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Future climate scenarios and rainfallerunoff modelling in
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Future climate change and data-based rainfallerunoff predictions are presented for the Upper Gallego.

Abstract

Global climate change may have large impacts on water supplies, drought or flood frequencies and magnitudes in local and regional hydro-
logic systems. Water authorities therefore rely on computer models for quantitative impact prediction. In this study we present kernel-based
learning machine river flow models for the Upper Gallego catchment of the Ebro basin. Different learning machines were calibrated using daily
gauge data. The models posed two major challenges: (1) estimation of the rainfallerunoff transfer function from the available time series is
complicated by anthropogenic regulation and mountainous terrain and (2) the river flow model is weak when only climate data are used, but
additional antecedent flow data seemed to lead to delayed peak flow estimation. These types of models, together with the presented downscaled
climate scenarios, can be used for climate change impact assessment in the Gallego, which is important for the future management of the system.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A major challenge still remaining in hydrology is the accu-
rate prediction of catchment runoff responses to rainfall
events. Quantitative descriptions of this dynamic transforma-
tion process are necessary for the optimal design of water stor-
age and drainage networks or the management of extreme
events, such as floods or droughts (e.g. Sivakumar et al.,
2002). Computer models used for the calculation of runoff re-
sponses range from physically-based distributed models like
‘Systeme Hydrologique Europeen’ (SHE, Abbott et al.,
1986) to conceptual more lumped models (e.g. TOPMODEL,
Beven and Freer, 2001; TRANSEP, Weiler et al., 2003) to
black-box models like artificial neural networks (ANN). The
latter are data-driven and try to simulate the dependent
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variable runoff based on (measurable) input variables such
as rainfall, temperature, or earlier runoff. No physical process
description is used, however, its functional form is estimated
based on the proper balance of model fit and model complex-
ity (here we refer to the number of fitting parameters). ANN
have been successfully applied to numerous rainfallerunoff
problems among various catchments within the last decade
(e.g. Minns and Hall, 1996; Shamseldin, 1997; Dawson and
Wilby, 1999; Sajikumar and Thandaveswara, 1999; Zealand
et al., 1999; Gautam et al., 2000; Tokar and Markus, 2000; An-
ctil et al., 2004; Rajurkar et al., 2004). Recent research has
also tried to integrate ANN with conceptual models (e.g.
Jain and Srinivasulu, 2004; Chen and Barry, 2006) or used
data-based ANNs for flood prediction in ungauged catchments
(Dawson et al., 2006).

This study, part of the integrated EU-Project AquaTerra
(AT), focuses on data-based modelling and applies two rela-
tively new types of ‘kernel-based learning machines’: support
vector machines (SVM, Boser et al., 1992; Vapnik, 1998;
Schölkopf and Smola, 2002) and relevance vector machines
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(RVM, Tipping, 2001). Recent applications of these learning
machines in the field of hydrology and groundwater manage-
ment include multi-time scale stream flow forecasting (Asefa
et al., 2006), lake level phaseespace reconstructions (Khalil
et al., 2006), and the simulation of nitrate concentrations in
groundwater at pre-defined receptors (Khalil et al., 2005). A
first rainfallerunoff study with SVM can be found in Dibike
et al. (2001). Some of these studies report very high, if not
the best, predictive performances for SVM and RVM relative
to other data-based models. Following this, we develop learn-
ing machine models to simulate the catchment response of the
anthropogenically influenced Upper Gallego river in northern
Spain, utilizing rainfall, temperature and reservoir lake volume
data in order to make daily discharge forecasts at the gauging
station Anzanigo.

Learning machine approaches have been little used within
climate change impact studies, but may offer an alternative ap-
proach to the use of fully-distributed rainfallerunoff models
for the prediction of future impacts on flow. Within Spain, sig-
nificant increases in mean annual and seasonal temperatures
have been observed over the 20th century (Esteban-Parra
et al., 2003), with decreases in rainfall over the Iberian Penin-
sula observed since the early 1960s (Goodess and Jones, 2002;
Palutikof, 2003), but increases over the northern coastal re-
gions of Spain (Esteban-Parra et al., 2003). Changes in climate
along the Mediterranean coast have received particular
attention in the literature (De Luı́s et al., 2000; Ramos and
Martı́nez-Casasnovas, 2006; Martı́nez et al., 2007) due to their
potential impact on water resources in the region.

Within this study we present the projected changes in future
precipitation and temperature for the Gallego catchment and
larger Ebro river basin based on simulations from 11 Regional
Climate Models (RCMs) for the 2070e2100 SRES A2 emis-
sions scenario. Assuming no further land-use changes these
projections will be used together with learning models in fur-
ther work to predict discharge quantities based on future cli-
mate scenarios derived within AT.

2. Study site and data selection

The Gallego river is a tributary of the Ebro river which con-
stitutes the southernmost of five European river basins studied
within AT (e.g. Gerzabek et al., in press).

The Gallego originates in the central range of the Pyrenees
at the Canal Roya pass and reaches a maximum elevation of
2014 m. The selected gauging point to be modelled is some
100 km further downstream at Anzanigo (580 m). Within
this mountainous terrain, the Gallego collects water from sev-
eral smaller tributaries (see Fig. 1, upper diagram) and has
a relatively steep profile (mean slope of 5.1%) for the first
30 km. Below the inflexion of Biescas (after w30 km) the
slope drops to a relatively persistent mean of 0.4% (Ollero
et al., 2004).

In terms of rainfallerunoff modelling such a setting can be
viewed as challenging, since storage effects from winter snow-
fall and variability of precipitation events due to topographic
control may be substantial. An additional difficulty is that
the Gallego river cannot be viewed as a natural flow system
(Martinez-Gil (University Zaragoza), 2005, personal commu-
nication) with reservoirs (irrigation), channels and hydroelec-
tricity plants regulating large parts of the catchment. For the
Upper Gallego river, five reservoirs have been identified as po-
tentially influencing factors: Lanuza, Bubal, Sabinianigo, Ja-
barella, Javierrelatre (see Table 1 for details).

The Confederacion Hidrografica del Ebro (CHE) holds
a large amount of discharge, precipitation, and temperature
data available for download at its website: www.chebro.es.
These series have multiple start and end dates and some miss-
ing data. Missing data for the 01.01.1950 to 30.04.1992 time
period were infilled using a day-by-day inverse distance
squared interpolation for precipitation data (correlation with
elevation on a daily basis appears not as important as for lon-
ger time scales, e.g. Ahrens, 2006). Due to the large spatial
persistence of temperature series, missing values were ob-
tained from existing temperature data via a day-by-day linear
elevationetemperature regression. The precipitation and tem-
perature stations within the Upper Gallego used in the model-
ling are shown in Fig. 1, upper diagram.

Additionally, daily reservoir volumes at Lanuza and Bubal
were also kindly provided by M. Garcia-Vera of the CHE.
However, the remaining reservoirs, Sabinianigo, Javierrelatre,
and Jabarella, are ungauged. This could represent a consider-
able source of noise for the rainfallerunoff simulations. Yet,
as the capacity of these reservoirs is comparatively small, their
influence on daily peak flow estimation is believed to be rela-
tively low. For the simulation of the catchment in its current
state, data post 1978 (completion of reservoir Lanuza) were
selected. In Fig. 2, the annual total and mean discharge of
the Gallego at Anzanigo are given for hydrologic years (Octo-
bereSeptember) 1979/80 to 1991/92 in a bar chart. This shows
that the Gallego catchment underwent a relatively wet phase
from 1981 to 1987. Hence, these years were selected for a first
model development focussing on peak flow prediction. Since
the Lanuza reservoir has no direct influence (buffering through
reservoir Bubal) only the Bubal reservoir volume series were
included in this study. Furthermore, only precipitation (P)
and temperature (T ) series downstream of the Bubal reservoir
(see Fig. 1, upper diagram) were used. An overview of se-
lected P and T series, as well as reservoir volumes at Bubal
(Vol) and discharge (Q) at Anzanigo is given in Fig. 2. The
lead time for Q forecasting was set to one day.

Climate change scenarios are constructed using regional
climate model data from the EU-Project PRUDENCE. The
grid cells used to represent the Gallego catchment and the
larger Ebro river basin are shown in Fig. 1, lower diagram.

RCM data from PRUDENCE provide a series of high-
resolution regional climate change scenarios for a large
range of climatic variables for Europe for the period
2071e2100 using four global climate models (GCMs) and
eight RCMs. The construction of climate changes scenarios
using a range of models enables an evaluation of the uncer-
tainty of future predictions. For the European domain, indi-
vidual RCMs provide a greater range of temperature change
than the difference between GCMs and RCMs (Déqué et al.,
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Fig. 1. Upper diagram: map of the Upper Gallego catchment showing gauging station locations, river network and man-made reservoirs. Lower diagram: grid cells

used to calculate climate statistics for the Ebro (entire shaded area e 118 cells) and Gallego (boxed subset e 34 cells) catchments.
in press), and inadequate representation of precipitation
across Europe. A list of models used in this study and their
acronyms is provided in Table 2. Model simulations are
available for a control (1961e1990) and future time-slice
(2071e2100) for the SRES A2 scenario.

A gridded global series of observed monthly climate means
for the period 1901e2000 (Mitchell et al., 2004), CRU TS 2.0
(hereafter referred to as CRU), was used to provide a compar-
ative data set to the RCM control time-slices. Each simulation
and the observations were re-gridded onto a common 0.5� by
0.5� grid to allow direct comparison.
Mean monthly climate statistics were calculated for tem-
perature and precipitation at regional and grid-cell scales for
both the Ebro and the Gallego catchments to allow model as-
sessment at the impact scale.

3. Learning machines

The theory behind both learning machines applied in this
study (i.e. SVM and RVM) is quite involved mathematically
and cannot be stated herein detail (for more detail see e.g.
Vapnik, 1998 (SVM); Tipping, 2001 (RVM); Schölkopf and
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Smola, 2002 (SVM, RVM)). However, we derive an introduc-
tory picture in the following text.

The overall problem of learning from data samples is that
their number is finite and that an infinite number of functions
exists that could perfectly fit the data according to some error
measure (e.g. the root mean squared error (RMSE) is used in
this study). If all data samples are used for fitting, there is no
way to decide, which function really represents the underlying
functional behaviour in the data. Hence, one may pick a func-
tion with little predictive ability for an evaluation point that
lies between fitted data points. Furthermore, the data may con-
tain noise, and functions fitting the noise (overfitting) are not
desired. As a remedy, the data are usually split into a training
and test set. The training data are used to derive a trained
learning machine, i.e. a fully defined function, whereas the
test data are exclusively used to compare the performance of
different trained machines on formerly unseen data samples.

Learning machines, in general, can be understood as a set
of functions combined with a principle to select one function;
that which best approximates the underlying functional behav-
iour in the training data. Such principles typically try to quan-
tify the trade-off between the ‘smoothness’ of a function (e.g.
similarity to a straight line) and the accuracy of its data fit.

Support vector machines (SVM) and relevance vector ma-
chines (RVM) choose functions that are linear in their param-
eters. More specifically, the functional relationship between an
input vector x (in this study P, T, etc.) and the corresponding
outcome y (in this study discharge Q) is approximated by a lin-
ear weighting of the outcome of some, possibly non-linear,
pre-processing functions Ki (vector and matrix quantities are
denoted by bold letters):

yzf ðxÞ ¼
XN

i¼1

liKiðxÞ þ l0 ð1Þ

where li with i¼ 0,1,.N are the corresponding weights and N
is the number of pre-processing functions, which corresponds
here to the number of training data samples {(xi,yi)}i¼1

N.
In the case of the SVM, the Ki are so-called kernel func-

tions or kernels, which satisfy some special mathematical con-
ditions (e.g. Mercer’s condition, Mercer, 1909). However, in
the case of the RVM, in principle, any set of basis functions
(including kernels) could be used. The essential idea is that
pre-processing by Ki transforms the data input vector x into
a higher dimensional space, where a linear approximation of
the underlying (non-linear) functional relationship is feasible
and reasonably accurate. Hence, the choice of kernel is

Table 1

Main catchment controlling reservoirs at the Upper Gallego (data kindly

provided by M. Garcia-Vera from the CHE)

Reservoir name Capacity (used/total) (hm3) Year of completion

Lanuza 15.00/25.00 1978

Bubal 63.00/64.26 1971

Sabinianigo 0.35/0.41 1965

Jabarella 0.13/0.18 1961

Javierrelatre 0.90/1.16 1966
important for learning machine performance in a particular
application.

Typical kernel functions are listed in Table 3. In this study
preliminary testing suggested radial basis function (rbf) ker-
nels were best for model development. This finding is in ac-
cordance with Dibike et al. (2001), who report the best
RMSE performance for rbf kernels in the majority of their
SVM rainfallerunoff applications.

Despite their similar mathematical formulation (Eq. (1)),
learning machines differ substantially in their underlying
learning principle (i.e. calculating li and determining the
Ki): SVM are based on the statistical learning theory (STL,
Vapnik, 1998) and perform structural risk minimization. This
can be viewed as ordering different sets of functions by their
VapnikeChervonenkis dimension (VC, Vapnik and Chervo-
nenkis, 1974) e a measure of the flexibility of a set of func-
tions to fit a functional relationship defined by a finite
sample of data. According to STL, the optimal solution can
be found by a balanced minimization of both the training error
(a property of a particular function fa) and the VC dimension
(a property of the set of functions containing fa). The balancing
and the consideration of noise in this context leads to the in-
troduction of two so-called hyperparameters, C and 3, which
are sufficient to compute a trained SVM for a particular ker-
nel. The parameter 3 represents an insensitivity to deviations
of the prediction function to a training data value up to 3.
The hyperparameter C allows for an additional filtering of out-
lier values. It follows from the SVM formulation that the num-
ber of kernel functions used by the SVM may be significantly
lower than the number of training data. This results in a so-
called ‘sparse representation’ of the training data set. The re-
maining data vectors are the name giving ‘support vectors’.
Suitable values for these hyperparameters, however, have to
be obtained by an additional validation procedure. The exact
mathematical formulation of the training procedure is beyond
the scope of this article. For details see e.g. Vapnik (1998) or
Schölkopf and Smola (2002).

In contrast to SVM, the RVM utilizes Bayesian learning
(e.g. Berger, 1985). The RVM estimates a normal distribution
for y, with the mean of this normal distribution being the most
likely value for y. This also includes the uncertainty of the es-
timate based on the training data set. More formally, Eq. (1) is
stated as:

y¼ f ðxÞ þ d; with dwN
�
0;s2

�
ð2Þ

where d represents a normally distributed error with zero mean
and variance s2. The (conditional) distribution over all y is
then:

p
�
y
��l;s2

�
¼
�
2ps2

��N=2
exp

�
� 1

2s2
ky�Flk2

�
ð3Þ

where l¼ [l0,l1,.,lN]t and F is an N(Nþ 1) design matrix
with F¼ [K1,K2,.,KN]t and Ki¼ [1,Ki(x1),Ki(x2),.,Ki(xN)]
(t denotes transpose). Overfitting is avoided in this context
by defining explicit prior distributions over the weights l:
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Fig. 2. Upper diagram: annual total discharge and annual mean discharge at Gallego gauging station Anzanigo. Lower diagram: Data series for the selected study

period from 1981/82 to 1987/88. Temperature values (T ) are stippled, whereas precipitation (P), reservoir volumes (Vol) and discharge (Q) are drawn as solid lines.

Please note the temperature series have been shifted by 450 �C for better visualization.
pðljaÞ ¼
YN

i¼0

N
�
li

��0;a�1
i

�
ð4Þ

with a being a vector of Nþ 1 hyperparameters. Using these
zero mean, normally distributed prior distributions for the li

weights, a preference of smaller weights and, hence, less com-
plex functions is expressed. In fact, during the training
procedure it is frequently found that many weights approach
zero, which also results in a sparse representation of the data
set by the estimated function. The data vectors associated
with non-zero weights are called ‘relevance vectors’ accord-
ingly. As with the SVM the actual training procedure,
comprising here the determination of the additional hyperpara-
meters a and the error variance s2, is beyond the scope of this
article (see Tipping, 2001, 2004 for details).
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Table 2

The 11 Regional Climate Models used for this study

RCM Driving data PRUDENCE

acronym

AquaTerra acronym

Danish Meteorological Institute (DMI) HIRHAM HadAM3H A2 HC1 HS1 HIRHAM_H HIRHAM_H_A2

ECHAM4/OPYC

(OGCM SSTs) A2

Ecctrl ecscA2 HIRHAM_E HIRHAM_E_A2

Swedish Meteorological and

Hydrological Institute (SMHI)

RCAO HadAM3H A2 HCCTL HCA2 RCAO_H RCAO_H_A2

ECHAM4/OPYC A2 MPICTL MPIA2 RCAO_E RCAO_E_A2

Hadley Centre e UK Met Office HadRM3P HadAM3P A2 Adeha adhfa HAD_P HAD_P_A2

Météo-France, France Arpège HadCM3 A2 DA9 DE6 ARPEGE_C ARPEGE_P_A2

The Royal Netherlands Meteorological

Institute, Netherlands (KNMI)

RACMO HadAM3H A2 Control Scenario RACMO_H RACMO_H_A2

GKSS Forschungszentrum Geesthacht

GmbH, Germany (GKSS)

CLM HadAM3H A2 CTL SA2 CLM_H CLM_H_A2

Swiss Federal Institute of Technology,

Switzerland (ETH)

CHRM HadAM3H A2 HC_CTL HC_A2 CHRM_H CHRM_H_A2

Max Planck Institute for Meteorology,

Germany (MPI)

REMO HadAM3H A2 Control Scenario REMO_H REMO_H_A2

Universidad Complutense de

Madrid, Spain (UCM)

PROMES HadAM3H A2 Ref A2 PROMES_H PROMES_H_A2

The AquaTerra acronyms are adopted here to provide an easier understanding of the format of each model run. The first part of each acronym refers to the RCM

and the second to the GCM data used to provide the boundary conditions. Scenario simulations have the further suffix A2.
The advantage of the presented learning machines is that
once the kernel (i.e. the kernel function and its parameter,
see Table 3) and hyperparameters (SVM: C and 3, RVM: no
undefined hyperparameters) are chosen, there exists a unique
training solution. This means that SVM and RVM do not opti-
mise on local minima, as has been noted for ANNs like the
multi-layer perceptron (MLP) (e.g. Haykin, 1999). Moreover,
the topology selection (e.g. number of hidden neurons in MLP)
is reduced to the hyperparameter selection through a validation
procedure such as split-sample, k-fold cross-validation (e.g.
Haykin, 1999) or bootstrapping (Efron and Tibshirani, 1997).
Recent work exploring a variety of such methods in the field
of hydro(geo)logy comprises, for example, Anctil and Lauzon
(2004) (ANN) and Khalil et al. (2005, 2006) (ANN,SVM,
RVM). In this study we minimize the fivefold cross-validation
error (RMSE) on the training set to obtain hyper- and kernel pa-
rameters. The minimisation for the three SVM parameters was
carried out using an evolutionary algorithm for real-valued
(global) optimization (see Hansen and Ostermeier, 2001;
Hansen et al., 2003; Hansen and Kern, 2004 for details). The
single parameter tuning for the RVM was carried out by a bisec-
tion algorithm. The MATLAB toolbox The Spider (http://

Table 3

Typical kernel functions (xi is a fixed (data) vector)

Formula Kernel Ki(x)

KiðxÞ ¼ ½ðx$xiÞ þ 1�d Polynomial kernel

of order d (d user defined)a

KiðxÞ ¼ expð�sjx� xij2Þ Radial basis

function kernel (s user defined)

KiðxÞ ¼ tanhðbðx$xiÞ � cÞ Hyperbolic tangent

kernel (b and c user defined)

a The $ denotes the regular scalar product between two vectors (used in

polynomial and hyperbolic tangent kernels).
www.kyb.tuebingen.mpg.de/bs/people/spider/) was used for
learning machine training and testing.

4. Learning machine development

4.1. Input variables

Input variable selection is an essential task in data-based
modelling. As already stated above, a lead time of 1 day is as-
sumed as the mountainous terrain indicates a relatively fast re-
sponse time and the time discretization sets a minimum lead
time of 1 day. Nevertheless, a linear correlation analysis was
performed to estimate the delay time between rainfall and
the discharge response (see Fig. 3).
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This analysis indicates that a 1-day lead time may corre-
spond to the catchment response time. The relatively steep de-
cline towards a delta of 4 days was interpreted as an indication
that individual discharge events can be approximately treated
by a short term memory of 4 days per individual precipitation
series. Furthermore, the peaking around a delta of 16 days was
interpreted as a longer term memory effect. It was therefore
decided to include moving window averages of precipitation
series within the model. This need is also supported by the
fact that during summer months there can be >25 days with-
out rainfall. If only short term rainfall input is considered, this
could lead to several zero input vectors (apart from reservoir
information) with differing discharge values. For individual
learning set-ups, different moving average window sizes, w
were used. More precisely, an input vector x(t) for day t con-
tains the following values of a single precipitation series in
order to estimate Q(tþ 1):

xðtÞ ¼
"

.;PðtÞ;Pðt� 1Þ;Pðt� 2Þ;Pðt� 3Þ;

1

w

Xw

i¼1

Pðt� ð3þ iÞÞ;.
#

where w takes the values 15, 20, 25, and 40. The latter was in-
cluded to be well above the maximum dry day period. In total,
data from 11 precipitation stations were used along with their
corresponding daily and moving average temperature values.

Following the reasoning that the daily difference in reser-
voir volumes should represent the most valuable information
for the anthropogenic influence on Gallego discharge, the
Vol series was also included with a memory length of 2
days, i.e. Vol(t) and Vol(t� 1) are used to predict Q(tþ 1).

In this set-up, the catchment state is represented by the long
and short term memory of the precipitation series in combina-
tion with temperature as, for example, used by Zealand et al.
(1999) or Tokar and Markus (2000). The use of future climate
change scenarios in the developed learning machine models
more or less constrains the input parameters to precipitation
and temperature (reservoir operation scenarios could be gener-
ated accordingly). Nevertheless, some additional analysis was
carried out also using previous discharge values (Q(t) to
predict Q(tþ 1)) as e.g. Minns and Hall (1996), Campolo
et al. (1999), Anctil and Rat (2005), and de Vos and Rientjes
(2005).

4.2. Model set-up

Considering the wet phase of the Gallego between 1981 and
1987, the first 6 years were used for training and the last year
for testing. As shown in Fig. 2, the hydrologic year of 1987-
1988 shows the largest total annual discharge of the whole
data set and may be regarded as a hard test case. However,
the highest daily peak flows were reached during 1982-1983
(see Fig. 2 lower diagram), so there should be sufficient infor-
mation on rainfallerunoff behaviour within the training set.

5. Results

The model development was carried out by the minimiza-
tion of fivefold cross-validation using RMSE. However, a num-
ber of additional performance measures are also presented.
The mean absolute error (MAE) is a measure of the absolute
accuracy of the model; the index of agreement (IoA, Willmott
et al., 1985) and coefficient of efficiency (CoE, Nash and
Sutcliffe, 1970) are used due to their sensitivity to additive
or proportional differences between model predictions and
observations. The IoA ranges from 0.0 to 1.0, where a value
closer to one indicates better performance. The CoE ranges
from �N to 1.0; 1.0 indicates perfect model fit, but at zero
model predictions are only as good as the mean over the obser-
vations (see e.g. Legates and McCabe, 1999 for a discussion
on the use of IoA and CoE in hydrologic model validation).
Additionally, the persistence index (PI, Kitanidis and Bras,
1983) is used to compare model performance against a simple
model using the discharge value of the previous day as the pre-
diction value for the current day. A PI greater than zero indi-
cates a better performance than simply using the value from
the previous day. Formulas for the performance measures are
given in the Appendix.

Table 4 shows the performance measures for the learning
machine models under consideration. The RVM appears to
have higher predictive power on the test set than the SVM,
as can be seen from the performance measures.
Table 4

Performance measures values obtained on training and test sets with P, T, Vol input data

Machine type Performance measure w¼ 15 w¼ 20 w¼ 25 w¼ 40

Train Test Train Test Train Test Train Test

SVM MAE 6.075 12.846 5.927 12.696 3.667 15.448 4.431 12.806

RMSE 10.267 20.270 10.149 19.828 7.1402 22.513 8.103 19.751

IoA 0.930 0.821 0.931 0.832 0.970 0.819 0.960 0.822

CoE 0.779 0.548 0.784 0.568 0.893 0.443 0.862 0.571

PI 0.356 �0.623 0.371 �0.556 0.689 �1.011 0.599 �0.545

RVM MAE 7.730 12.119 7.462 11.881 7.372 11.432 7.588 12.560

RMSE 10.387 18.823 10.173 18.293 9.995 17.806 10.255 19.388

IoA 0.932 0.862 0.9353 0.870 0.938 0.876 0.934 0.831

CoE 0.774 0.611 0.783 0.632 0.791 0.652 0.780 0.587

PI 0.341 �0.388 0.368 �0.315 0.390 �0.249 0.358 �0.471
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Table 5

Performance measures on training and test sets with previous discharge values included

Machine type Performance measure w¼ 25þQ(t) w¼ 40þQ(t) w¼ 25þQave w¼ 40þQave

Train Test Train Test Train Test Train Test

SVM MAE 2.646 5.842 2.684 8.031

RMSE 7.290 13.640 6.825 17.081

IoA 0.969 0.939 0.973 0.895

CoE 0.889 0.796 0.902 0.679

PI 0.675 0.271 0.716 �0.158

RVM MAE 3.442 6.148 5.314 9.115

RMSE 5.791 13.099 7.772 16.370

IoA 0.981 0.946 0.965 0.901

CoE 0.930 0.811 0.874 0.706

PI 0.796 0.304 0.631 �0.057
These suggest that overall model performance is not very
satisfactory on Shamseldin’s (1997) scale; demanding a CoE
above 0.8 for a ‘fairly satisfactory’ model. For the best set-
ups, with regard to CoE, previous discharge values (Q(t))
were added to the data set to provide information on anteced-
ent catchment state. Furthermore, an additional set-up with
a moving window average of size w¼ 4 over the previous dis-
charge values (Qave) was also tested. This average is supposed
to provide a suitable baseline, whereas peak flows are gener-
ated by the short term precipitation and reservoir data. Table 5
presents the results for the best SVM (w¼ 40 for P and T ) and
RVM (w¼ 25 for P and T ) set-ups with additional previous
discharge information after a new kernel- and hyperparameter
estimation was performed. These values indicate a consider-
able improvement in terms of the CoE and other performance
measures. Fig. 4 shows the predictions of the best model
(RVM with Q(t)) on training and test data with 95% confi-
dence intervals. Apart from extreme peaks, the measured
curves stay well inside the confidence interval.
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Fig. 4. Best RVM model on training and test data with 95% confidence bounds

(previous discharge values used as input data).
6. Climate change projections

6.1. Control climate, 1961e1990

Over the Ebro catchment, all RCMs are skilful in reproduc-
ing the annual mean temperature cycle but vary in their ability
to reproduce the magnitude of the monthly means (Fig. 5a).
RCAO produces the largest overestimates annually (Fig. 5b),
with HAD_P producing large positive anomalies during sum-
mer. Other models, such as CLM_H, CHRM_H, PROMES_H
and ARPEGE_C, underestimate mean temperature in most
months. Overall model error is summarised by the mean abso-
lute monthly anomaly (Fig. 5c), indicating that RACMO_H
and HIRHAM_H perform best overall, whilst RCAO_E and
CLM_H demonstrate the least skill.

The models also vary in their ability to reproduce the spa-
tial distribution of temperature. In particular, during the cooler
NovembereMarch period, some models have low skill in re-
producing observed temperatures over the mountainous north-
ern coast of Spain. For the Gallego there are only small
differences in the relative skill of the RCMs compared to the
Ebro.

The RCMs reproduce the bimodal distribution of annual
precipitation over the Gallego but simulate a large range of
values for mean monthly precipitation, particularly from
May to August (Fig. 5), suggesting that RCMs differ most
in their ability to reproduce summer precipitation processes.
This may result from regional climate decoupling from zonal
circulation during summer and early autumn when land-sea
temperature gradients and topographical influences become
more important (Bolle, 2003). RCMs may have more difficulty
in representing these meso- to local-scale processes. During
these months, several models, which perform with reasonable
skill during other periods seemingly fail to capture precipita-
tion processes (Fig. 5). In particular, HIRHAM_H and RE-
MO_H both significantly overestimate mean precipitation by
w60% in July whilst summer precipitation is underestimated
by w50% by RCAO_E and CHRM_H. The mean absolute er-
ror suggests that RACMO_H (9.4%) performs best (Fig. 5)
whilst CHRM_H is the least skilful (28.8%).

There is little inter-model consistency in the simulation of
spatial precipitation patterns. During winter, only the
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Fig. 5. Left: the mean 1961e1990 monthly temperature for the Ebro catchment. Part (a) shows the annual cycle, each line representing a different RCM simulation

and the bold line representing the CRU observed series. The shading represents the 95% confidence interval for the estimate of the observed 30-year sample mean.

Part (b) represents the individual monthly model means as an anomaly from the CRU mean with the 95% confidence interval superimposed. Part (c) represents the

mean absolute annual error for each of the RCMs. Right: as for left part, but for mean precipitation in the Gallego catchment. Model anomalies in parts (e) and (f)

are expressed as a percentage relative to the CRU monthly mean.
HIRHAM and RCAO model pairs produce similar spatial pat-
terns, indicating that the GCM is a less important source of
model error than the RCM. This is consistent with Nieto
et al. (2004) who indicated that ECHAM4/OPYC3 and
HadCM3 both overestimate winter precipitation in the eastern
Iberian Peninsula.

6.2. Future scenarios

Under the SRES A2 emissions scenario, temperatures are
predicted to increase most in summer months, with smaller
rises during winter and early spring. The driving GCM is re-
sponsible for the large range of uncertainty in temperature in-
crease (Fig. 6a). ECHAM-driven models project large
increases throughout the year. Thus, considerable uncertainty
in regional temperature change arises from the different re-
sponses of the driving GCMs during summer.

From March to October all RCMs indicate greater warming
in the interior of Spain, with lower rates of change along the
northern and Mediterranean coast. The magnitude of this in-
crease is greater for ECHAM-driven models. Similar patterns
of change are projected for the Gallego catchment, with slightly
smaller increases (up to 0.34 �C) between March and July,
whilst the unweighted mean of all 11 models produces similar
temperature change throughout the year.

For precipitation, the models consistently indicate future
decreases (Fig. 6b), although in December and January the
models indicate small increases. Most models project the
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Fig. 6. Projected RCM change in (a) mean temperature and (b) mean precipitation for the Ebro catchment. Change is for 2071e2100 from the 1961e1990 control

period and for precipitation is expressed as a percentage of the control mean. Projected change in mean December precipitation for (c) CLM_H, (d) REMO_H for

December and (e) RCAO_E.
largest decreases during summer months; up to 75% in August
(CHRM_H_A2). When considered together with projected
changes in temperature (Fig. 6a), the region is likely to ex-
perience milder winters but significantly warmer and drier
summers.

The projected increases in December and January precipi-
tation hide variability in the winter distribution of change.
The two most commonly projected patterns are: (a) modest in-
creases over the region (Fig. 6c) and (b) decreases over the
northern coast and increases over the rest of the region
(Fig. 6d). This latter pattern was also obtained for changes
in winter precipitation by González-Rouco et al. (2000) using
statistically downscaled output from HadCM2. However, there
is considerable uncertainty in the spatial distribution of
change. In summer, decreases in precipitation are projected
but uncertainty surrounds the spatial distribution of change.
Several models project increases across the region, whereas
others indicate the opposite.

Notwithstanding these uncertainties, the unweighted model
means demonstrate that projected changes for the Gallego are
similar to those for the larger Ebro catchment (Table 6), with
differences between the two regions of <5% throughout the
year.

7. Discussion and conclusions

Learning machine model development based on precipita-
tion, temperature and reservoir information alone provides rel-
atively low model accuracy with respect to the introduced
performance measures for both support and relevance vector
machines in the Gallego catchment. However, the mountain-
ous topography and the ungauged, but operational, smaller
Table 6

Change in mean monthly precipitation for the Ebro and Gallego catchments

J F M A M J J A S O N D

Ebro 5.3 �5.6 �15.5 �22.2 �41.7 �43.4 �50.5 �43.8 �15.1 �23.0 10.0 4.0

Gallego 2.2 �0.8 �12.0 �18.8 �39.3 �45.1 �51.9 �43.8 �12.8 �21.4 �9.7 4.1

Change is expressed as the mean daily precipitation rate for the period 2071e2100 as a percentage of the 1961e1990 rate.
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reservoirs may introduce large amounts of noise into the sys-
tem that complicate accurate discharge prediction. Further-
more, the time resolution of measurements appears to be
close to the catchment response time. In this challenging set-
ting the performance measures indicate that the RVM is
a slightly better model than the SVM. The improvement, how-
ever, is not substantial for this application.

Additional models were developed using previous dis-
charge values as indirect estimates of antecedent catchment
state. The results obtained for both machines were signifi-
cantly improved; the RVM again achieving the best perfor-
mance values (Table 5).

de Vos and Rientjes (2005) analysed the use of previous
discharge values for runoff prediction using ANNs and con-
cluded that they introduce a strong autoregressive component
into the network structure during training. The network is de-
ceived by the high correlation of these inputs with the desired
output and filters other important information, such as daily or
hourly precipitation values, by assigning them low weights.
This, in turn, leads to a peak timing delay of the predicted dis-
charge. This effect is more pronounced for lead times on an
hourly scale, but also present in daily forecasts.

Fig. 7 (left and middle diagrams) shows the SVM and RVM
model predictions when using previous day discharge as an in-
put parameter. This indicates several places where peaks are
delayed or the simulated curve is shifted by one time step
compared to the observations, although, major peaks are gen-
erally well timed. Predicted discharge sensitivity studies with
one percent perturbations of individual input variables showed
high sensitivity to previous discharge values, whether low
flow, peak flow or randomly picked data samples were
perturbed. Although not a detailed theoretical analysis these
findings suggest that using previous discharge as input could
be problematic for SVM and RVM. However, unlike an
ANN, weights in the SVM and RVM formulations used herein
do not have direct access to individual components of the input
vector.

de Vos and Rientjes (2005) demonstrated taking a moving
window average over previous discharge values may improve
these peak delays in the ANN case, as the cross-correlation be-
tween the moving average and the discharge series is usually
lower than the auto-correlation of the latter. Fig. 7 (right dia-
grams) shows the same parts of the training and test sets, but
for RVM simulations based on a moving average set-up. The
timing is clearly improved. Yet, the pronounced peak height
is again strongly underestimated. Overall, the moving average
set-up seems to provide a more realistic estimation, even
though it comprises a loss of performance.

Based on the analyses so far, it is concluded that river flow in
the Upper Gallego catchment is difficult to simulate with the
applied RVM or SVM formulations and the input data types
at hand. Nevertheless, a higher time resolution may certainly
improve the estimation. A possible future approach could be
the combination of learning machines with conceptual model
units in order to improve catchment state estimation. Aside
from the practical application, a thorough analysis of peak
timing delays in the context of learning machines may be
worthwhile.

However, for future successful management of water in
these types of catchments under climate change, we will in-
creasingly need to develop independent river modelling tools.
Climate models suggest that there may be a slight increase in
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precipitation in the Gallego catchment during winter months
but this is more than offset by the large decrease in precipita-
tion projected for the rest of the year. If these projected trends
in precipitation are coupled to the projected increases in tem-
perature throughout the year, increasing potential evapotrans-
piration rates and thus further reducing water availability, it
is likely that water supply problems in the Gallego and Ebro
catchments may increase. We may therefore need learning ma-
chines or more complex combinations of models to help water
managers plan for the future.
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Appendix

In the following O denotes the observed discharge values
and P denotes the predicted ones over a data set of n values
in timely order. Om denotes the mean of the observed data
values.

MAE¼ 1

n

Xn

i¼1

jOi�Pij

RMSE¼
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