather than a Poisson dis-
tribution. Wheater et al. (2005) concluded that the NSRP and BLRP
model differences were probably negligible. However, the avail-
ability of an analytical expression for the probability of a dry h-hour
period (e.g. Cowpertwait, 1994) removes the need for the random
parameter NSRP model. Also an analytical expression for the third
order moment property improves the modelling of extreme events
(Cowpertwait, 1998; Cowpertwait et al., 2002). Together these
developments may also address the biases noted by Olsson and
Burlando (2002).

Other recent extensions to the NSRP model include raincell
specialization into stratiform and convective types (Cowpertwait,
1994); regionalization and seasonal smoothing of model parame-
ters (Cowpertwait and O’Connell, 1997); a spectral maximum
likelihood fitting methodology (Chandler, 1997; Montanari and

Brath, 2000); a two site NSRP process using bi-variate distributions
for raincell properties (Favre et al., 2002); a spatial–temporal NSRP
model (Cowpertwait, 1995); calibration using second order mo-
ments and the fluctuation lengths of the rainfall process (Calenda
and Napolitana, 1999; Favre et al., 2004).

The Generalized Neyman–Scott Rectangular Pulses (GNSRP)
model (Cowpertwait, 1994, 1995) was previously implemented into
a modelling package called RainSim. This simulates rainfall time
series either at a single location or distributed across a region of up
to w200 km in diameter and is used in the UK Water Industry as
the commercially available STORMPAC software. RainSim V2 was
developed to include third moment properties, important for the
modelling of extreme rainfall, with the software releases only
providing point simulation with a single raincell type. Recent ap-
plications using developmental versions in a broad variety of cli-
matic and end-user contexts have demonstrated the practical
utility of the RainSim approach and led to improvements in model
design. This paper consolidates these developments into a new
version of the software, RainSim V3. In particular this version in-
cludes recent developments in model calibration that address
a number of practical modelling deficiencies and which provide
a full spatial–temporal modelling capability.

2. Recent applications of the NSRP model

This section summarizes recent model applications using the
NSRP model and, in particular, developmental versions deriving
from RainSim V2. These applications have provided practical ex-
perience in rainfall modelling and have indicated the need for the
model calibration developments described later in the paper.

2.1. Single site applications

Single site applications of the NSRP methodology have been
demonstrated by a number of authors (e.g. Cowpertwait et al.,
1996a,b; Calenda and Napolitana, 1999; Fowler et al., 2000; Bur-
lando and Rosso, 2002; Olsson and Burlando, 2002). Similarly,
RainSim V2 has been used for single site applications in a wide
range of locations. The first application was for a raingauge in
Switzerland (Kilsby et al., 2000) as the basis of an assessment of the
impact of climate change on flood risk. Another example was
a synthetic study of rainfall–runoff model errors using the Slapton
Wood catchment in the UK (Ewen et al., 2006) which required
a long synthetic rainfall time series. More recently an application in
the FOOTPRINT1 project (Blenkinsop et al., 2006; Nolan et al., in
press) attempted to identify the characteristics of climatic vari-
ability that most affect the hydrological fate of pesticides and their
degradation products. Four rainfall characteristics were considered:
annual total rainfall amount, seasonality, probability of a dry day
and behaviour of extremes. Four sites representing diverse Euro-
pean climates were selected and for each combination a range of
NSRP parameterizations was identified to represent a spectrum
(increase and decrease) of the above characteristics. A pesticide fate
model was then used to evaluate the transport of the applied
pesticides.

2.2. Spatial applications

Applications of the Spatial–Temporal NSRP (STNSRP) method-
ology are rarer in the literature. Cowpertwait (1995) proposed the
form of such a model and demonstrated it with the skewness sta-
tistic for a catchment in Northern Italy (Cowpertwait et al., 2002)
and for part of the Thames basin (Cowpertwait, 2006). Moretti and

1 http://www.eu-footprint.org/home.html
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Montanari (2004) and Brath et al. (2006) provide two examples of
spatial applications to Italian catchments for estimating flood fre-
quency curves using rainfall–runoff modelling. In the latter case,
the consequences of land use change were evaluated.

RainSim V2 has been applied in a spatial context in various
applications. The model was applied to help assess the vulnerability
of groundwater aquifers in the Palestinian West Bank in the DFID
SUSMAQ2 project. This was the first application of the model to
a highly arid catchment (5600 km2, completely dry for 4 months of
the year), rainfall was simulated at points on a 2 km resolution
spatial grid (rather than at irregularly located raingauges) and
a methodology to represent interannual variability was also
implemented.

More recently, three spatial–temporal model applications have
been carried out for climatically different regions in the AQUA-
TERRA3 project (Burton and Fowler, 2005). These were for (a) the
Centa, a sub catchment of the Brenta in Northern Italy with an area
of 23 km2, a region characterised by an Alpine climate with higher
precipitation in the summer than the winter, (b) the Dommel,
a low-lying catchment on the Dutch–Belgian border with an area of
1350 km2, which does not have a pronounced seasonal rainfall
cycle and (c) the Gallego, a high relief tributary to the Ebro catch-
ment which lies on the Spanish side of the Pyrenees and has an area
of 4009 km2. These applications were used to generate daily rainfall
data for climate change impact studies.

2.3. Simulations conditional on weather types

A derivative of the RainSim V2 model involved direct condi-
tioning of the single site NSRP process using daily time series of
Lamb weather types (LWTs) (Fowler et al., 2000). The typical pa-
rameter calibration by calendar month was discarded in favour of
calibrating for each of three weather ‘states’, groups of LWTs, and
a two season partition of the year, ‘Summer’ and ‘Winter’, to rein-
troduce seasonality (six parameter sets in total). This approach was
extended to spatial modelling of the Yorkshire region and a meth-
odology to generate future climate spatial rainfall scenarios was
demonstrated (Fowler et al., 2005). Further details of the piecewise
stationary storm generation process used in this approach are given
in Appendix A.

2.4. Modelling rainfall under a changing climate

RainSim V2 has been used frequently as a stochastic down-
scaling methodology to provide climate change projections for
hydrological applications. Such schemes explicitly address the
problem that Global Climate Model (GCM) simulations are at an
inappropriate resolution in both time and space to be of direct use
for hydrological impact studies.

In the FRAMEWORK4 project (Burton and O’Connell, 2000;
Kilsby et al., 2000), extending the work of Kilsby et al. (1998), two
downscaling relationships were identified between NCEP rean-
alysis data (Kistler et al., 2001) and 860 UK raingauges that allowed
mean daily rainfall (PR) and the probability of a dry day (PDD) in
a calendar month to be estimated from atmospheric circulation
variables. The annual cycles of these atmospheric circulation vari-
ables were then evaluated for the GCM control (1961–1990) and
future (2070–2099) scenarios. A perturbation approach was
adopted, whereby observed values of PR and PDD were modified by
the percentage change in the monthly mean indicated by the GCM
for the future scenario, ensuring that the coefficient of variation

remained constant by also changing variance statistics. This ap-
proach was extended in the WRINCLE5 project by Kilsby and Burton
(2001) to produce a climate change atlas of rainfall and potential
evapotranspiration for Europe at a 0.5� resolution. This has been
used in climate change impact assessments of desertification vul-
nerability in southern Italy and south–west Portugal (Bathurst and
Bovolo, 2004) and landsliding in northern Italy (Bathurst et al.,
2005).

The development of Regional Climate Models (RCMs) has pro-
vided physically based climatic model outputs at resolutions
approaching those relevant to hydrologists. However, RCM rainfall
still needs to be bias-corrected before use in hydrological impact
studies (e.g. Wood et al., 2004; Fowler and Kilsby, 2007). De-
ficiencies, in particular, exist in the representation of high extremes
(Fowler et al., 2007) and of dry periods (e.g. Blenkinsop and Fowler,
2007). Consequently, although RCM data can be used directly as
input to impact studies after bias correction, there is still an im-
portant requirement for rainfall modelling based on RCM outputs
to provide long representative rainfall time series for hydrological
risk assessment. Currently, the perturbation approach is the most
widely used, where change factors are calculated between the fu-
ture and control scenarios of an RCM. These change factors are then
applied to the observed rainfall statistics.

The most sophisticated use of the perturbation approach with
a single site RainSim model is in EARWIG (the Environment
Agency Rainfall and Weather Impacts Generator), a specialist
climate scenario generator, designed for the UK (Kilsby et al.,
2007). Control scenarios (1961–1990) are based on meteorolog-
ical observations for a 5 km UK grid (as Perry and Hollis, 2005a,b)
and future climates are based on outputs from HadRM3H, part of
the UKCIP02 climate scenarios (Hulme et al., 2002), with four
emission scenarios (low, medium-low, medium-high and high)
and three future time slices (2020 s, 2050 s and 2080 s). The user
can select a catchment of interest, a future scenario and time
slice, and generate both control and future representative single
site daily precipitation time series. A regression-based weather
generator then conditionally simulates consistent weather time
series such as temperature, wind speed and potential
evapotranspiration.

3. Model description

This section provides an overview of the new software and the
following section describes modelling developments implemented
into this software. RainSim V3 operates in three modes: Simulation,
Fitting and Analysis. In brief, Simulation generates synthetic rainfall
time series based on a parameter set, Fitting uses numerical opti-
mization to identify the parameter set such that the simulation best
corresponds to a selected set of rainfall statistics and Analysis de-
rives rainfall statistics at various time aggregations from either
observed or simulated rainfall time series at a number of sites (e.g.
mean daily rainfall, variance of hourly rainfall). Typically an appli-
cation involves four steps: Analysis to characterise observed time
series; Fitting to calibrate the model; Simulation; and finally
Analysis again to check that the simulated time series is consistent
with observations.

3.1. Rainfall simulation

The spatial–temporal and generalized aspects of the GNSRP
model (Cowpertwait, 1995) are extensions of the stochastic point-
process NSRP model (Cowpertwait, 1994) which can generate

2 http://www.ceg.ncl.ac.uk/research/water/projects/susmaq.htm
3 http://www.attempto-projects.de/aquaterra/
4 http://www.diiar.polimi.it/framework/ 5 http://www.ncl.ac.uk/wrincle/
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synthetic rainfall time series for a raingauge. In the NSRP concep-
tualization, storms give rise to a cluster of raincells, the aggregated
contributions of which provide a rainfall time series.

The stochastic NSRP model structure is illustrated in Fig. 1 and is
constructed as follows:

(a) storm origins occur as a uniform Poisson process with the oc-
currence rate represented by a parameter l;

(b) each storm origin generates a Poisson random number, C with
parameter n, of raincells that each follows the storm origin after
a time interval that is independent and exponentially distrib-
uted with parameter b;

(c) each raincell produces a uniform rainfall rate throughout its
lifetime. The duration and the intensity, X, of each raincell are
independent and are exponentially distributed with parame-
ters h and x, respectively;

(d) the rainfall intensity is equal to the sum of the intensities of all
the active cells at that instant in time.

This process is continuous in time and so a time series is gen-
erated by discretizing the process into hourly or daily time steps.
Different parameterizations for each calendar month provide an
annual cycle of rainfall properties.

In the spatial–temporal version of the model (STNSRP) (Cow-
pertwait, 1995) the raincell generation process of the single site
model, the first part of step (b), is replaced by a uniform Poisson
process in space with density r to generate the centres of spatially
circular raincells. Additionally, the radius of each raincell is ex-
ponentially distributed with parameter g. During each cell’s life-
time rainfall occurs with a uniform intensity across its spatial
extent and throughout its duration. This process is spatially sta-
tionary and so a necessary final step is to account of orography by
non-uniform scaling of the rainfall field. Time series sampled at
each site m are scaled by a factor, fm, proportional to each sites
mean rainfall. Sampling the simulated rainfall field at locations
without observed records therefore requires interpolation of these
factors. The parameters of the STNSRP models are summarized in
Table 1.

3.2. Fitting the model

The model is calibrated separately for each calendar month in
turn. A numerical optimization scheme is used to find the best
choice of parameters to minimize an objective function, D(l,b,.,x),
which describes the degree to which a simulation is expected to
correspond to a selected set of observed rainfall statistics, with
possibly varying aggregation periods, where the parameters are
{l,b,n,h,x} for single site and {l,b,r,g,F,h,x} for spatial applications.

Analytical expressions are available for expected statistics of
arbitrary period (e.g. 1 day or 2 h) accumulations of the STNSRP
process at any site for the mean, variance, lag-autocovariance,
lag-autocorrelation, dry period probability, probability of dry–dry
(or wet–wet) transition probabilities and the third order central
moment (e.g. Cowpertwait, 1995,1998). Inter-site properties can be
estimated as cross-covariances and correlations (Cowpertwait,
1995). The third order moment property (Cowpertwait, 1998) is
particularly important for applications where extreme rainfall
events are important, such as flood risk assessment. This is
implemented in RainSim V3 as the skewness coefficient, Eq. (1),
where E( ) indicates statistical expectation, Yh is an h hour accu-
mulation and s2

Yh
its variance.

E
h
ðYh � EðYhÞÞ3

i.
s3

Yh
(1)

3.3. Analysis of time series

The Analysis capabilities of the RainSim V3 software allow the
user to quickly evaluate rainfall statistics from a set of rainfall time
series, whether observed or simulated. The statistics are selected by
the user and may be either single site statistics such as the aggre-
gation moments or the PDD, or dual-site statistics such as the
correlation or covariance between sites. Each selected statistic is
evaluated separately for each month of the year for each time se-
ries. During an application, time series analysis is typically used
both to characterise the observed data sets and to analyse the
synthetic time series. Comparison of these two sets of statistics
provides assurance that the synthetic data sets are indeed a good
representation of observed rainfall data sets.

4. Improved calibration in RainSim V3

The model developments described in this section were moti-
vated from a requirement to improve the practicality of the model
calibration. A numerical optimization algorithm able to obtain ro-
bust fits for spatial applications was implemented as the existing
scheme was not considered satisfactory. A new objective function
was also implemented as the existing one was found to fit to low
absolute magnitude values of observed statistics with dispropor-
tionate accuracy. Expressions were developed to address a bias in
the analytical expressions for the probability of dry days and hours,
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Fig. 1. Schematic of the Neyman–Scott Rectangular Pulses model.

Table 1
Parameters of the NSRP/STNSRP simulators

Parameters Descriptions Units

l�1 Mean waiting time between adjacent storm origins (h)
b�1 Mean waiting time for raincell origins after storm origin (h)
h�1 Mean duration of raincell (h)
n Mean number of raincells per storm (–)
x�1 Mean intensity of a raincell (mm/h)
g�1 Mean radius of raincells (km)
r Spatial density of raincell centres (km�2)
F A vector of scale factors, fm, one for each raingauge, m (–)

Five are used for single site, NSRP, applications and seven for spatial applications,
STNSRP. All vary by calendar month.
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allowing improved fitting of these statistics. Finally, a procedure to
fit exactly to the mean rainfall intensity was introduced.

4.1. An improved optimizing algorithm

Single site applications of RainSim V2 used the Downhill Sim-
plex method modified so that it was implemented iteratively (re-
ferred to as SpxI), restarting the algorithm from the best point
following convergence. Each restart expands the Simplex and
allows escape from local minima. After five iterations little
improvement was found in the estimated optimum, though in
practice 10 restarts were used. However, recent applications of the
full spatial implementation of the STNSRP methodology found that
observed spatial statistics were fitted poorly by the Iterative Sim-
plex method. Therefore a study of alternative optimization schemes
was instigated to find a methodology able to provide a robust and
reasonably efficient fit for a range of applications.

A collection of 12 test applications of the STNSRP model were se-
lected to provide a basis for the evaluation of the optimizing
algorithms. These provided a range of climates and fitting difficulty
levels. Each application also had a seasonal cycle so that a single ap-
plication consisted of 12 optimization problems, one for each month
of the year. The three classes of application consisted of the following.

1. Five synthetic perfect single site applications for which exact
parameterizations existed and for which the parameters were
based on those used for UK applications.

2. Five single site applications: three based on hourly statistics
(Gatwick, UK, Ringway, UK, and Glize-Rijen (Dommel), Neth-
erlands) and two on daily statistics (Sallent de Gallego, Spain,
and Boxtel (Dommel), Netherlands).

3. Two spatial applications each calibrated using five sites, from
the Dommel catchment in the Netherlands and the Gallego
catchment in Spain.

The locations of these applications are shown in Fig. 2.

To provide a reliable scheme five optimizing methodologies
were selected from the variety available in the literature to pro-
vide a range of approaches and according to the availability
of their implementation codes. In brief the selected algorithms
were

(1) The deterministic Downhill Simplex method (Spx) (Nelder and
Mead, 1965; Press et al., 2002) without any restarts.

(2) The Iterative Simplex method (SpxI) as used in RainSim V2.
(3) The Simulated Annealing Simplex (SAS) method (Press et al.,

2002), an algorithm in which the ideas of Simulated Annealing
(Metropolis et al., 1953) and the Simplex method are combined
to provide a directed stochastic search for the optimum.

(4) The Shuffled Complex Evolution (SCE) algorithm (Duan et al.,
1993), an optimizing scheme widely used in hydrology for
calibrating hydrological models (indeed, this algorithm was
involved in the fitting of an NSRP model by Montanari and
Brath (2000)). A population of points is ranked and then
partitioned (shuffled) into groups (complexes) in a manner
similar to dealing cards. The complexes converge (evolve)
independently and randomly by substituting new points in
a manner related to the Simplex method and additionally by
testing random points. Finally, the complexes are recombined
to form the new population and the process repeated.

(5) The Evolutionary Simplex Annealing (ESA) algorithm (Rozos
et al., 2004), a scheme based on Simulated Annealing Simplex
with additional transformations (e.g. multiple expansions),
a modification allowing it to attempt directed climbs out of
local minima and an adaptive annealing cooling schedule.

Each of these optimizing algorithms has a number of parameters
that affect its performance. Therefore, prior to intercomparison,
each algorithm was tuned to ensure the optimal choice of internal
parameters.

Whilst the rainfall model parameters described in Table 1 take
only positive values, these may vary by an order of magnitude from
one application to another. For example storm arrival rate in
a Mediterranean catchment may vary from once in 2 days, 0.02 h�1,
to one event in 3 years during that calendar month (once in 90
days), 0.0005 h�1. Therefore a log-transformation of the parameter
space was also considered. The utility of using such a trans-
formation was investigated in parallel with the five selected
algorithms.

The rainfall model parameters are also restricted to physically
meaningful ranges, specified by the user or consistent with preset
defaults. Therefore the optimization problem must be imple-
mented as bounded and in a manner consistent with optimizer
intercomparison. Implementing the bounds in a manner that af-
fected the shape of the simplex (e.g. rejecting infeasible points and
moving them to the boundary) was found to lead to the simplex
being trapped incorrectly in vertices of the feasible region. A con-
sistent scheme was therefore implemented to allow the optimizers
to test infeasible points in the parameter space. A modified-
objective function then returned the objective function value of the
nearest feasible parameter set plus a high cost proportional to the
distance of the test point from the feasible region. Each optimizer
was allowed to consider the feasible parameter set as a possible
optimum but proceeded as if the modified-objective function value
was returned from the infeasible point in the parameter space. This
procedure has the advantage of a continuous modified-objective
function field with optima that are guaranteed to be feasible, and
efficient retention of objective function values of parameter sets on
the feasible boundary.

The first experiment determined which scheme was best able to
reliably locate an optimum with reasonable effort, by evaluating the
tuned optimizing schemes using the three classes of test data sets.
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Fig. 2. The locations of test applications and case study sites.

A. Burton et al. / Environmental Modelling & Software 23 (2008) 1356–13691360



Author's personal copy

Each optimum was realized 11 times for optimizers with stochastic
algorithms (algorithms 3–5) to sample the distribution of esti-
mated optima, as these algorithms return different results when
repeated for the same optimization problem. The number of re-
alizations chosen here represents a compromise between compu-
tational effort and improved sampling. Each optimizer, l, was
allowed to converge until a fixed number of iterations, mit, had
occurred. A relative skill score, skijkl(mit), was then evaluated for
each month, i, test data set, j, and realization, k:

skijklðmitÞ ¼ log10

�
max

�
10�6;DijklðmitÞ=Dref

ij

��
(2)

where Dijkl(mit) was the best objective function value located and
Dref

ij a corresponding baseline value estimated using an un-tuned
Downhill Simplex method with 100,000 iterations. Skill quartiles
were evaluated for each set of 11 realizations, then averaged across
all months and test data sets in each class to provide an aggregate
score for both normal and log-parameter space for each class:
perfect, single site and spatial.

Fig. 3 illustrates how the skill improves with increasing effort for
each of the optimization schemes. The deterministic schemes (Spx
and SpxI) are shown as simple curves whereas for the stochastic
schemes the quartiles of skill are plotted. The upper quartile (75th
percentile) curve thus provides a measure of robustness. Note that
the results of the deterministic schemes may be sensitive to small
changes in the application that affect the particular convergence
path of the scheme. Conversely, the sensitivity to such small
changes is effectively tested by the high level of noise in the sto-
chastic schemes and included in their quantiles. The effort may also
be interpreted in terms of computation time. At roughly 800 iter-
ations per second, a typical 12-month calibration of 10,000 itera-
tions will take about 2.5 min.

It was found that the Downhill Simplex method initially con-
verges the most rapidly for the single site class of applications but
may not converge to the optimum, e.g. see Fig. 3. Fig. 4 shows the
results for the three classes for near optimum skill values. It can be
seen that the SAS and lnSAS methods (the ln- prefix indicating that
the optimization is carried out in log-parameter space) are the only

ones to converge robustly in all cases. The SAS scheme converges
within 20,000 iterations and the lnSAS scheme within 50,000 iter-
ations. The spatial case causes the most difficulty overall but the
lnSpxI method provides a relatively good performance. The lnSCE
method fails on only one count, that it cannot be considered robust
for the spatial class. Despite this, the median result is of equal skill to
the lnSpxI method. However, with only 2000 iterations the lnSCE
method converges reliably for both single site classes and the me-
dian value is equal to or better than the lnSpxI for the spatial class.

This final result suggests that a restarted lnSCE scheme should
perform more robustly than the other schemes. Consequently, the
lnSCE scheme was implemented with three restarts (lnSCEx3),
carrying over the previous best result in each case. The skill of this
scheme was evaluated and the 75th percentile of skill is shown in
Fig. 4. These plots confirm that this scheme provides the most ro-
bust and efficient method, even when limited to 5000 iterations.

An alternative to halting optimization schemes by means of an
iteration limit is the use of a convergence criterion such as rconv< sc

where rconv is given by Eq. (3), sc is a threshold and Dmin and Dmax

are the minimum and maximum function values in the pool of
points after an optimization iteration. Testing the most promising
schemes generally found no improvement, however, for single site
applications the convergence criterion rconv< 10�4 and an iteration
limit of 20,000 made the lnSCE scheme more efficient and as robust
as the lnSCEx3 scheme.

rconv ¼ 2
jDmax � Dminj
jDmax þ Dminj

(3)

Although these results are potentially sensitive to the chosen
case studies, the range of both simple and more problematic ap-
plications selected from European catchments provides confidence
in the robustness of this result. These two schemes are now
implemented in the RainSim V3 software package.

4.2. A new objective function

RainSim V2 used the objective function, D2, given by Eq. (4) (e.g.
Cowpertwait, 1995; Favre et al., 2004) where U is a set of statistics,
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g, used to characterise the rainfall process. These can have varying
aggregation periods and each concerns a single site (24 h variance
at site m, say) or a pair of sites (for cross-correlation statistics). The
observed sample estimate of a statistic is ~g, the corresponding
expected mean value of each statistic arising from the Neyman–Scott
process is expressed analytically in terms of the model’s parame-
ters by bgðl; b;.; xÞ and wg is a weight set by the user to regulate the
accuracy with which each statistic is fitted. The summed terms may
be viewed as the error of a given fitted statistic standardized by the
observed value squared. This function is optimum when fitting
errors are in proportion to each statistic’s magnitude which leads to
the fitting of observed statistics with values that have low absolute

magnitude more accurately than statistics with values that have
high absolute magnitude. This is generally beneficial, typically
similar proportional fitting errors will be obtained for statistics
with different observed magnitudes. However, noisy observed
statistics may have small magnitude values which will be fitted
with relative accuracy, alternatively the accuracy with which PDD
or correlation statistics are fitted should not be proportional to
magnitude (arguably an observed PDD value of 0.9 should be fitted
more accurately than a value of 0.5). A striking effect consequently
occurs when a statistic with a spatially uniform analytical value
approximates a range of spatially varying observed values, where-
upon the smallest magnitude observation dominates as it is fitted
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Fig. 4. Plots showing how optimization skill varies by computational effort, optimizer, application type and whether the optimization is carried out in normal- or log-parameter
space. In each plot the skill axis is exaggerated to show near optimum values. The worst cases of the stochastic optimization methods are emphasised by showing only the upper
and median quartiles of skill. Plots (a) and (b) are for perfect single site applications, (c) and (d) are for single site applications and plots (e) and (f) are for spatial applications. Plots
(b), (d) and (f) refer to optimization of log-transformed parameters.
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more accurately. Such stationary statistics arise from the concep-
tual construction of the STNSRP model and include, for example,
the coefficient of variation, PDD and skewness coefficient. Two
examples are shown in Fig. 5, from an application to the Gallego
catchment, where the spatially uniform fit to both PDD and lag-1
autocorrelation is biased low in all months of the year. In particular,
a low magnitude observation of the noisy lag-1 autocorrelation
statistic at a site in July dominates the model fit for this month.

D2ðl; b;.; xÞ ¼
X
g˛U

wg

 
1�

bgðl; b;.; xÞ
~g

!2

(4)

Dðl; b;.; xÞ ¼
X
g˛U

w2
g

g2
s

�
~g � bgðl; b;.; xÞ

�2
(5)

To avoid these effects in RainSim V3, a new objective function
was adopted, Eq. (5), in which a scaling term, gs, was introduced.
This is set to one, for a probability dry or correlation statistic, or
to the annual mean of ~g, otherwise. Thus, each statistic at a site is
effectively standardized by its average annual value, except for
dry probability and correlation statistics which are not stan-
dardized. Consequently, each statistic is fitted with an accuracy
roughly in proportion to a typical value (except for dry proba-
bility and correlation statistics which are fitted relative to one).
Further, in Eq. (4), fitting errors will be distributed roughly in
inverse proportion to the square root of the weights. To make the

fitting errors behave in a more user friendly manner (i.e. in
inverse proportion to the weight) the weights have been squared
in Eq. (5).

Fig. 6 shows results from the Gallego using the new objective
function. The fitted values of PDD and lag-1 autocorrelation can
now be seen to be located nearer to the mean value than in Fig. 5. In
particular the value fitted for lag-1 correlation in July is significantly
improved.

4.3. Bias correction for fitted probability of dry hours and days

Trace amounts of simulated or observed rainfall may occur
which when recorded (typically with a precision of 0.1 mm) may be
rounded down to zero and considered dry. Small rainfall amounts
may also be classified as dry if they are below a specified threshold.
For example in climate change analysis a dry day threshold of
1.0 mm is typical (e.g. Conway and Jones, 1998; Haylock and
Nicholls, 2000; Haylock, 2004; Kilsby et al., 2007, Fig. 1). However,
the analytical expression used in model fitting defines a dry period
as one containing no raincells (e.g. Cowpertwait, 1994). This leads
to a bias in, what we will denote as the old method, STNSRP ap-
plications whereby the simulated values of PDD statistics are
greater than those fitted (e.g. see Cowpertwait, 1998). This bias can
be as large as 20% for a 1 mm dry day threshold which shows the
importance of explicitly recording the dry thresholds used in such
statistics.
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Fig. 5. Observed (lines) and fitted (crosses) monthly values of (a) 0.2 mm dry day probability and (b) daily lag-1 autocorrelation, for sites in the Gallego catchment. Each site is
represented by a different colour. The spatial fit to both statistics is uniform so the fitted values overlie each other.
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Fig. 6. Gallego application using the new objective function. Observed (lines) and fitted (crosses) monthly statistics of (a) 0.2 mm dry day probability and (b) daily lag-1 auto-
correlation. Each site is represented by a different colour. The spatial fit to both statistics is uniform so the fitted values overlie each other.
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We will define PDDs as the probability that a day’s rainfall is
strictly less than a threshold value s (mm). By considering a time
series record {xt} with a precision of d, typically 0.1 mm, corre-
sponding to continuously valued rainfall accumulations {Xt} it can
be seen that:

xt < s0Dry; is the same as Xt < s� d=20Dry (6)

and

xt � s0Dry; is the same as Xt � sþ d=20Dry (7)

Therefore the omission of equality from the definition is sig-
nificant and should be noted. An exception will be made for nota-
tional convenience, however, simply writing PDD0 for the
probability of no rainfall occurring.

A single site application of RainSim was fitted to each of 115
daily raingauge records from the period 1961–1995, representing
the full range of climatic zones in the UK. This produced a param-
eter set and the corresponding analytically estimated fitted statis-
tics, including daily PDDfit

0 , for each site. Rainfall time series were
generated and the PDD statistics of these were estimated with
thresholds of both 1.0 mm, PDDsim

1:0 , and 0.2 mm, PDDsim
0:2 . This pro-

vided 1380 data points of fitted and simulated PDD values for each
threshold.

The data sample was split for validation purposes. A quadratic
function, Eq. (8), was fitted achieving an R2 of 92.2% with a valida-
tion R2 of 91.3%. This curve was truncated according to the source
data’s approximate range at (0.15, 0.2821) and (0.75, 0.8045) and
continuous linear expressions used to extend it to the full possible
range of PDDfit

0 , see Fig. 7(a).

PDDsim
1:0 ¼ 0:05999þ 1:603 PDDfit

0 � 0:8138
�

PDDfit
0

�2
(8)

A similar result was sought for the 0.2 mm threshold. Eq. (9) was
found to have an R2 of 98.2% and a validation R2 of 98.0%. This curve
was truncated at (0.2, 0.2405) and (0.75, 0.7617) and continuous
linear expressions used to extrapolate the curve, see Fig. 7(b).

PDDsim
0:2 ¼ 0:007402þ 1:224 PDDfit

0 � 0:2908
�

PDDfit
0

�2
(9)

The improvements introduced by using the quadratic models
described by Eqs. (8) and (9) were evaluated separately and in
detail through single site applications to four sites. For each site, fits
were made to five observed daily statistics including the PDD sta-
tistic with either a 1.0 mm or a 0.2 mm threshold. The observed,

fitted and simulated statistics are shown for the PDD1.0 threshold
case for Eskdalemuir in Fig. 8. The new method significantly im-
proves on the precision with which PDD1.0 is estimated. The re-
sidual is due to a random error in the quadratic fit to the simulated
PDD rather than from stochastic variation in the simulation; sup-
ported by the consistent sign of the residual at Eskdalemuir and the
other sites for at least 9 calendar months. The new method also
improves the fitting and simulation of the variance and the skew-
ness coefficient. A similar analysis using PDD0.2 (Eq. (9)) demon-
strated a similar improvement in the simulated value, generally
improved the variance and skewness coefficient fits and again
found a consistent residual bias (though less pronounced than in
the 1.0 mm case).

Similar results have also been developed for the probability of
a dry hour (PDH) statistic, Eqs. (10) and (11). For this aggregation
period 0.1 mm and 0.2 mm thresholds are in common usage. Linear
fits were found sufficient to match the simulated statistics well,
achieving calibration and validation R2 values of 99.3% and 99.1%,
respectively, for PDH0.1 and 97.8% and 97.5%, respectively, for
PDH0.2. Applications on two UK sites demonstrated improvements
where these results were used.

PDHsim
0:1 ¼ 0:114703þ 0:884491 PDHfit

0 (10)

PDHsim
0:2 ¼ 0:239678þ 0:758837 PDHfit

0 (11)

4.4. Exact fitting of mean rainfall statistics

Whilst recognising that observed rainfall statistics are not exact,
for applications requiring long simulations of comparisons be-
tween scenarios it is desirable to obtain exact fits to the mean daily
rainfall statistics. First, all statistics, including the mean, are fitted.
This results in a parameterization with expected simulated means,bmm

h , close to the observed, ~mm
h . We make these exact by a uniform

perturbation of all scale factors or of the random variable modelling
raincell intensity. The analytic expression for the mean rainfall of
the STNSRP process in a period h can be written in terms of the
model parameters, see Table 1 (e.g. Cowpertwait, 1995)

bmm
h ð Þ ¼ hlfm

EðCÞEðXÞ
h

(12)

where the statistical expectations are simple functions of model
parameters. The scale factor is the only site varying parameter and
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during fitting is chosen to be proportional, say with constant k, to
the observed mean rainfall:

fm ¼ k~mm
h (13)

We require the perturbed mean, bm0mh (with the prime indicating
a perturbed term) to match the observed mean. A perturbation
factor, sm, may therefore be defined for each site:

sm ¼
~mm

hbmm
h ð Þ

¼
bm0mh ð Þbmm

h ð Þ
¼

hlf0mEðCÞE
�
X0
�

hlfmEðCÞEðXÞ
h

h
¼

k0E
�
X0
�

kEðXÞ (14)

Since the final expression for sm in Eq. (14) is independent of
it’s site all of the sm are equal, so the suffix may be dropped.
RainSim V3 uses an exponentially distributed raincell intensity
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with parameter, x, and so E(X)¼ 1/x. An exact fit to the mean may
therefore be obtained by either perturbing the scale factors as in Eq.
(15) or the intensity parameter as in Eq. (16).

f0m ¼ sfm (15)

x0 ¼ x=s (16)

5. Illustrative application for the Dommel

To provide an illustration of the improvements described in the
previous section, a comparative study was carried out using five
raingauges for the Dommel catchment in the Netherlands (see
Fig. 2). First, observed daily raingauge data from the five sites were
analysed to find the daily mean, variance, lag-1 autocorrelation,
skewness coefficient and PDD (with a 0.2 mm threshold).

The three fittings evaluated are denoted Original, V3 and V3ex.
The Original fit was based on using the Iterative Simplex method
with 10 iterations. Five such fits were made in total, manually
adjusting statistics’ weights and the parameter bounds at each step
in order to obtain a suitable parameterization. Additionally, PDD0.2

was approximated as PDD0. The V3 fit used the new optimization
routine, the correction of the bias in the analytical expression for
PDD0.2 and the reformulation of the objective function (using
weights adjusted for the new formulation). The V3ex fit was as for
V3 but in addition using the exact mean fitting. For all three fits,
a 1000 year spatial–temporal simulation was carried out, daily time
series sampled at the raingauge locations and the statistics of the
multi-site time series evaluated.

Fig. 9 shows selected observed, fitted and simulated statistics
for both the Original and the V3 fit. For both fits, Fig. 10 shows
the cross-correlation between daily time series of all pairs of
sites plotted against separation distance for 2 months from
different seasons exhibiting the most extreme spatial correlation
scales. For the observed and simulated cases cross-correlation is
calculated from pairs of time series and for the fitted case the
value corresponds to that estimated analytically from the opti-
mum parameter set. The V3 fit was achieved with a single
application of the new optimization routine and makes a rea-
sonable overall match to all of the observed statistics used in
the fitting. There is also an improvement in the quality of the fit,
compared with the Original fit, particularly in the January and
December skewness coefficient and spatial correlation statistics
(e.g. see Figs. 9 and 10). This demonstrates the considerable

practical benefit of the new optimization algorithm, which sig-
nificantly reduces the need for user intervention and generates
better simulations for the case study catchments. The ability of
the STNSRP model to simulate the range of spatial correlation
scales over the annual cycle is also demonstrated. The benefit of
the new PDD bias correction is shown by the significant im-
provement in the V3 fit compared with the Original fit.

Table 2 provides summary error statistics for the single site
statistics for the three fitting procedures. The improvement from
the Original to the V3 fit is clear in all statistics except PDD (but
a much larger fitting bias has been corrected here). This result
derives from a combination of the improved fitting algorithm and
the revised objective function, so their contributions cannot be
clearly separated. However, a reduction in fitting bias achieved by
the objective function appears likely as the summary statistics for
variance, autocorrelation and skewness coefficient are negative for
the Original case and improved for the V3 case. This is consistent
with the Original objective function fitting smaller magnitude
statistics more precisely (negative bias) as these three statistics
have the greatest ratio of maximum to minimum value of all of the
statistics used. Exact fitting of the mean is demonstrated in the
V3ex application. This is seen to be at the expense of a worse fit to
the variance, however, the quality of the fits to the other statistics
are not affected.

Comparisons of the observed and simulated daily annual max-
imum rainfall are shown in Fig. 11 by means of Gumbel plots of the
best and worst results of the five simulated sites. Each plot shows
45 years of observed data and the inter-quartile range of the ex-
tremes at each corresponding return period for the 22 member
ensemble of 45-year series extracted from the simulation. The
range of simulated extremes is seen to match the observed data
well, in all cases matching the median extreme value, the slope, the
curvature and the greatest extreme.
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Fig. 10. Comparison of the spatial cross-correlation with distance relationships for the Original and the V3 fits, for January and July. Observed, fitted (fit) and simulated (sim) cross-
correlations are shown, each value corresponding to a pair of sites from the five site Dommel catchment.

Table 2
Fitting error averaged over all months and sites for each of the three fitting pro-
cedures for the Dommel application

Mean Var PDD Acorr Skew

Original 0.010196 �0.692 0.005008 �0.0033 �0.327
V3 0.005903 �0.338 0.006263 0.0016 0.028
V3ex 0 �0.440 0.006263 0.0016 0.028

The statistics are the daily: mean (mm), variance (mm2), PDD0.2, lag-1 autocorre-
lation and skewness coefficient.
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6. Discussion and conclusions

This paper describes model developments leading to RainSim
V3, a practical implementation of the Spatial–Temporal Neyman–
Scott Rectangular Pulses (STNSRP) stochastic rainfall generator. The
simulation of rainfall as a continuous spatial–temporal process,
strongly supports the developing field of distributed hydrological
modelling as the process may be sampled at arbitrary spatial lo-
cations and integrated to provide time series with arbitrary time
steps. This software is routinely used to provide spatial rainfall
fitted to daily statistics (e.g. Burton and Fowler, 2005) and is found
to match annual extremes well, an ability improved by the use of
the third order moment (Cowpertwait, 1998). Whilst spatial hourly
simulations have not been extensively evaluated, such simulations
are possible and have been successfully demonstrated for a similar
model (Cowpertwait et al., 2002; Cowpertwait, 2006). However,
single site hourly applications have been well tested (e.g. Kilsby
et al., 2000). The downscaling of single site daily rainfall for future
climate scenarios is now common, typically using a perturbation of
observed rainfall statistics. This approach is used in EARWIG,
a specialist climate scenario generator, which facilitates the as-
sessment of climate change impacts on hydrological systems by
providing single site simulations of rainfall and consistent weather
time series for UK catchments (Kilsby et al., 2007) and which will be
used in the UKCIP086 scenarios. RainSim V3 is robust, computa-
tionally efficient and well tested. It has a modular design, allowing
increased ease of maintainability and rapid testing of alternative
model formulations.

The RainSim modelling package has been applied in a wide
variety of contexts. These have included single site simulations,
multi-site raingauge networks and gridded fields. Whilst the ap-
plication locations have mainly been European, they span the full
range of climates from the relatively wet Atlantic coast to the
mountainous regions of the Pyrenees and the Alps, to arid regions
such as central Spain and the Middle East. The model has been used
in the context of modelling sensitivity studies, model error analysis,
flood risk assessment, pesticide fate modelling, water resource
planning, urban drainage, landslide modelling and desertification
risk.

To provide a new and robust optimizing algorithm for RainSim
V3 we compared five methods. The Shuffled Complex Evolution
algorithm (SCE) (Duan et al., 1993) using log-transformed param-
eters with three restarts (lnSCEx3) limited to 5000 iterations was

identified as the best scheme for spatial applications. However, for
single site applications the lnSCE scheme with a convergence cri-
terion (limited to 20,000 iterations) performed best. A new objec-
tive function was also implemented and showed significant
qualitative improvement in the fitting of previously biased statis-
tics in a test application on the Gallego catchment and quantitative
improvement for the Dommel catchment.

Quadratic polynomials in the fitted probability of a dry day
(PDD) were found sufficient to provide excellent predictions of
simulated PDD with either a 1 mm or 0.2 mm threshold. These
considerably reduced the fitting bias at four locations in the UK and
for a spatial application to the Dommel catchment in the Nether-
lands. The UK applications also showed consequential improved
fitting of the variance and skewness coefficient. Simpler linear ex-
pressions were found to provide excellent predictions of the sim-
ulated probability of a dry hour with thresholds of either 0.2 mm or
0.1 mm. These expressions are implemented in the RainSim V3
software.

A procedure to obtain exact fitting of mean statistics by
a perturbation to the raincell intensity parameter has also been
implemented in RainSim V3. This approach naturally extends to
the generalized form of the NSRP, with different cell types
(Cowpertwait, 1994). It is important to recognise, however, that
mean rainfall statistics contain observational and sampling errors
and so cannot be considered exact observations of mean daily
rainfall.

Poisson cluster models such as RainSim provide time and
space resolutions suitable for the hydrological modelling of
catchments (of up to 5000 km2) and hydraulic modelling of large
urban areas as they generate rainfall with a defined structure at
time scales ranging from hourly to yearly and generate a modest
quantity of data. Whilst the simple geometric structure of these
models (e.g. circular raincells) may appear unrealistic they are
sampled at discrete locations and aggregated to typically daily or
hourly time steps for which such simplifications are assumed
appropriate. At the annual level such models may underestimate
the variance and at larger spatial scales their spatial stationarity
may limit their utility. However, the RainSim approach provides
better simulations of rainfall than the ‘scaling’ approaches which
typically do not model seasonal cycles or orographic effects.
RainSim can also be conditioned on atmospheric circulation
patterns (e.g. Fowler et al., 2000, 2005) and used to model daily
rainfall over regions of up to synoptic scale or on climate model
outputs to model perturbed rainfall sequences under climate
change. RainSim V3 therefore provides a robust, well tested and
broadly applicable practical implementation of a Spatial–Tem-
poral NSRP.
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simulated results are shown at each return period.

6 http://www.ukcip.org.uk/scenarios/ukcip08
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Appendix A. STNSRP simulation conditional on weather types

A derivative of the RainSim V2 model was able to generate
spatial rainfall with the STNSRP process directly conditioned a daily
time series of Lamb weather types (LWTs) (Fowler et al., 2000,
2005). To achieve this, the typical monthly parameterization was
discarded in favour of one using six atmospheric states, each rep-
resenting both a class of LWTs and a season. This appendix clarifies
the NSRP modelling treatment of this conditioning and highlights
the modelling issues arising from this approach.

A semi-Markov chain process, conditioned by season, generated
a daily time series of atmospheric states (Fowler et al., 2000).
Provided a parameter set has been obtained for each state, a par-
ticular parameter set is used according to the atmospheric state
corresponding to that day. Following the origin of a preceding
storm, at say t¼ 0, it is necessary to estimate when the next storm
will occur in the STNSRP process. If the storm arrival rate is constant
with parameter, l0, then the time of the next storm, ts, will simply
arise from the Poisson process as a random variable with distri-
bution function:

Fts ðxÞ ¼ 1� e�l0x (A1)

The parameterization is different in different periods according
to the conditioning time series of daily atmospheric states (or in the
standard model, calendar month), so the arrival rate may change to
l1 at time t1. If the parameterization is on a calendar month basis in
an aseasonal climate, a storm simulated in a subsequent month by
Eq. (A1) could be simulated with the new parameters with little
introduction of error. However, in a seasonal climate or for daily
varying parameterizations as here, more care must be taken with
the sampling of the time of storm occurrence. Otherwise dry pe-
riods may persist beyond their true extent and daily changes in
parameterization will not be correctly modelled as inter-storm
periods may be much greater than the daily time scale at which
weather states are modelled. Storm arrival is therefore simulated as
a piecewise stationary Poisson process.

If ts is simulated as greater than time t1 using Eq. (A1) then there
is no storm in the current period and instead the storm arrival
sampling is restarted at t1 with the new value of l1. The distribution
of this process is given in Eq. (A2) for this case. Similarly if the
second period finishes at time t2 with a change to l2, Eq. (A3) can be
used.

Fts ðxjx � t1Þ ¼ 1� e�l1ðx�t1Þ (A2)

Fts ðxjx � t2Þ ¼ 1� e�l2ðx�t2Þ (A3)

For example in the case of several relatively dry periods fol-
lowed by a wet one, this sampling should be repeated period by
period until the correct storm origin can be located. Note that if
l1¼ l0 then Fts ðxjx � t2Þ, which can be derived from Eqs. (A1) and
(A2), simply reduces to Eq. (A1) until time t2. That is, the storm
arrival in two consecutive periods with the same arrival rate using
this sampling procedure is the same as in a longer period with that
rate, as is required. Once a storm origin is simulated, the remaining

properties of the storm are simulated using the parameterization
relating to that period.

A consequence of this modelling methodology is that the final
effects of a simulated storm may lag the origin by several days. For
example, simulation of a dry period is likely to be biased wet by
a preceding wet period. Therefore the identification of observed
rainfall statistics and model parameterization for each atmospheric
state is difficult and must be carefully carried out (see Fowler et al.,
2000, 2005 for further details).
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